Open Journal of Nature Science
Vol. 07  No. 05 ( 2019 ), Article ID: 31910 , 11 pages
10.12677/OJNS.2019.75048

Advances in Cladistic Analysis of Enantiornithes from China

Hexuan Shi, Li Li*

College of Paleontology, Shenyang Normal University, Shenyang Liaoning

Received: August 5th, 2019; accepted: August 20th, 2019; published: August 27th, 2019

ABSTRACT

Enantiornithes is known as one of the clades of Ornithothoraces, and it is the most diversified group in Mesozoic birds. Based on summarizing the literatures, the authors have counted the list of officially reported Enantiornithes to date in China, there are 53 species reported from China. The article introduces phylogenetic taxonomy in the macroscopic field, involves of its significance in ancient birds and research status, discusses the phylogenetics relationship of Mesozoic birds in the data matrix and summarizes phylogenetic structure of enantiornithes in recent years in detail.

Keywords:Mesozoic, Enantiornithes, Taxonomy, Phylogenetic

中国反鸟类分支系统学研究进展

石鹤翾,李莉*

沈阳师范大学古生物学院,辽宁 沈阳

收稿日期:2019年8月5日;录用日期:2019年8月20日;发布日期:2019年8月27日

摘 要

反鸟类属于鸟胸骨类的一支,是中生代鸟类中报道最多的类群。笔者通过查阅文献统计了我国迄今为止已正式报道的反鸟类化石名录,正式报道的新属种已达53个。本文宏观介绍了分支系统学,及其在古鸟类研究中的意义与研究现状,讨论了在分支系统学研究框架下中生代鸟类的系统发育关系,详细论述近年来反鸟类分支系统学发育结构。

关键词 :中生代,反鸟,分支系统学,系统发育

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

反鸟亚纲Enantiornithes由Walker C. A.提出,因其肩胛骨与乌喙骨之间的连接方式与现生鸟类正好相反而得名 [1] 。世界各大洲(除极地外)大量的反鸟类化石被发现,其中中国是发现反鸟类最多的国家,主要以辽西热河生物群为主,数量、种类、生态多样性都尤为丰富,且保存也最完整 [2] [3] 。中国反鸟类研究工作开始于1992年,随着反鸟类不断地被发现,大量反鸟类被陆续报道。

迄今为止,我国正式报道的反鸟类化石有53个(见表1) [4] - [53] 。

Table 1. List of named enantiornithine taxa from China (53 species)

表1. 中国已报道的反鸟类化石列表(共计53种)

2. 分支系统学在反鸟类研究中的应用

2.1. 分支系统学

早期的分类学,是应用形态特征来进行类群划分的,随着研究的深入,近代的分类学要求其反映出物种的进化历程与物种之间的亲缘关系,并且随着物种的不断增加,外形较接近的类群,仅用形态学分析无法准确确定其系统关系,20世纪50年代初,德国昆虫学家Henning提出分支系统学,指用来研究物种之间的进化历程与亲缘关系的分类学理论。 [54] 随后分支系统学开始逐步应用在各个生物类群中,例如20世纪80年代,恐龙类便引入分支系统学来解决各类群之间的亲缘关系问题 [55] [56] [57] 。鸟类的分支系统学研究起步较晚,我国最早于2001年将分支序分类学应用于鸟类研究当中 [58] 。

2.2. 古鸟类分支系统学研究现状

根据树系图讨论中生代鸟类的系统发育关系,鸟纲Aves由Linnaeus提出,指所有现生鸟类组成的类群 [59] 。至十九世纪中期将已灭绝的始祖鸟Archaeopteryx、黄昏鸟Hesperornis和鱼鸟Ichthyornis等归入鸟类中类 [60] [61] [62] [63] ,而后Padian和Chiappe运用分支系统学定义为“由始祖鸟以及全部现生鸟类近缘的共同祖先和其全部后裔所组成的一个类群” [64] (图1(a))。鸟翼类Avialae由Gauthier提出,定义为“所有今鸟类,以及所有已灭绝了的对于恐爪龙类Deinonychosauria,而与现生鸟类亲缘关系更近的所有手盗龙类Maniraptora及其全部后裔所组成的类群” [65] (图1(b)),但后期对鸟翼类的解释出现很多不同 [66] [67] [68] [69] ,尚未有统一的定义,尾综骨类Pygostylia由Chiappe提出,定义为“孔子鸟科和现生鸟类近缘的共同祖先和其全部后裔所组成的类群” [70] (图1(c))。尾综骨类包括有孔子鸟科Confuciusornithidae、会鸟科Sapeornithidae和鸟胸类Ornithothoraces等。孔子鸟科是由侯连海等提出 [71] ,Chiappe等将其定义为“圣贤孔子鸟Confuciusornis sanctus和衡道子长城鸟Changchengornis hengdaoziensis亲缘最近的共同祖先和其全部后裔所组成的一个支系” [72] 。然而随着孔子鸟类其它属种的相继发现,王敏重新将其定义为“包括圣贤孔子鸟但不包括朝阳会鸟Sapeornis chaoyangensis或家麻雀Passer domesticus的包容性最广的一个单系类群” [73] 。孔子鸟和会鸟在尾综骨类中处于基干位置,但两者进步关系仍存在争议(图1(c))。鸟胸类由Chiappe提出 [74] ,而后由Chiappe将其定义为“全部现生鸟类和Iberomesornis romerali近缘的共同祖先及其全部后裔所组成的类群”,由反鸟类和今鸟型类构成 [75] (图1(d))。

2.3. 反鸟类分支系统学研究进展

反鸟类是中生代鸟类中数量最多的一个类群,而且其个体发育、骨骼形态及羽毛特征、食性和生态等方面都有显著分异,为研究有关鸟类分类与演化等问题提供了许多重要信息 [76] 。目前广泛应用分支系统学来进行反鸟类的相关研究,根据近几年分支系统学研究表明,反鸟类为一个单系类群,并与今鸟型类构成姐妹群 [77] 。在矩阵初步应用时期,反鸟类内部系统发育关系存在一些争议,在不同的研究中的属种间系统发育关系差异较大。一方面,反鸟类演化时间较长,形态特征分化不明显,不同属种之间的骨骼差异微小,另一方面,早期的系统发育研究包括的反鸟类分类单元少,涉及的形态特征数目少,难以对不同属种进行全面的比较。鸟类分支系统学研究初期中,反鸟类大多形成扫把状的多分枝拓扑结构。如图2(a)的系统发育研究中,包含7个反鸟类分类单元和168个特征 [70] ,图2(b)的中包含了11个反鸟类分类单元和242个特征 [26] 。

随着反鸟类不断地被发现,反鸟类分类单元和特征数量也随之增多,对反鸟类内不同属种间系统发育关系的研究也取得了较大的进展。目前,根据中生代鸟类分支系统学数据库建立的最大的矩阵包括262个特征,图2中树系图均根据此数据库建立 [78] [79] 。

Figure 1. Illustrationd of phylogenetic definition of groups of birds

图1. 各类群分支系统学定义

Figure 2. Phylogenetic matrix of Enantiornithes

图2. 反鸟类系统发育矩阵

3. 结论与讨论

3.1. 结论

通过分析近几年中生代鸟类树系图,可将中生代鸟类分为三大类:基干鸟类basal birds [80] 、反鸟类和今鸟类Ornithuromorpha [81] 。

1) 基干鸟类是一类非鸟兽脚类恐龙向鸟类冠群演变的过渡类群,处于中生代鸟类中比较原始的位置,种类不多,但数量庞大,尤其孔子鸟标本数量最为众多。孔子鸟类具有双弓形头骨,与始祖鸟相似,但原始程度不及始祖鸟。孔子鸟类前肢粗大,趾骨三前一后,且前三个指节长度相近,具有尾综骨,迄今为止,孔子鸟是中生代最早退化牙齿并具角质喙的一个鸟类群。会鸟类Sapeornithidea [82] 个体较大,在保存的化石中尚未发现胸骨,前后肢比例相差较大,是迄今为止发现的翼展较长的鸟类。热河鸟Jeholornis [83] 是目前为止在发掘于热河生物群中的唯一一类的带有超过20节尾椎的鸟类群。目前,基干鸟类中各类群的系统发育位置尚不能够准确确定。

2) 今鸟类和反鸟类共同组成鸟胸类。其中今鸟类是一类比较进步的类群,与现生鸟类亲缘关系非常近,形态特征与现生鸟类比较相似,例如叉骨呈“U”形、尾综骨比较短、乌喙骨呈支杆状、胸骨较宽而且具有龙骨突等,与此同时,该类群同现生鸟类相比也保留了很多原始特征,如牙齿的存在、耻骨远端具有骨联合、髂骨和坐骨之间的髂坐骨孔不存在等 [84] 。1984我国报道了第一件中生代鸟类标本:玉门甘肃鸟Gansus yumenensis [85] 。

3) 反鸟类是古鸟类中目前为止报道最多的一个单系类群,最初因其肩带处关节构造连接方式与现生鸟类正好相反而得名。反鸟类齿骨具齿;颈椎椎体的腹面发育脊状突起;尾综骨在靠近末端的位置突然收缩变细;乌喙骨与肩胛骨的关节面是凸出的;肩胛骨直;叉骨上升支的背面发育凹槽,使得上升支的腹缘明显宽于背缘;肱骨头在中央处凹陷,而其毗邻的腹、背侧部分凸出;肱骨远端腹侧边缘向远端的凸出程度超过背侧边缘,使肱骨远端面向腹侧倾斜;小掌骨远端超过大掌骨。在反鸟类的树系图中,结果明显有两大支系,一支包括中国鸟Sinornis、华夏鸟Cathayornis、原羽鸟和辽西鸟Liaoxiornis等,该类反鸟具有明显的树栖类反鸟特征,多以昆虫为食。形态特征表现为个体偏小,后肢比例大于前肢,脚爪能够完全对握,趾节长而强烈弯曲,倒数第2趾节要长于近端的其它趾节。另外一支包括一些适应水生生活的反鸟类,例如朝阳长翼鸟、韩氏长嘴鸟等,该类反鸟等体型中,前肢比例明显大于后肢,头部骨骼偏低,吻长,牙齿锋利,飞行能力极强,能够做到在湖中心捕捉食物之后迅速返回岸边,主要以鱼及水生生物为食。两个生态类型明显处于不同支系中。

3.2. 讨论

根据近几年反鸟类分支系统学研究来看,反鸟类是一单系类群,在反鸟类中,原羽鸟Protopteryx、鹏鸟Pengornis和Elsornis 的胸骨相比于其它反鸟类有所差别,其胸骨后缘并不向后变细并延伸而成剑状突,而是形成宽大的三角形末端,与孔子鸟和热河鸟较为相似,所以这几个属种在反鸟类中处于基干位置,其中原羽鸟目前被认为是迄今为止发现的最早的反鸟类。长翼鸟科Longipterygidae [13] 与渤海鸟科Bohaiornithidae [86] 是反鸟中发现属种最多的两个支系(如图3所示)。长翼鸟Longipteryx、波罗赤Boluochia、扇尾鸟Shanweiniao、长嘴鸟Longirostravis和抓握鸟Rapaxavis因为其加长的吻部吻端至眼眶部分的长度接近或超过头骨长度的60%,牙齿主要分布在前颌骨的吻端,第IV蹠骨长等形态特征而归类于长翼鸟科,支持该类的近裔特征有4个:肱骨远端的背髁和腹髁轮廓不明显,呈带状;髂骨的耻骨柄为内–外压扁而成钩状;肩胛骨的肩峰突长度超过肱骨关节面;头骨吻部(吻端至眼眶部分)的长度接近或超过头骨长度的60%。在渤海鸟科中解析度较低,属种间的亲缘关系不太稳定,支持该节点的近裔性状2个:胸骨外侧突向胸骨外侧偏转;肱骨的三角肌嵴末端与肱骨融合平滑。渤海鸟科包括周鸟Zhouornis、神七鸟Shenqiornis、长爪鸟Longusunguis、齿槽鸟Sulcavis、副渤海鸟Parabohaiornis和渤海鸟Bohaiornis等。另外,还有一些解析度较低的反鸟类,例如中国鸟Sinornis、始华夏鸟Eocathayornis、祁连鸟Qiliania等,在支序矩阵中呈扫把状。

Figure 3. Phylogenetic matrix of Enantiornithes in recent years

图3. 近几年反鸟类系统发育矩阵

本文通过近30年的文献,对中国反鸟类分支系统学研究进展进行简要分析。根据近几年分支系统学研究表明,运用分支系统学构建的树系图与传统形态分类学得出的结果趋于一致。事实证明,分支系统学与骨骼描述相结合能够更好地确定鸟类的分类地位,这也是鸟类系统发育研究的一个重要领域。分支系统学与传统形态分类学相辅相成,不仅能够直观体现鸟类各个分支的发育关系,还为鸟类早期演化的很多问题提供了重要信息。

基金项目

国家自然科学基金项目(41202014)。

文章引用

石鹤翾,李莉. 中国反鸟类分支系统学研究进展
Advances in Cladistic Analysis of Enantiornithes from China[J]. 自然科学, 2019, 07(05): 387-397. https://doi.org/10.12677/OJNS.2019.75048

参考文献

  1. 1. Walker, C.A. (1981) New Subclass of Birds from the Cretaceous of South America. Nature, 292, 51-53. https://doi.org/10.1038/292051a0

  2. 2. Zhou, Z.H. and Zhang, F.C. (2007) Mesozoic Birds of China—A Synoptic Review. Frontiers in Biology, 2, 1-14. https://doi.org/10.1007/s11515-007-0001-y

  3. 3. O’Connor, J.K. and Chiappe, L.M. (2011) A Revision of Enan-tiornithine (Aves: Ornithothoraces) Skull Morphology. Journal of Systematic Palaeontology, 9, 135-157.

  4. 4. Zhou, Z.H., Jin, F. and Zhang, J. (1992) Preliminary Report on a Mesozoic Bird from Liaoning, China. Chinese Science Bulletin, 37, 1365-1368.

  5. 5. Sereno, P.C., Rao, C.G. and Li, J. (2002) Sinornis santensis (Aves: Enantiornithes) from the Early Cretaceous of Northeastern China. In: Chiappe, L.M. and Witmer, L.M., Eds., Mesozoic Birds: Above the Heads of Dinosaurs, University of California Press, Berkeley, 184-208.

  6. 6. 侯连海. 内蒙古中生代鸟类及鸟类飞行进化[J]. 古脊椎动物学报, 1994, 32(4): 258-266.

  7. 7. 周忠和. 辽宁早白垩世一新的反鸟化石[J]. 古脊椎动物学报, 1995, 33(2): 99-113.

  8. 8. 侯连海. 中国中生代鸟类[M]. 南投: 台湾凤凰谷鸟园, 1997: 1-228.

  9. 9. 侯连海, 陈丕基. 最小的早期鸟类: 娇小辽西鸟[J]. 科学通报, 1999, 44(3): 311-315.

  10. 10. 季强, 姬书安. 辽宁凌源中生代鸟类化石一新属[J]. 中国地质, 1999(3): 45-48.

  11. 11. 侯连海, Larry Martin, 周忠和, 等. 中国发现从始祖鸟到反鸟的重要缺失环节[J]. 古脊椎动物学报, 1999, 37(2): 88-95.

  12. 12. Zhang, F.C. and Zhou, Z.H. (2000) A Primitive Enantiornithine Bird and the Origin of Feathers. Science, 290, 1955-1959. https://doi.org/10.1126/science.290.5498.1955

  13. 13. Zhang, F.C., Zhou, Z.H, Hou, L.H., et al. (2001) Early Di-versification of Birds: Evidence from a New Opposite Bird. Chinese Science Bulletin, 46, 945-949. https://doi.org/10.1007/BF02900473

  14. 14. 侯连海, 周忠和, 张福成. 中国辽西中生代鸟类[M]. 沈阳: 辽宁科学技术出版社, 2002: 1-120.

  15. 15. Zhou, Z.H. (2002) A New and Primitive Enantiornithine Bird from the Early Cre-taceous of China. Journal of Vertebrate Paleontology, 22, 49-57. https://doi.org/10.1671/0272-4634(2002)022[0049:ANAPEB]2.0.CO;2

  16. 16. Gong, E., Hou, L.H. and Wang, L.X. (2004) Enantiornithine Bird with Diapsidian Skull and Its Dental Development in the Early Cretaceous in Liaoning, China. Acta Geologica Sinica, 78, 1-7.

  17. 17. Hou, L.H., Chiappe, L.M., Zhang, F.C., et al. (2004) New Early Cretaceous Fossil from China Documents a Novel Trophic Specialization for Mesozoic Birds. Naturwissenschaften, 91, 22-25. https://doi.org/10.1007/s00114-003-0489-1

  18. 18. Zhang, F.C., Ericson, P.G.P. and Zhou, Z.H. (2004) Description of a New Enantiornithine Bird from the Early Cretaceous of Hebei, Northern China. Canadian Journal of Earth Sciences, 41, 1097-1107. https://doi.org/10.1139/e04-055

  19. 19. Zhang, Z.H. and Hou, L.H. (2006) The First Mesozoic Heterodactyl Bird from China. Acta Geologica Sinica, 80, 631-635. https://doi.org/10.1111/j.1755-6724.2006.tb00285.x

  20. 20. Li, L., Duan, Y., Hu, D.Y., et al. (2006) New Eoenan-tiornithid Bird from the Early Cretaceous Jiufotang Formation of Western Liaoning, China. Acta Geologica Sinica, 80, 38-41. https://doi.org/10.1111/j.1755-6724.2006.tb00792.x

  21. 21. 李莉, 胡东宇, 段冶, 等. 辽宁西部下白垩统反鸟类一新科: Alethoalaorvithidae fam.nov. [J]. 古生物学报, 2007(3): 365-372.

  22. 22. Zheng, X.T., Zhang, Z.H. and Hou, L.H. (2007) A New Enantiornitine Bird with Four Long Rectrices from the Early Cretaceous of Northern Hebei, China. Acta Geologica Sinica, 81, 703-708. https://doi.org/10.1111/j.1755-6724.2007.tb00995.x

  23. 23. Zhou, Z.H., Clarke, J. and Zhang, F.C. (2008) Insight into Diversity, Body Size and Morphological Evolution from the Largest Early Cretaceous Enantiornithine Bird. Journal of Anatomy, 212, 565-577. https://doi.org/10.1111/j.1469-7580.2008.00880.x

  24. 24. Li, J.J. (2008) A New Species of Cathayornis from Lower Cretaceous of Inner Mongolia, China and Its Stratigraphic Significance. Acta Geologica Sinica, 82, 1115-1123. https://doi.org/10.1111/j.1755-6724.2008.tb00711.x

  25. 25. Morschhauser, E.M., Varricchio, D.J., Gao, C.L., et al. (2009) Anatomy of the Early Cretaceous Bird Rapaxavis pani, a New Species from Liaoning Province, China. Journal of Vertebrate Paleontology, 29, 545-554. https://doi.org/10.1671/039.029.0210

  26. 26. O’Connor, J.K., Wang, X., Chiappe, L.M., et al. (2009) Phylogenetic Support for a Specialized Clade of Cretaceous Enantiornithine Birds with Information from a New Species. Journal of Vertebrate Paleontology, 29, 188-204. https://doi.org/10.1080/02724634.2009.10010371

  27. 27. 李莉, 巩恩谱, 张立东, 等. 中国辽宁早白垩世的一新反鸟[J]. 古生物学报, 2010, 49(4): 524-531.

  28. 28. Wang, X., Zhang, Z., Gao, C.L., et al. (2010) A New Enantiorni-thine Bird from the Early Cretaceous of Western Liaoning, China. The Condor, 112, 432-437. https://doi.org/10.1525/cond.2010.090248

  29. 29. Wang, X., O’Connor, J.K., Zhao, B., et al. (2010) New Species of Enantiornithes (Aves: Ornithothoraces) from the Qiaotou Formation in Northern Hebei, China. Acta Geologica Sinica, 84, 247-256. https://doi.org/10.1111/j.1755-6724.2010.00156.x

  30. 30. Ji, S.A., Atterholt, J., O’Connor, J.K., et al. (2011) A New Three-Dimensionally Preserved Enantiornithine Bird (Aves: Ornithothoraces) from Gansu Province, North-Western China. Zoological Journal of the Linnean Society, 162, 201-219. https://doi.org/10.1111/j.1096-3642.2010.00671.x

  31. 31. Hu, D.Y., Li, L., Hou, L.H., et al. (2011) A New Enan-tiornithine Bird from the Lower Cretaceous of Western Liaoning, China. Journal of Vertebrate Paleontology, 31, 154-161. https://doi.org/10.1080/02724634.2011.546305

  32. 32. 李莉, 侯世林. 辽西早白垩世一反鸟类新属种的发现[J]. 吉林大学学报: 地球科学版, 2011, 41(3): 759-763.

  33. 33. Li, L., Wang, J.Q., Zhang, X., et al. (2012) A New Enantiornithine Bird from the Lower Cretaceous Jiufotang Formation in Jinzhou Area, Western Liaoning Province, China. Acta Geologica Sinica, 86, 1039-1044. https://doi.org/10.1111/j.1755-6724.2012.00729.x

  34. 34. Hu, D.Y., Xu, X., Hou, L.H., et al. (2012) A New Enan-tiornithine Bird from the Lower Cretaceous of Western Liaoning, China, and Its Implications for Early Avian Evolution. Journal of Vertebrate Paleontology, 32, 639-645. https://doi.org/10.1080/02724634.2012.652321

  35. 35. O’Connor, J.K., Zhang, Y.G., Chiappe, L.M., et al. (2013) A New Enantiornithine from the Yixian Formation with the First Recognized Avian Enamel Specialization. Journal of Vertebrate Paleontology, 33, 1-12. https://doi.org/10.1080/02724634.2012.719176

  36. 36. Zhang, Z.H., Chiappe, L.M., Han, G., et al. (2013) A Large Bird from the Early Cretaceous of China: New Information on the Skull of Enantiornithines. Journal of Vertebrate Paleontology, 33, 1176-1189. https://doi.org/10.1080/02724634.2013.762708

  37. 37. Dalsatt, J., Ericson, P.G.P. and Zhou, Z.H. (2014) A New Enantiornithes (Aves) from the Early Cretaceous of China. Acta Geologica Sinica (English Edition), 88, 1034-1040. https://doi.org/10.1111/1755-6724.12270

  38. 38. Wang, X.L., O’Connor, J.K., Zheng, X.T., et al. (2014) Insights into the Evolution of Rachis Dominated Tail Feathers from a New Basal Enantiornithine (Aves: Ornithothoraces). Bi-ological Journal of the Linnean Society, 113, 805-819. https://doi.org/10.1111/bij.12313

  39. 39. Wang, M., O’Connor, J.K. and Zhou, Z.H. (2014) A New Robust Enan-tiornithine Bird from the Lower Cretaceous of China with Scansorial Adaptations. Journal of Vertebrate Paleontology, 34, 657-671. https://doi.org/10.1080/02724634.2013.812101

  40. 40. Wang, M., Zou, Z.H., Koconnor, J., et al. (2014) A New Diverse Enantiornithine Family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with Information from Two New Species. Vertebrata Palasiatica, 52, 31-76.

  41. 41. Wang, M., Zhou, Z.H. and Xu, G.H. (2014) The First Enantiornithine Bird from the Upper Cretaceous of China. Journal of Vertebrate Paleontology, 34, 135-145. https://doi.org/10.1080/02724634.2013.794814

  42. 42. Wang, M. and Liu, D. (2015) Taxonomical Reappraisal of Cathayornithidae (Aves: Enantiornithes). Journal of Systematic Palaeontology, 14, 29-47. https://doi.org/10.1080/14772019.2014.994087

  43. 43. Hu, H., O’Connor, J.M. and Zhou, Z.H. (2015) A New Spe-cies of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds. PLoS ONE, 10, e0126791. https://doi.org/10.1371/journal.pone.0126791

  44. 44. Wang, M., Li, D.Q., O’Connor, J.K., et al. (2015) Second Species of Enantiornithine Bird from the Lower Cretaceous Changma Basin, Northwestern China with Implications for the Taxonomic Diversity of the Changma Avifauna. Cretaceous Research, 55, 56-65. https://doi.org/10.1016/j.cretres.2015.01.008

  45. 45. Hu, D.Y., Liu, Y., Li, J.H., et al. (2015) Yuanjiawaornis viriosus, gen. et sp. nov. a Large Enantiornithine Bird from the Lower Cretaceous of Western Liaoning, China. Cretaceous Research, 55, 210-219. https://doi.org/10.1016/j.cretres.2015.02.013

  46. 46. Hu, H. and O’Connor, J.K. (2016) First Species of Enantior-nithes from Sihedang Elucidates Skeletal Development in Early Cretaceous Enantiornithines. Journal of Systematic Palaeontology, 15, 909-926. https://doi.org/10.1080/14772019.2016.1246111

  47. 47. O’Connor, J.K., Li, D.Q., Lamanna, M.C., et al. (2016) A new Early Cretaceous Enantiornithine (Aves, Ornithothoraces) from Northwestern China with Elaborate Tail Orna-mentation. Journal of Vertebrate Paleontology, 36, e1054035. https://sci-hub.tw/10.1080/02724634.2015.1054035 https://doi.org/10.1080/02724634.2015.1054035

  48. 48. 邹晶梅, 郑晓, 胡晗等. 巨前颌契氏鸟(鹏鸟科: 反鸟类)的形态学描述及早白垩世鸟类尾羽的空气动力学功能比较[J]. 古脊椎动物学报, 2017, 55(1): 41-58.

  49. 49. Wang, M., O’Connor, J.K., Pan, Y.H., et al. (2017) A Bizarre Early Cretaceous Enantiornithine Bird with Unique Crural Feathers and an Ornithuromorph Plough-Shaped Pygostyle. Nature Communications, 8, Article No. 14141. https://doi.org/10.1038/ncomms14141

  50. 50. 魏曌英, 李莉. 辽西早白垩世一反鸟类新发现[J]. 世界地质, 2017, 36(3): 655-662.

  51. 51. Liu, D., Chiappe, L.M., Francisco, S., et al. (2017) Flight Aerodynamics in Enantiornithines: In-formation from a New Chinese Early Cretaceous Bird. PLoS ONE, 12, e0184637. https://sci-hub.tw/10.1371/journal.pone.0184637 https://doi.org/10.1371/journal.pone.0184637

  52. 52. Wang, M. and Zhou, Z.H. (2019) A New Enantiornithine (Aves: Ornithothoraces) with Completely Fused Premaxillae from the Early Cretaceous of China. Journal of Systematic Palaeontology, 17, 1079-1092. http://sci-hub.tw/10.1080/14772019.2018.1527403 https://doi.org/10.1080/14772019.2018.1527403

  53. 53. Bailleul, A.M., O’Connor, J.K., Zhang, S.K., et al. (2019) An Early Cretaceous Enantiornithine (Aves) Preserving an Unlaid Egg and Probable Medullary Bone. Nature Commu-nications, 10, Article No. 1275. http://sci-hub.tw/10.1038/s41467-019-09259-x https://doi.org/10.1038/s41467-019-09259-x

  54. 54. 张淑霞, 杨岚, 杨君兴. 近代鸟类分类与系统发育研究进展[J]. 动物分类学报, 2004, 29(4): 675-682.

  55. 55. Sereno, P.C. (1984) The Phylogeny of Ornithischia; a Reappraisal. In: Reif, W.E. and Westphal, F., Eds., Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers, Attempto Verlag, Tübingen, 219-226.

  56. 56. Maryańska, T. and Osmólska, H. (1985) On Ornithischia Phylogeny. Acta Palaeon-tologica Polonica, 30, 137-150.

  57. 57. Sereno, P.C. (1986) Phylogeny of the Bird-Hipped Dinosaurs (Order Ornithis-chia). National Geographic Research, 2, 234-256.

  58. 58. 雷富民, 屈延华, 尹祚华. 雪雀属系统发育关系的研究[J]. 动物分类学报, 2001, 26(1): 1-7.

  59. 59. Linnaeus, C. (1952) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. American Journal of Botany, 96, 786-792.

  60. 60. Romer, A.S. (1996) Vertebrate Paleontology. 3rd Edition, University of Chicago Press, Chica-go.

  61. 61. Witmer, L.M. (2002) The Debate on Avian Ancestry: Phylogeny, Function, and Fossilsin. In: Chiappe, L.M. and Witmer, L.M., Eds., Mesozoic Birds: Above the Heads of Dinosaurs, University of California Press, Berkeley, 1-30.

  62. 62. Zhou, Z.H. and Zhang, F.C. (2004) A Precocial Avian Embryo from the Lower Cretaceous of China. Science, 306, 653-653. https://doi.org/10.1126/science.1100000

  63. 63. Owen, R. (1963) On the Archaeopteryx of von Meyer, with a Description of the Fossil Remains of a Long-Tailed Species, from the Lithographic Stone of Solenhofen. Philosophocal Transaction of the Royal Society of London, 153, 33-47. https://doi.org/10.1098/rstl.1863.0003

  64. 64. Padian, K. and Chiappe, L.M. (1998) The Origin and Early Evolution of Birds. Biological Reviews, 73, 1-42. https://doi.org/10.1017/S0006323197005100

  65. 65. Gauthier, J. (1986) Saurischian Monophyly and the Origin of Birds. In: Padian, K., Ed., The Origin of Birds and the Evolution of Flight, Memoirs of the California Academy of Sciences, California Academy of Sciences, San Francisco, 1-55.

  66. 66. Gauthier, J. and Queiroz, K. (2001) Feathered Dinosaurs, Flying Dinosaurs, Crown Dinosaurs and the Name “Aves”. In: Gauthier, J. and Gall, L.F., Eds., New Per-spectives on the Origin and Early Evolution of Birds, Special Publication of the Peabody Museum of Natural History, Yale University, New Haven, 7-41.

  67. 67. Clarke, J.A. (2004) Morphology, Phylogenetic Taxonomy, and Systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bulletin of the American Museum of Natural History, 286, 1-179. https://doi.org/10.1206/0003-0090(2004)286<0001:MPTASO>2.0.CO;2

  68. 68. Padian, K., Hutchinson, J.R. and Holtz, T.R. (1999) Phylogenetic Definitions and Nomenclature of the Major Taxonomic Categories of the Carnivorous Dinosauria (Theropoda). Journal of Vertebrate Paleontology, 19, 69-80. https://doi.org/10.1080/02724634.1999.10011123

  69. 69. Xu, X., You, H.L., Du, K., et al. (2011) An Archaeopter-yx-Like Theropod from China and the Origin of Avialae. Nature, 475, 465-470. https://doi.org/10.1038/nature10288

  70. 70. Chiappe, L.M. and Dyke, G.J. (2002) The Mesozoic Radiation of Birds. Annual Reviews of Ecology and Systematics, 33, 91-124. https://doi.org/10.1146/annurev.ecolsys.33.010802.150517

  71. 71. 侯连海, 周忠和, 顾玉才, 等. 侏罗纪鸟类化石在中国的首次发现[J]. 科学通报, 1995, 40(8): 726-929.

  72. 72. Chiappe, L.M., Ji, S.A., Ji, Q., et al. (1999) Anatomy and Systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China. Bulletin of American Museum of Natural History, 117, 836-839. https://doi.org/10.2307/4089615

  73. 73. 王敏. 中国反鸟类(鸟纲: 鸟胸类)的分类厘定、个体发育、习性和系统发育分析[D]: [博士学位论文]. 北京: 中国科学院大学, 2014.

  74. 74. Chiappe, L.M. (1991) Cretaceous Birds of Latin America. Cretaceous Research, 12, 55-63. https://doi.org/10.1016/0195-6671(91)90027-A

  75. 75. Chiappe, L.M. (1996) Late Cretaceous Birds of Southern South America: Anatomy and Systematics of Enantiornithes and Patagopteryx Deferrariise. In: Arratia, G., Ed., Con-tributions of Southern South America to Vertebrate Paleontology, Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 30, Verlag Dr, Friedrich Pfeil, Munich, 203-244.

  76. 76. Sanz, J.L., Chiappe, L.M., Bernardino, P.P.M., et al. (1996) An Early Cretaceous Bird from Spain and Its Implications for the Evolution of Avian Flight. Nature, 382, 442-445. https://doi.org/10.1038/382442a0

  77. 77. O’Connor, J.K. and Zhou, Z.H. (2013) A Redescription of Chaoyangia beishanensis (Aves) and a Comprehensive Phylogeny of Mesozoic Birds. Journal of Systematic Palaeontology, 11, 889-906. https://doi.org/10.1080/14772019.2012.690455

  78. 78. Wang, M., Zhou, Z.H., O’Connor, J.K., et al. (2014) A New Diverse Enantiornithine Family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with Information from Two New Species. Vertebrata Palasiatica, 52, 31-76.

  79. 79. Wang, M., Zheng, X.T., O’Connor, J.K., et al. (2015) The Oldest Record of Ornithuromorpha from the Early Cretaceous of China. Nature Communications, 6, Article No. 6987. https://doi.org/10.1038/ncomms7987

  80. 80. 李东升, Sullivan C, 周忠和, 等. 中国基干鸟类综述[J]. 中国鸟类, 2010, 1(2): 83-96.

  81. 81. Chiappe, L.M. and Walker, C.A. (2002) Skeletal Morphology and Systematics of the Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes). In: Chiappe, L.M. and Witmer, L.M., Eds., Mesozoic Birds: Above the Heads of Dinosaurs, University of California Press, Berkeley, 240-267.

  82. 82. Zhou, Z.H. and Zhang, F.C. (2002) Largest Bird from the Early Cretaceous and Its Implications for the Earliest Avian Ecological Diversification. Naturwissenschaften, 89, 34-38. https://doi.org/10.1007/s00114-001-0276-9

  83. 83. Zhou, Z.H. and Zhang, F.C. (2002) A Long-Tailed, Seed-Eating Bird from the Early Cretaceous of China. Nature, 418, 405-409. https://doi.org/10.1038/nature00930

  84. 84. 宋元利, 王孝理. 中国中生代今鸟型鸟类研究概述[J]. 鲁东大学学报(自然科学版), 2014, 30(2): 143-147.

  85. 85. 侯连海. 甘肃早白垩世鸟化石兼论早期鸟类的进化[J]. 中国科学化学: 中国科学, 1984, 14(3): 250-256.

  86. 86. 王敏, 周忠和, 邹晶梅, 等. 中国早白垩世反鸟类一新科(Bohaiomithidaefam.nov.) [J]. 古脊椎动物学报, 2014, 52(1): 31-76.

  87. NOTES

    *通讯作者。

期刊菜单