Water pollution and treatment
Vol. 07  No. 03 ( 2019 ), Article ID: 31390 , 12 pages
10.12677/WPT.2019.73018

Research Progress on Heavy Metal Adsorption by Fruit-Shell Biomass in Water

Ruona Liu, Weixin Yang, Yahui Liu, Tingting Lin, Yinlu Ye, Xiangrui Guo, Dewu Yin*

College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou Zhejiang

Received: Jun. 28th, 2019; accepted: Jul. 17th, 2019; published: Jul. 24th, 2019

ABSTRACT

With the development of industrialization, all kinds of waste water containing high metal concentration are discharged into the water environment, which is harmful to the environment and mankind. As a low-cost adsorbent, biomass can effectively adsorb heavy metals in water. This paper mainly reviews the interaction mechanism between biomass and heavy metals and the research status of heavy metal adsorption by nut shell biomass in recent years. In addition, the effect of nut shell biomass adsorption on heavy metals was analyzed from the perspective of pH, solution temperature, initial heavy metal ion concentration and adsorbent dosage.

Keywords:Nut Shell Biomass, Heavy Metal, Adsorption

果壳类生物质炭对水体中重金属吸附的研究 进展

刘若纳,杨伟鑫,刘雅慧,林婷婷,叶寅璐,郭祥瑞,尹德武*

温州大学化学与材料工程学院,浙江 温州

收稿日期:2019年6月28日;录用日期:2019年7月17日;发布日期:2019年7月24日

摘 要

随着工业化的发展,各种含有高浓度的重金属废水被排放到水环境中,这对环境与人类造成了危害。生物质炭作为一种低成本的吸附剂,能够有效地吸附水体重金属。本文主要综述了生物质炭与重金属的相互作用机理以及近年来果壳类生物质炭对重金属吸附的研究现状,并从溶液pH值、溶液温度、重金属离子初始浓度、吸附剂用量等影响因素的角度分析了果壳类生物质炭对重金属吸附的效果。

关键词 :果壳类生物质炭,重金属,吸附

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

重金属污染以及污染原因已备受人们与社会的关注。重金属污染有自然与人为两种因素,然而,随着当代工农业现代化、城市化的发展,人为因素所带来的重金属污染远远超于自然因素。生活、工业和农业废水中常常含有高浓度的重金属。在许多国家,这些废水通常会被直接排放到环境中。因此,寻找有效且经济的去除水体重金属的方法具有重要意义 [1] 。

迄今为止,已经有很多方法去处理这些重金属,包括化学沉淀 [2] 、离子交换 [3] 、过滤、蒸发、反渗透、溶剂萃取、电化学处理 [4] 和膜分离 [5] 。但是,这些方法对重金属稀溶液的处理有“效率低下、成本高、操作繁琐”的缺点 [6] 。因此,生物质炭吸附凭借其“操作简便、成本相对较低、无需处理污泥”的优势 [7] ,成为了最常用和最有效的方法之一。

生物质炭与活性炭材料具有相似的特性,它是一种多孔碳材料,能够在相对较低的温度(<700℃)和有限氧气的气氛下热解生物质得到 [8] 。生物质炭有丰富的含氧官能团,例如,羧酸盐(COOH),羰基(COH)和羟基(OH) [9] 。生物质炭可以从各种原料中获得,包括农业废弃物、森林残余物、工业副产品、城市固体废物和非生物废物 [10] 。

其中果壳类生物质炭是以农业废弃物为原料获得的,这是典型的变废为宝的方式。果壳类生物质炭被广泛应用到多领域,比如家居装修、脱色、催化载体、制干燥剂、制酒等。本文综述了近年来果壳类生物质炭在去除水中重金属方面的研究进展。

2. 生物质炭与重金属相互作用机理

生物质炭吸附重金属的机理主要包括沉淀、络合、离子交换、静电相互作用(化学吸附)和物理吸附。这些机理为生物质炭吸附水中重金属发挥了作用。

“沉淀”是在吸附过程中在溶液中或在溶液表面上形成固体。由乳制品粪便废物转化的增值生物质炭可作为吸附重金属的吸附剂。生物质炭具有吸附能力,这主要归因于其中的PO43−或CO32−对重金属的沉淀起到了作用 [11] 。

“络合”(外部和内部球)涉及多原子结构的形成,即形成具有特定金属-配体相互作用的络合物。红外光谱和分子模拟表明,铬(VI)主要是通过化学络合吸附在生物质炭上 [12] 。

“离子交换”是在适宜的pH值条件下,在生物质炭表面交换可电离的质子和阳离子来实现对重金属的吸附。例如,用乙二胺处理化学碳化后的椰枣小叶,进行表面官能化后,其生成的螯合脱水碳通过H+的去质子化和Zn2+交换显示出对Zn的强吸附作用 [6] 。

表面带电生物质碳与金属离子之间的“静电相互作用”是固定重金属的另一种机理。这种机理在生物质炭对重金属吸附过程中的发生率取决于生物质炭的溶液pH和零电荷点 [10] 。在用球磨生物质炭(BM)去除水溶液中镍(Ni(II))的实验中表明,酸性表面官能团的增加通过静电相互作用和表面络合增强了BM对Ni(II)的吸附作用 [13] 。

“物理或表面吸附”描述了重金属离子通过扩散,移动到吸附剂孔中而不形成化学键来去除重金属。据报道,柳枝稷生物质炭可以作为一种极好的吸附剂去除地下水中的铀 [14] 。

3. 果壳类生物质炭

大量文献报道了关于果壳类生物质炭对重金属的吸附,其中有椰子果壳、木苹果壳、樱桃核等生物质炭。图1显示了果壳类生物质炭对重金属吸附过程。除此以外,有些文献中也报道了这些生物质炭在其他领域的应用。

Figure 1. The flow chart of the adsorption of heavy metals by nut shell biomass

图1. 果壳类生物质炭对重金属吸附的流程图

3.1. 椰子果壳

椰子壳是椰子的废产物,通常在热带国家及热带地区可以大量获得。它富含木质素(16%~45%)、半纤维素(24%~47%)和果胶(2%) [15] 。其中,木质素、半纤维素和果胶的羧基和酚羟基又被称为是金属结合的主要部位 [16] 。同时,椰壳生物质炭还具有丰富的多孔结构 [17] ,可想而知,椰子果壳可以成为一个良好的吸附剂。

椰子果壳生物质炭与其他不同废料和烟煤制备的生物质炭进行比较,椰子果壳生性质炭对Cr(VI)具有更好的吸附能力。因此,椰子果壳生物质炭是从水中吸附Cr(VI)的商业活性炭的合适替代品 [18] 。

除此以外,改性椰子果壳生物质炭被证明对重金属离子有更好的吸附效果。用酸处理并涂覆有壳聚糖的椰子果壳生物质炭作为复合吸附剂对25 mg/L的锌具有最好的去除性能 [19] 。

近年来全球气候变暖,主要是由于二氧化碳的排放 [20] 。尿素改性碳化后的椰子果壳与K2CO3溶液活化合成的氮掺杂多孔碳能够有效吸附燃烧烟气中的CO2 [21] ,这为减少CO2的排放起到了作用。

3.2. 木苹果壳

木苹果不仅有药用价值,而且能制造甜味。木苹果壳是一种很容易利用的材料,其加工成的碳材料可以用于去除重金属污染物,特别是能有效地去除Cd(II)。实验证明,溶液pH等于6时,吸附量最大,pH继续增大,吸附量保持不变。当溶液的pH为6.5时,被证实高于中性pH值的反应混合物形成沉淀。与此同时,铬金属与木苹果壳炭材料的接触时间若在240 min以上,吸附量最大。此外,在目前的研究中,重金属离子和该吸附剂之间的相互作用在高速搅拌下是有效的,即每分钟150转 [22] 。

木苹果壳炭材料还能有效地去除碘。实验发现了最佳条件,包括浸渍比率(24.21%),活化时间(39.83 min)和活化温度(432.35℃)。在这些实验条件下,碳收率和碘吸附值接近42.6324%和951.889 mg/g [23] 。除了常规的吸附重金属方法,还可以用电容去离子技术净化水 [24] 。用化学处理和热处理后制成的木苹果炭电极可去除废水中的Cr(VI)和氟化物 [25] 。木苹果壳除了能吸附废水中的重金属,还能吸附染料,比如亚甲基蓝、结晶紫 [26] 和罗丹明B [27] 。

3.3. 花生壳

作为一种农业废弃物,花生壳大且便宜,并且它是一种由矿物、脂质、纤维素和多酚类物质组成的复合材料。其原料多酚类物质中的邻苯二酚、焦酚酸、间三羟基苯等极性官能团可以产生化学吸附。花生壳作为生物吸附材料的使用呈现出优异的表现是由于其含有的纤维素(34%~45%)和木质素(27%~33%) [28] 。普通的花生壳生物质炭可以有效去除溶液中的Cu(II),并且在pH为5.5时达到吸附最大值 [29] 。

优质改良后,将水合氧化锰(HMO)纳米颗粒浸渍到花生壳生物炭(BC)中以获得纳米复合吸附剂(HMO-BC),在一个宽pH范围内(3~7),复合吸附剂能够有效地将Pb(II)和Cd(II)通过非特异性的外球体表面络合 [1] 。

除了能够吸附水中重金属外,碳化花生壳也能除去水中亚甲基蓝 [30] 。更有实验发现,花生壳生物质炭可以吸附大量的NH4+-N并缓减氮污染,并且随着热解温度从400℃升高到700℃,生物质炭对NH4+-N吸附量减少 [31] 。

3.4. 核桃壳

核桃是一种常用的富含蛋白质和必需脂肪酸的高密度营养物质。由于其高营养价值和抗氧化性,今年全球核桃产量迅速增加 [32] 。然而,核桃的外壳没有经济价值,曾被看作废物。但是,核桃壳碳化后成为处理污水的吸附剂,能有吸附Cr(VI)。在75% KOH处理后,核桃壳制成活性炭的碳收率最高 [33] 。实验证明,核桃壳生物质质炭吸附Cr(VI)效率在pH为2.0时是最大的。但是,浸渍比例(char:NaOH)的增加显著提高了核桃壳炭的表面性质和吸附性质 [34] 。

用NaOH碱处理核桃壳增强了核桃壳对水溶液中Cd(II)的吸附,其在pH6.0时达到最大值 [35] 。核桃壳生物质炭不仅可以吸附水中重金属,它可以作为从水中去除氯酚的有效吸附剂 [36] 。除此以外,核桃壳生物质炭对缓减温室效应起到一定程度上的作用。有文献报道,用核桃壳制备的生物质炭可以成为具有高表面积的有效吸附CO2的廉价吸附剂 [37] 。

3.5. 杏仁壳

杏仁是蔷薇科杏的种子,分为甜杏仁和苦杏仁。杏仁的营养价值高的同时也能起到抗癌的功效。废弃的杏仁壳能作为吸附剂,并通过生物吸附法从水溶液中去除Pb(II) [38] 。

实验发现,通过离子交换和生物质炭上的酸性官能团,杏仁壳能吸附Pb(II),并且杏仁壳对Pb(II)的吸附是由外部传质和颗粒内扩散控制的 [39] 。杏仁壳吸附Pb(II)的最佳pH约为6~7,对Pb2+的最大吸附能力是8.08 mg/g [38] 。

杏仁壳作为吸附剂还能有效吸附Zn、Cu、Cd [40] 以及萘磺酸(NSA)。由于含有这些NSA的废水具有高酸性(pH 2~3),因此为杏仁壳对其吸附提供了有利条件 [41] 。

吖啶橙(一种核酸选择性荧光阳离子染料)是有害染料之一。用杏仁壳制备活性炭,由共沉淀方法制备的ZnO纳米颗粒与生物质炭复合可以更有效地去除水中的吖啶橙 [42] 。

3.6. 鸽子豌豆壳

鸽子豌豆作为一种低成本的农副产品,也可以作为一种吸附剂。羟基、羰基、羧基和其他官能团组成的农副产物,通过形成电子对、复合物或交换氢离子,结合溶液中的重金属离子 [43] 。鸽子豌豆壳(PPH)便是如此,PPH对Pb(II)和Ni(II)的吸附主要是由于羟基(-OH)、羧基(-COO-)和磺酰基(S=O)等官能团的存在。此外,对Pb(II)和Ni(II)最佳吸附值是在pH为4.0时 [44] 。实验表明,在初始金属离子浓度为80 mg/L、pH为9和吸附剂剂量为400 mg/100 ml的条件下鸽子豌豆壳能最佳去除Ni(II) [45] 。PPH还能吸附Cu(II)和Cd(II),并且吸附过程是吸热的、自发的,其可行的温度范围在293 K~313 K [46] 。与木苹果壳相似,鸽子豌豆壳也能吸附水中的染料,比如亚甲基蓝 [47] 。

3.7. 棕榈壳

棕榈壳主要用途是作为燃料,因为在燃烧时所产生的热比一般的生物燃料高,并且能够作为一种低价吸附剂,吸附空气中的CO2,减缓环境负担 [48] 。

棕榈壳粉(PSP)和酸处理的棕榈壳粉(APSP)可以从水溶液中去除Cu(II),并可利用负载铜的吸附剂作为催化剂。实验证明,用硫酸(H2SO4)氧化PSP中存在的木质纤维素基团(酸处理)而形成的APSP能更有效地吸附Cu(II)。因为APSP存在-COOH基团,使表面更亲水,并能增强对Cu(II)吸附 [49] 。

使用响应面法(RSM)和粒子群算法嵌入到人工神经网络结构方法优化棕榈壳,能使其更有效地吸附水溶液中的重金属Zn(II) [50] 。

棕榈活性炭还可以转化为磁性棕榈活性炭(MAC)。MAC存在微孔结构和高表面积,这使得MAC具有更高的吸附水溶液中As(III)的磁性能 [51] [52] 。

3.8. 板栗壳

板栗属于壳斗科栗属植物系。据科学实验证实,栗子营养丰富,果实中糖和淀粉的含量高达70.1%,蛋白质的含量为7%。栗子中所含的不饱和脂肪酸有抗动脉硬化等病的功效。另外板栗壳还有其他的用途,如在723 K下,热解板栗壳和酸性明胶的混合物合成一种低成本的吸附剂,来吸附废水中的As(V) [53] 。

除此以外,有实验在酸性介质中用甲醛预处理栗壳,目的是去除水溶液中的Cu2+和Zn2+,并且获得去除这些重金属的最佳条件 [54] 。作为吸附剂的板栗壳同时还可以吸附其他的重金属,Pb2+ [55] 、Cd2+ [56] 等。板栗壳除了可以制成生物质炭外,它的提取物还可以作为化妆品配方的潜在活性成分,用于皮肤保护 [57] 。

3.9. 橘子皮

橘子属于芸香科柑橘属宽皮柑橘类,其中的维生素A能够提高人体在黑暗环境中的视力和治疗夜盲症。废弃的橘子皮中含有大量的维生素C和香精油,并且有很多功效,包括药用、美容等。

吸附重金属是它的另一重要用途。化学处理后的橘子皮能吸附Cu2+、Pb2+、As(V) [58] 。而橘子皮、纳米氧化铁改性后的橙皮生物炭合成的一种有利的新型低成本吸附剂能高效吸附铬 [59] 。废弃的橘子皮还可以成为磁铁矿/碳吸附剂的前体化合物吸附不同染料(甲基蓝、刚果红和罗丹明B)和重金属离子Cr6+ [60] 。

3.10. 榛子壳

榛子的用途很广泛:榨油,制作肥皂,炒食,制成糕点等。虽然榛子壳是榛子的一种固体废弃物,但是它也具有多种功效,除了作为肥料促进花草生长,还能通过热解转变为生物质炭。与小麦秸秆、橄榄甘蔗渣相比,榛子壳保留了更高的生物质炭产量 [61] 。

实验报道,榛子壳与城市污泥用ZnCl2溶液化学活化后共热解是一种有效和可行的措施,可以固定城市污泥中的重金属,并且降低对环境的毒性 [62] 。

用FeCl3和FeCl3 + NaOH作为改性剂而得到的改性榛子壳(HS)可以从水溶液中去除As(III),并且其最大吸附能力分别为4.37 mg/g和11.84 mg/g [63] 。

用2-丙烯酰胺-2-甲基丙磺酸改性榛子壳合成了一种高效、低成本的吸附剂。此吸附剂能高效地吸附水溶液中的Cu2+、Pb2+、亚甲基蓝和孔雀石绿。经过10次吸附–解吸循环后,吸附量甚至可以保持在90%以上 [64] 。

3.11. 腰果壳

腰果主要是由腰果仁、腰果皮、腰果壳和腰果梨四部分组成。腰果深受大家喜爱,有丰富的营养价值,是世界著名四大干果之一。提取过腰果壳液的腰果壳也能成为一种低成本、高产量的吸附剂,吸附废水中的Ni(II) [65] 。同时,腰果壳也能有效吸附水溶液中的Zn(II)。实验发现,Zn(II)的去除随着溶液pH值的增加而增加,在溶液pH大约为5的情况下获得最大的Zn(II)去除效率。Zn(II)的去除还会随着腰果壳(CNS)剂量和时间的增加而增加,但会随着初始Zn(II)浓度和温度的降低而降低 [66] 。

腰果壳能吸附Cd2+、Pb2+、Cr3+,并且在PH为5时吸附最佳 [67] 。还有一个实验是在850℃的N2和CO2气氛下使用氢氧化钾活化制备成为一种吸附剂吸附废水中的Cr(III),对其吸附能力为13.93 mg/g [68] [69] 。

3.12. 樱桃核

樱桃又名“莺桃”,属蔷薇科梅属落叶小乔木,其枝叶根核皆可入药。樱桃核,干燥果核呈扁卵形,有广泛的用途,具有透疹解毒的功效。查文献可知,在完全没有惰性气体的氛围下通过热化学转化形成樱桃核活性炭,其特征在于高表面积和非常发达的孔隙率,可以高效地吸附Pb2+、Cd2+、Ni2+ [70] 。

樱桃核活性炭对Pb2+和Cd2+的重金属去除率分别为79%~95%和90%~92%,虽然相比于商业活性炭去除率较低,但是樱桃核生物质炭比商业活性炭便宜6倍以上 [71] 。

3.13. 杨梅

杨梅是浙江省的重要特产水果,其栽培的面积和产量在全国均排首位 [72] 。因为杨梅缺少外壳保护,在采摘运输等环节极易碰撞受伤以致腐烂。除此以外,销售不掉的杨梅只能任其腐烂,损失非常严重。

本课题组设计以废弃杨梅为原料,进行大量的实验来证明杨梅炭材料的有效性。本实验选取Hg2+,Cd2+和Pb2+进行实验,通过改变其杨梅炭材料的投放量、重金属离子的浓度、反应时间等来进行重金属吸附实验。在一定范围内吸附作用随着时间的增加,吸附能力增强。随着生物炭加入量的增加,吸附效果也越好。在最佳的条件下对Cd2+和Pb2+吸附作用都能达到90%以上。

4. 果壳类生物质炭吸附重金属的影响因素

有很多因素会影响果壳类生物质炭吸附重金属,其中主要的影响因素有溶液的温度、溶液pH、重金属离子初始浓度、吸附剂用量、接触时间和物质(包括重金属)共存。表1列出了一些生物吸附剂在最佳条件下的最大吸附量的比较数据。

Table 1. Comparison of the maximum adsorption capacity of some biosorbents

表1. 一些生物吸附剂的最大吸附容量的比较

4.1. 溶液温度

大多数研究证明生物质炭吸附重金属是吸热的、自发的,并且溶液温度增加,生物质炭吸附重金属的能力也随之增加。吸附剂本质上是多孔的,因此不能排除温度升高,吸附剂扩散剧烈,增加重金属离子与生物炭表面的碰撞与接触几率,从而提高吸附能力的可能性。吸附量增加也是由于吸附剂活性表面位点边缘附近的一些内部键断裂所产生的吸附位点数量的增加 [75] 。

4.2. 溶液pH

溶液pH是吸附重金属的重要影响因素之一,在pH值较低时,表面官能团(主要是含氧基团)与H+相连,生物炭表面负电荷降低,使重金属离子无法进入。随着pH值的增加,官能团的去质子化提供了与重金属离子相互配合的机会,从而提高了重金属去除率 [76] 。溶液pH除了影响吸附剂的表面电荷,还会影响被吸附物的电离和形态 [77] 。溶液pH的变化影响官能团如羧基、羟基和氨基的络合行为,pH值的增加使得羧基脱质子化与带正电荷的金属有效络合 [8] 。

4.3. 重金属初始离子浓度

研究发现,重金属初始离子浓度越高,生物质炭吸附能力越强 [78] 。重金属离子浓度较低时,重金属只在生物炭表面进行吸附作用;当重金属离子的浓度增大时,重金属与生物炭内部的结构进行吸附作用 [7] 。

4.4. 吸附剂用量

吸附剂用量在一定程度上也会影响生物炭对重金属的吸附。随着吸附剂用量增加,重金属去除率显著增加。这是因为吸附剂表面积和孔隙体积也在增加,这提供了更多的官能团和活性吸附位点 [7] 。但是,随着吸附剂用量不断增加,重金属去除率反而降低。因为只有部分活性位点暴露被重金属离子占据,导致吸附能力降低 [79] 。

4.5. 接触时间

研究表明,生物质炭与重金属的接触时间在一定程度上会影响生物质炭吸附重金属的能力。在实验过程中,会存在初期阶段吸附速度较快,后期吸附速度下降的现象 [80] 。初始阶段的快速吸附可能是因为存在较高的驱动力使得金属离子快速转移到吸附剂颗粒表面,以及与吸附剂上未被覆盖的表面区域和活性位点的可用性有关。后期阶段吸附速度下降可能是因为裸露的表面积和剩余活性位点的可用性逐渐减小,而驱动力的降低使得金属离子的平衡逐渐扩散到吸附剂的颗粒内孔隙中 [81] 。

4.6. 物质(包括重金属离子)共存

一般情况下,废水中会存在多个重金属离子。不同重金属浓度和电荷强弱的关系会导致重金属在生物质炭表面形成强烈竞争关系 [82] 。生物质炭由于其发达的孔隙结构对环境中的其它物质也存在一定的吸附能力,而这在某程度上也能够提高生物质炭对重金属的吸附量 [82] 。

5. 总结与展望

果壳类生物质炭作为一种绿色的吸附剂,在环境修复上起到了一定程度的作用。果壳类生物质炭在水处理应用中展现了巨大的潜力,因为它可以是替代当前昂贵的化学成本和常规操作的选择。虽然有可能需要更多的接触时间以除去重金属,但是果壳类生物质炭在最佳条件下可以最大量的吸附重金属。果壳类生物质炭对去除水污染中的重金属离子来改善水体污染有巨大发展前景,因此,强烈建议选择这种低成本的吸附剂用于可持续水管理。

基金项目

国家自然科学基金(21601138);浙江省自然科学基金(LY17E020003, LQ18B010004);国家级大学生创新创业项目(201810351036);温州市科技局项目(W20170011);温州大学科技项目(19SK60)。

文章引用

刘若纳,杨伟鑫,刘雅慧,林婷婷,叶寅璐,郭祥瑞,尹德武. 果壳类生物质炭对水体中重金属吸附的研究进展
Research Progress on Heavy Metal Adsorption by Fruit-Shell Biomass in Water[J]. 水污染及处理, 2019, 07(03): 119-130. https://doi.org/10.12677/WPT.2019.73018

参考文献

  1. 1. Wan, S., Wu, J., Zhou, S., et al. (2017) Enhanced Lead and Cadmium Removal Using Biochar-Supported Hydrated Manganese Oxide (HMO) Nanoparticles: Behavior and Mechanism. Science of the Total Environment, 616-617, 1298-1306. https://doi.org/10.1016/j.scitotenv.2017.10.188

  2. 2. Janyasuthiwong, S., Rene, E.R., Esposito, G., et al. (2015) Effect of pH on Cu, Ni and Zn Removal by Biogenic Sulfide Precipitation in an Inversed Fluidized Bed Bioreactor. Hydrometallurgy, 158, 94-100. https://doi.org/10.1016/j.hydromet.2015.10.009

  3. 3. Ficklin, W.H. (1983) Separation of Arsenic(III) and Arsenic(V) in Ground Waters by Ion-Exchange. Talanta, 30, 371-373. https://doi.org/10.1016/0039-9140(83)80084-8

  4. 4. Fominykh, K., Feckl, J.M., Sicklinger, J., et al. (2014) Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Elec-trochemical Water Splitting. Advanced Functional Materials, 24, 3123-3129. https://doi.org/10.1002/adfm.201303600

  5. 5. Legault, A.S., Volchek, K., Tremblay, A.Y., et al. (1993) Removal of Arsenic from Groundwater Using Reagent Binding/Membrane Separation. Environmental Progress, 12, 157-159. https://doi.org/10.1002/ep.670120214

  6. 6. El-Shafey, E.I., Al-Lawati, H.A., Al-Busafi, S., et al. (2016) Removal of Zn(2+) and SO4(2−) from Aqueous Solutions on Acidic and Chelating Dehydrated Carbon. Environmental Science & Pollution Research, 24, 1-12. https://doi.org/10.1007/s11356-016-6785-z

  7. 7. Mohan, D. and Jr., P.C. (2007) Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. Journal of Hazardous Materials, 142, 1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006

  8. 8. Li, H., Dong, X., Silva, E.B.D., et al. (2017) Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072

  9. 9. Yuan, J.H., Xu, R.K. and Zhang, H. (2011) The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresource Technology, 102, 3488-3497. https://doi.org/10.1016/j.biortech.2010.11.018

  10. 10. Inyang, M.I., Gao, B., Yao, Y., et al. (2016) A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Critical Reviews in Environmental Science & Technology, 46, 406-433. https://doi.org/10.1080/10643389.2015.1096880

  11. 11. Xu, X., Cao, X., Zhao, L., et al. (2013) Removal of Cu, Zn, and Cd from Aqueous Solutions by the Dairy Manure-Derived Biochar. Environmental Science and Pollution Research, 20, 358-368. https://doi.org/10.1007/s11356-012-0873-5

  12. 12. Zhao, N., Zhao, C., Lv, Y., et al. (2017) Adsorption and Coadsorption Mecha-nisms of Cr(VI) and Organic Contaminants on H3PO4 Treated Biochar. Chemosphere, 186, 422-429. https://doi.org/10.1016/j.chemosphere.2017.08.016

  13. 13. Lyu, H., Gao, B., He, F., et al. (2017) Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environmental Pollution, 233, 54-63. https://doi.org/10.1016/j.envpol.2017.10.037

  14. 14. Kumar, S., Loganathan, V.A., Gupta, R.B., et al. (2011) An Assessment of U(VI) Removal from Groundwater Using Biochar Produced from Hydrothermal Carbonization. Journal of Environmental Manage-ment, 92, 2504-2512. https://doi.org/10.1016/j.jenvman.2011.05.013

  15. 15. Rowell, R.M., Young, R.A. and Rowell, J. (1997) Chemical Composition of Fibers: Paper and Composites from Agro-Based Resources. CRC Press, ‎Boca Raton, 85-91.

  16. 16. Conrad, K. and Bruun Hansen, H.C. (2007) Sorption of Zinc and Lead on Coir. Bioresource Technology, 98, 89-97. https://doi.org/10.1016/j.biortech.2005.11.018

  17. 17. Liu, Q., Ke, M., Liu, F., et al. (2017) High-Performance Removal of Methyl Mercaptan by Nitrogen-Rich Coconut Shell Activated Carbon. RSC Advances, 7, 22892-22899. https://doi.org/10.1039/C7RA03227G

  18. 18. Chaudhuri, M. and Azizan, N.K.B. (2012) Adsorptive Removal of Chromium(VI) from Aqueous Solution by an Agricultural Waste-Based Activated Carbon. Water Air & Soil Pollution, 223, 1765-1771. https://doi.org/10.1007/s11270-011-0981-8

  19. 19. Amuda, O.S., Giwa, A.A. and Bello, I.A. (2007) Removal of Heavy Metal from Industrial Wastewater Using Modified Activated coconut Shell Carbon. Biochemical Engineering Journal, 36, 174-181. https://doi.org/10.1016/j.bej.2007.02.013

  20. 20. Rogelj, J., Den, E.M., Höhne, N., et al. (2016) Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2  ˚C. Nature, 534, 631-639. https://doi.org/10.1038/nature18307

  21. 21. Yue, L., Xia, Q., Wang, L., et al. (2017) CO2 Adsorption at Nitrogen-Doped Carbons Prepared by K2CO3 Activation of Urea-Modified Coconut Shell. Journal of Colloid & Interface Science, 511, 259. https://doi.org/10.1016/j.jcis.2017.09.040

  22. 22. Sartape, A.S., Mandhare, A.M., Salvi, P.P., et al. (2013) Kinetic and Equilibrium Studies of the Adsorption of Cd(II) from Aqueous Solutions by Wood Apple Shell Activated Carbon. Desalination & Water Treatment, 51, 4638-4650. https://doi.org/10.1080/19443994.2012.759158

  23. 23. Das, S. and Mishra, S. (2017) Box-Behnken Statistical Design to Optimize Preparation of Activated Carbon from Limonia acidissima, Shell with Desirability Approach. Journal of Environmental Chemical Engineering, 5, 588-600. https://doi.org/10.1016/j.jece.2016.12.034

  24. 24. Lee, J.Y., Seo, S.J., Park, J.W., et al. (2010) A Study on the Cell Structure for Capacitive Deionization System.

  25. 25. Gaikwad, M.S. and Balomajumder, C. (2017) Removal of Cr(VI) and Fluoride by Membrane Capacitive Deionization with Nanoporous and Microporous Limonia acidissima (Wood Apple) Shell Activated Carbon Electrode. Separation & Purification Technology, 195, 305-313. https://doi.org/10.1016/j.seppur.2017.12.006

  26. 26. Jain, S. and Jayaram, R.V. (2010) Removal of Basic Dyes from Aqueous Solution by Low-Cost Adsorbent: Wood Apple Shell (Feroniaacidissima). De-salination, 250, 921-927. https://doi.org/10.1016/j.desal.2009.04.005

  27. 27. Bhadusha, N. and Ananthabaskaran, T. (2012) Kinetic, Thermodynamic and Equilibrium Studies on Uptake of Rhodamine B onto ZnCl2 Activated Low Cost Carbon. Journal of Chemistry, 9, 137-144. https://doi.org/10.1155/2012/873026

  28. 28. ŞabanTanyildizi, M. (2011) Modeling of Adsorption Isotherms and Kinetics of Reac-tive Dye from Aqueous Solution by Peanut Hull. Chemical Engineering Journal, 168, 1234-1240. https://doi.org/10.1016/j.cej.2011.02.021

  29. 29. Zhu, C.S., Wang, L.P. and Chen, W.B. (2009) Removal of Cu(II) from Aqueous Solution by Agricultural By-Product: Peanut Hull. Journal of Hazardous Materials, 168, 739-746. https://doi.org/10.1016/j.jhazmat.2009.02.085

  30. 30. Gãlen, J. and Zorbay, F. (2017) Methylene Blue Adsorption on a Low Cost Adsorbent-Carbonized Peanut Shell. Water Environment Research, 89, 805-816. https://doi.org/10.2175/106143017X14902968254836

  31. 31. Gai, X., Wang, H., Liu, J., et al. (2014) Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE, 9, e113888. https://doi.org/10.1371/journal.pone.0113888

  32. 32. Arranz, S., Perez-Jimenez, J. and Saura-Calixto, F. (2008) Antioxidant Ca-pacity of Walnut (Juglans regia L.) Contribution of Oil and Defatted Matter. European Food Research and Technology, 227, 425-431. https://doi.org/10.1007/s00217-007-0737-2

  33. 33. Martinez, M.L., Torres, M.M., Guzman, C.A., et al. (2006) Preparation and Characteristics of Activated Carbon from Olive Stones and Walnut Shells. Industrial Crops & Products, 23, 23-28. https://doi.org/10.1016/j.indcrop.2005.03.001

  34. 34. Nethaji, S. and Sivasamy, A. (2014) Removal of Hexavalent Chromium from Aqueous Solution Using Activated Carbon Prepared from Walnut Shell Biomass through Alkali Impregnation Processes. Clean Technologies & Environmental Policy, 16, 361-368. https://doi.org/10.1007/s10098-013-0619-1

  35. 35. Gondhalekar, S.C. and Shukla, S.R. (2016) Biosorption of Cadmium Metal Ions on Raw and Chemically Modified Walnut Shells. Environmental Progress & Sustainable Energy, 34, 1613-1619. https://doi.org/10.1002/ep.12161

  36. 36. Kuśmierek, K. and Świątkowski, A. (2015) Removal of Chlorophenols from Aqueous Solutions by Sorption onto Walnut, Pistachio and Hazelnut Shells. Polish Journal of Chemical Technology, 17, 23-31. https://doi.org/10.1515/pjct-2015-0005

  37. 37. Lewicka, K. (2017) Activated Carbons Prepared from Hazelnut Shells, Walnut Shells and Peanut Shells for High CO2 Adsorption. Polish Journal of Chemical Technology, 19, 38-43. https://doi.org/10.1515/pjct-2017-0025

  38. 38. Pehlivan, E., Altun, T., Cetin, S., et al. (2009) Lead Sorption by Waste Biomass of Hazelnut and Almond Shell. Journal of Hazardous Materials, 167, 1203-1208. https://doi.org/10.1016/j.jhazmat.2009.01.126

  39. 39. Thitame, P.V. and Shukla, S.R. (2017) Removal of Lead (II) from Synthetic Solution and Industry Wastewater Using Almond Shell Activated Carbon. Environmental Progress & Sustainable Energy, 36, 1628-1633. https://doi.org/10.1002/ep.12616

  40. 40. Kazemipour, M., Ansari, M., Tajrobehkar, S., et al. (2008) Removal of Lead, Cadmium, Zinc, and Copper from Industrial Wastewater by Carbon Developed from Walnut, Hazelnut, Almond, Pistachio Shell, and Apricot Stone. Journal of Hazardous Materials, 150, 322-327.

  41. 41. Thitame, P.V. and Shukla, S.R. (2017) Adsorptive Removal of Naph-thalenesulfonic Acids Using Wild Almond Shell Activated Carbon from Aqueous Solution. Environmental Progress & Sustainable Energy, 36, 38-44. https://doi.org/10.1002/ep.12431

  42. 42. Zbair, M., Anfar, Z., Ait, A.H., et al. (2017) Acridine Orange Adsorption by Zinc Ox-ide/Almond Shell Activated Carbon Composite: Operational Factors, Mechanism and Performance Optimization Using Central Composite Design and Surface Modeling. Journal of Environmental Management, 206, 383. https://doi.org/10.1016/j.jenvman.2017.10.058

  43. 43. Reddy, D.H., Seshaiah, K., Reddy, A.V., et al. (2010) Biosorption of Pb2+ from Aqueous Solutions by Moringa oleifera Bark: Equilibrium and Kinetic Studies. Journal of Hazardous Materials, 174, 831. https://doi.org/10.1016/j.jhazmat.2009.09.128

  44. 44. Ramana, D.K.V., Reddy, D.H.K., Yu, J.S., et al. (2012) Pigeon Peas Hulls Waste as Potential Adsorbent for Removal of Pb(II) and Ni(II) from Water. Chemical Engineering Journal, 197, 24-33. https://doi.org/10.1016/j.cej.2012.04.105

  45. 45. Aravind, J., Lenin, C., Nancyflavia, C., et al. (2015) Response Surface Method-ology Optimization of Nickel (II) Removal Using Pigeon Pea Pod Biosorbent. International Journal of Environmental Science & Technology, 12, 105-114. https://doi.org/10.1007/s13762-013-0391-0

  46. 46. Ramana, D.K.V. and Min, K. (2015) Activated Carbon Produced from Pigeon Peas Hulls Waste as a Low-Cost Agro-Waste Adsorbent for Cu(II) and Cd(II) Removal. Desalination & Water Treatment, 57, 6967-6980.

  47. 47. Ghosh, R.K. and Reddy, D.D. (2014) Crop Residue Ashes as Adsorbents for Basic Dye (Methylene Blue) Removal: Adsorption Kinetics and Dynamics. Clean: Soil Air Water, 42, 1098-1105. https://doi.org/10.1002/clen.201300386

  48. 48. Acevedo, S., Giraldo, L. and Morenopirajan, J.C. (2017) Adsorption of CO2 onto Activated Carbons Prepared by Chemical Activation with Metallic Salts. International Journal of Chemical Reactor Engineering, 15, 1-11. https://doi.org/10.1515/ijcre-2017-0029

  49. 49. Kushwaha, S., Soni, H., Sreedhar, B., et al. (2017) Efficient Valorisation of Palm Shell Powder to Bio-Sorbents for Copper Remediation from Aqueous Solutions. Journal of Environmental Chemical Engineering, 5, 2480-2487. https://doi.org/10.1016/j.jece.2017.04.033

  50. 50. Ji, C., Zhang, Y., Gao, S., et al. (2004) Particle Swarm Optimization for Mobile ad Hoc Networks Clustering. IEEE International Conference on Networking, Sensing and Control, Taipei, 21-23 March 2004, Vol. 1, 372-375.

  51. 51. Anyika, C., Asri, N.A.M., Majid, Z.A., et al. (2017) Batch Sorption-Desorption of As(III) from Waste Water by Magnetic Palm Kernel Shell Activated Carbon Using Optimized Box-Behnken Design. Applied Water Science, 7, 4573-4591. https://doi.org/10.1007/s13201-017-0610-9

  52. 52. Nakahira, A., Nishida, S. and Fukunishi, K. (2006) Synthesis of Magnetic Activated Carbons for Removal of Environmental Endocrine Disrupter Using Magnetic Vector (Novel Materials Design and Processing by External and Internal Reaction Fields). Journal of the Ceramic Society of Japan, 114, 135-137. https://doi.org/10.2109/jcersj.114.135

  53. 53. Zhou, Z., Liu, Y.G., Liu, S.B., et al. (2017) Sorption Performance and Mechanisms of Arsenic(V) Removal by Magnetic Gelatin-Modified Biochar. Chemical Engineering Journal, 314, 223-231. https://doi.org/10.1016/j.cej.2016.12.113

  54. 54. Vazquez, G., Calvo, M., Freire, M.S., et al. (2009) Chestnut Shell as Heavy Metal Adsorbent: Optimization Study of Lead, Copper and Zinc Cations Removal. Journal of Hazardous Materials, 172, 1402-1414. https://doi.org/10.1016/j.jhazmat.2009.08.006

  55. 55. Ertaş, R. and Öztürk, N. (2013) Removal of Lead from Aqueous Solutions by Using Chestnut Shell as an Adsorbent. Desalination & Water Treatment, 51, 2903-2908. https://doi.org/10.1080/19443994.2012.748266

  56. 56. Vazquez, G., Freire, M.S., Gonzalezalvarez, J., et al. (2009) Equilibrium and Kinetic Modelling of the Adsorption of Cd2+ Ions onto Chestnut Shell. Desalination, 249, 855-860. https://doi.org/10.1016/j.desal.2009.09.007

  57. 57. Squillaci, G., Apone, F., Sena, L.M., et al. (2017) Chestnut (Castanea sativa, Mill.) Industrial Wastes as a Valued Bioresource for the Production of Active Ingredients. Process Biochemistry, 64, 228-236. https://doi.org/10.1016/j.procbio.2017.09.017

  58. 58. Amin, M. and Alazba, A. (2017) Absorption Behaviours of Copper, Lead, and Arsenic in Aqueous Solution Using Date Palm Fibres and Orange Peel: Kinetics and Thermodynamics. Polish Journal of Envi-ronmental Studies, 26, 543-557. https://doi.org/10.15244/pjoes/66963

  59. 59. Salmani, M.H. (2017) Comparing Cadmium Removal Efficiency of a Magnetized Biochar Based on Orange Peel with Those of Conventional Orange Peel and Unmodified Biochar. Desalination & Water Treatment, 82, 157-169. https://doi.org/10.5004/dwt.2017.20973

  60. 60. Ma, J., Sun, S. and Chen, K. (2017) Facile and Scalable Synthesis of Magnet-ite/Carbon Adsorbents by Recycling Discarded Fruit Peels and Their Potential Usage in Water Treatment. Bioresource Technology, 233, 110-115. https://doi.org/10.1016/j.biortech.2017.02.075

  61. 61. Bakisgan, C., Dumanli, A.G. and Yurum, Y. (2009) Trace Elements in Turkish Biomass Fuels: Ashes of Wheat Straw, Olive Bagasse and Hazelnut Shell. Fuel, 88, 1842-1851. https://doi.org/10.1016/j.fuel.2009.04.027

  62. 62. Zhao, B., Xu, X., Xu, S., et al. (2017) Surface Characteristics and Potential Ecological Risk Evaluation of Heavy Metals in the Bio-Char Produced by Co-Pyrolysis from Municipal Sewage Sludge and Hazelnut Shell with Zinc Chloride. Bioresource Technology, 243, 375-383. https://doi.org/10.1016/j.biortech.2017.06.032

  63. 63. Sert, S., Çelik, A. and Tirtom, V.N. (2017) Removal of Arsenic (III) Ions from Aqueous Solutions by Modified Hazelnut Shell. Desalination & Water Treatment, 75, 115-123. https://doi.org/10.5004/dwt.2017.20725

  64. 64. Lü, L., Jiang, X., Jia, L., et al. (2017) Kinetic and Thermodynamic Studies on Adsorption of Cu 2+, Pb 2+, Methylene Blue and Malachite Green from Aqueous Solution Using AMPS-Modified Hazelnut Shell Powder. Chemical Research in Chinese Universities, 33, 112-118. https://doi.org/10.1007/s40242-017-6243-6

  65. 65. Kumar, P.S., Ramalingam, S., Kirupha, S.D., et al. (2011) Adsorption Behavior of Nickel(II) onto Cashew Nut Shell: Equilibrium, Thermodynamics, Kinetics, Mechanism and Process Design. Chemical Engineering Journal, 167, 122-131. https://doi.org/10.1016/j.cej.2010.12.010

  66. 66. Senthilkumar, P., Ramalingam, S., Abhinaya, R.V., et al. (2012) Adsorption Equilibrium, Thermodynamics, Kinetics, Mechanism and Process Design of Zinc(II) Ions onto Cashew Nut Shell. Canadian Journal of Chemical Engineering, 90, 973-982. https://doi.org/10.1002/cjce.20588

  67. 67. Coelho, G.F., Jr., A.C.G., Tarley, C.R.T., et al. (2014) Removal of Metal Ions Cd (II), Pb (II), and Cr (III) from Water by the Cashew Nut Shell Anacardium occidentale, L. Ecological Engineering, 73, 514-525. https://doi.org/10.1016/j.ecoleng.2014.09.103

  68. 68. Tangjuank, S., Insuk, N., Udeye, V., et al. (2009) Chromium (III) Sorption from Aqueous Solutions Using Activated Carbon Prepared from Cashew Nut Shells. International Journal of Physical Sciences, 4, 412-417.

  69. 69. Kumar, P.S., Ramalingam, S., Sathyaselvabala, V., et al. (2012) Removal of Cadmium(II) from Aqueous Solution by Agricultural Waste Cashew Nut Shell. Korean Journal of Chemical Engineering, 29, 756-768. https://doi.org/10.1007/s11814-011-0259-2

  70. 70. Pap, S., Radoniä, J., Trifunoviä, S., et al. (2016) Evaluation of the Adsorption Potential of Eco-Friendly Activated Carbon Prepared from Cherry Kernels for the Removal of Pb2+, Cd2+ and Ni2+ from Aqueous Wastes. Journal of Environmental Management, 184, 297-306. https://doi.org/10.1016/j.jenvman.2016.09.089

  71. 71. Vukelic, D., Boskovic, N., Agarski, B., et al. (2017) Eco-Design of a Low-Cost Adsorbent Produced from Waste Cherry Kernels. Journal of Cleaner Production, 174, 1620-1628. https://doi.org/10.1016/j.jclepro.2017.11.098

  72. 72. 倪海枝, 陈方永, 王引, 任正初. 浙江省杨梅新品种选育及品种特性特性[J]. 农业科技通讯, 2012(6): 232-234.

  73. 73. Olguín, M.T., López-González, H. and Serra-no-Gómez, J. (2013) Hexavalent Chromium Removal from Aqueous Solutions by Fe-Modified Peanut Husk. Water Air & Soil Pol-lution, 224, 1-9. https://doi.org/10.1007/s11270-013-1654-6

  74. 74. Jain, N., Johnson, T.A., Kumar, A., et al. (2015) Biosorption of Cd(II) on Jatropha Fruit Coat and Seed Coat. Environmental Monitoring & Assessment, 187, 4658. https://doi.org/10.1007/s10661-015-4658-4

  75. 75. Acharya, J., Sahu, J.N., Mohanty, C.R., et al. (2009) Removal of Lead(II) from Wastewater by Activated Carbon Developed from Tamarind Wood by Zinc Chloride Activation. Chemical Engineering Journal, 149, 249-262. https://doi.org/10.1016/j.cej.2008.10.029

  76. 76. Liu, Z. and Zhang, F.S. (2009) Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass. Journal of Hazardous Materials, 167, 933-939. https://doi.org/10.1016/j.jhazmat.2009.01.085

  77. 77. Sekar, M., Sakthi, V. and Rengaraj, S. (2004) Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. Journal of Colloid & Interface Science, 279, 307-313. https://doi.org/10.1016/j.jcis.2004.06.042

  78. 78. 刘俊峰, 祝怡斌, 杨晓松, 等. 生物炭去除重金属的研究进展[J]. 价值工程, 2015(22): 149-152.

  79. 79. Gupta, V.K. and Rastogi, A. (2008) Biosorption of Lead from Aqueous Solutions by Green Algae Spirogyra, Species: Kinetics and Equilibrium Studies. Journal of Hazardous Materials, 152, 407-414. https://doi.org/10.1016/j.jhazmat.2007.07.028

  80. 80. Li, Y., Du, Q., Wang, X., et al. (2010) Removal of Lead from Aqueous Solution by Activated Carbon Prepared from Enteromorpha prolifera by Zinc Chloride Activation. Journal of Hazardous Materials, 183, 583-589. https://doi.org/10.1016/j.jhazmat.2010.07.063

  81. 81. Wu, Y., Zhang, S., Guo, X., et al. (2008) Adsorption of Chromium(III) on Lignin. Bioresource Technology, 99, 7709-7715. https://doi.org/10.1016/j.biortech.2008.01.069

  82. 82. 李桥, 高屿涛. 生物质炭对水中重金属吸附研究进展[J]. 低碳世界, 2016(22): 13-15.

  83. NOTES

    *通讯作者。

期刊菜单