﻿ 重介质浅槽分选机内不同粒径颗粒运动学的数值模拟 Numerical Simulation of Different Size Particles’ Kinematics in Heavy Medium Vessels

Mine Engineering
Vol. 07  No. 02 ( 2019 ), Article ID: 29540 , 8 pages
10.12677/ME.2019.72018

Numerical Simulation of Different Size Particles’ Kinematics in Heavy Medium Vessels

Kai Zhu

Anju Coalmine, Jining Mining Industry Group Co. Ltd., Jining Shandong

Received: Mar. 5th, 2019; accepted: Mar. 25th, 2019; published: Apr. 1st, 2019

ABSTRACT

In order to study the separation effect of heavy medium shallow groove separator for different particle sizes, the particle movement inside the heavy medium shallow groove separator was simulated by numerical simulation technology and DPM model. The trajectories of coal particles in the heavy medium shallow groove separator were compared under different horizontal flow velocity of suspension and different upward flow velocity of medium, so that the motion law of particle size with different trajectories in the heavy medium shallow groove separator were obtained.

Keywords:Heavy Medium Vessels, Numerical Simulation, DPM Model, Heavy Medium Suspension, Particle Kinematics

1. 引言

2. 数值模型的建立与分析

2.1. 模型建立与网格划分

Figure 1. Machine model

Figure 2. Model grid partition

2.2. 模型可靠性验证

Figure 3. The calculation process of DPM

Table 1. Free settling velocity of different size particles

Figure 4. The computation of simulated and calculated value of free settlement velocity of 6 mm particles

Figure 5. The computation of simulated and calculated value of free settlement velocity of 13 mm particles

3. 模拟结果与分析

6 mm至150 mm的颗粒145个，依次排列从入料口上方一次性加入，坐标为(−1260, −1160)，长度为150 mm，原煤同水平介质速度同速加入。

3.1. 水平介质速度对不同粒径颗粒运动的影响

Table 2. Physical property parameters

Figure 6. Relation of displacement and time in Y direction

3.2. 上升介质速度对不同粒度颗粒运动的影响

Table 3. Physical property parameters

Figure 7. Relation of movement time and displacement in Y direction

4. 结论

1) 悬浮液密度为1500 kg/m3，固体颗粒密度为1600 kg/m3时，13 mm粒径及以上的颗粒受重悬浮液性质改变的影响不大，10 s内固体颗粒均能完成沉降，成为重产物。

2) 上升流速度为0.36 m/s，水平流速度为(0.22, −0.185)时，8 mm粒径及以上的颗粒可以实现有效分选。

3) 上升流速度为0.36 m/s，水平流速度为(0.22, −0.185)时，小于6 mm的颗粒基本不能在有限时间内完成沉降，且离溢流口较近时，易随轻产物夹带排出，造成精煤污染，降低分选精度。

4) 当分选下限降为8 mm时，可以满足重介质浅槽分选机的分选精度。

Numerical Simulation of Different Size Particles’ Kinematics in Heavy Medium Vessels[J]. 矿山工程, 2019, 07(02): 129-136. https://doi.org/10.12677/ME.2019.72018

1. 1. 贺民强, 程国锋, 刘家宝. 重介浅槽分选机的原理及应用分析[J]. 能源与节能, 2014(6): 133-135.

2. 2. 陈文茂. 重介浅槽分选技术在洗煤厂中的研究与应用[J]. 能源与节能, 2018(1): 184-185.

3. 3. 黄振源. 浅槽重介分选工艺在选煤厂的运用[J]. 煤炭科技, 2017(2): 117-118.

4. 4. 张立文, 李国丰, 周恩会, 朱广庆, 张博. 末煤浅槽分选下限多因素分析及试验研究[J]. 中国粉体技术, 2018, 24(5): 61-65.

5. 5. 黄亚飞. 降低浅槽重介分选机入料粒度下限的探讨[J]. 选煤技术, 2017(2): 56-58.

6. 6. 张毅勤. 炼焦煤选煤厂机械选矸作业入料粒度下限的探讨[J]. 选煤技术, 2014(2): 65-67, 71.

7. 7. 班海俊. 李家壕选煤厂降低重介浅槽入洗下限的工业试验研究[J]. 煤炭加工与综合利用, 2017(5): 25-32.

8. 8. 张鹏. 重介质悬浮液流变粘度对旋流器分选的影响[J]. 中外企业家, 2014(15): 99.

9. 9. 李大虎, 程相锋, 朱学帅, 等. 重介质悬浮液粘度预测及应用[J]. 煤炭工程, 2016, 48(11): 120-123.

10. 10. 齐正义. 高效简化末煤重介分选工艺及装备的研究[R]. 2014: 1-2.

11. 11. 王瑞, 齐正义, 宋俊超, 等. 悬浮液粘度对旋流器分选下限影响的研究[J]. 选煤技术, 2017(2): 25-28.