Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 74784 , 14 pages
10.12677/ACM.2023.13112414

通过生物信息学方法筛选胃癌潜在关键基因

庞胜楠,胡凤丽*

哈尔滨医科大学附属第四医院消化内科,黑龙江 哈尔滨

收稿日期:2023年10月6日;录用日期:2023年11月1日;发布日期:2023年11月6日

摘要

目的:从公共数据库获取数据,分析胃癌及正常胃组织差异表达基因,初步筛选出潜在生物标志物。方法:从GEO数据库下载与胃癌相关的数据集GSE54129、GSE13911、GSE19826;通过GEO2R 筛选出差异表达基因(DEGs),韦恩图绘制出3个基因表达谱的交集,从而得出共同DEGs;利用DAVID、String、KM-Plot等网站对DEGs进行功能分析、构建蛋白质互作网络(PPI)以及与胃癌预后的关系,利用Cytoscape对分析结果进行可视化处理,得出候选核心基15个;进而用GEPIA软件验证核心基因的表达情况以及与临床分期的关系,并使用cBioPortal探索胃癌靶点基因的基因组变化,最终筛选出6个与胃癌预后、分期相关的核心基因。结果:获得106个DEGs,功能富集分析显示这些DEGs的作用以蛋白降解、细胞粘附为主;在细胞组分中主要影响胞外间隙;在分子功能中主要影响相同蛋白结合;通路富集分析主要集中于胃酸分泌、蛋白质消化吸收、细胞色素P450的药物代谢等,12个基因(COL1A1, COL1A2, COL11A1, COL10A1, BGN, TFF2, MUC6, ATP4A, THBS2, SULF1, CLDN18, ATP4B)与GC总生存期相关,其中6个关键基因(COL1A1, COL1A2, THBS2, BGN, TFF2, COL11A1)与胃癌的分期密切相关。结论:通过生物信息学筛选差异表达基因和信号通路可能有助于胃癌的分子机制研究,并获得与胃癌生存预后相关的关键基因,为癌症的诊断和治疗提供了新的思路。

关键词

胃癌,生物信息学,预后,差异表达基因

Identification of Potential Critical Genes in Gastric Cancer by Bioinformatic Analysis

Shengnan Pang, Fengli Hu*

Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang

Received: Oct. 6th, 2023; accepted: Nov. 1st, 2023; published: Nov. 6th, 2023

ABSTRACT

Objective: Data were obtained from public databases to analyze differentially expressed genes in gastric cancer (GC) and normal gastric tissue, and preliminarily explore potential biomarkers. Method: Gene expression profiles (GSE54129, GSE13911, GSE19826) were obtained from GEO database. Differentially expressed genes were screened out by GEO2R, and the Venndiagram plotted the intersection of three gene expression profiles to obtain common differentially expressed Genes; using online analysis websites such as DAVID, String, KM-Plot to analyze the functions of DEGs, construct protein interaction network (PPI) and the relationship with GC prognosis, and visualize the analysis results with Cytoscape, 15 candidate core genes were obtained; furthermore, GEPIA online software was used to verify the expression of core genes and the relationship with clinical stage, and the genomic changes of GC target genes were explored by using cBioPortal, and finally six core genes related to GC prognosis and stage were screened. Results: A total of 106 DEGs were obtained, and functional enrichment analysis showed that the effects of these DEGs were mainly protein degradation and cell adhesion. Predominantly affects the extracellular space in cellular components; mainly affects the same protein binding in molecular function; pathway enrichment analysis mainly focused on gastric acid secretion, protein digestion and absorption, cytochrome P450 drug metabolism, etc, 12 genes (COL1A1, COL1A2, COL11A1, COL10A1, BGN, TFF2, MUC6, ATP4A, THBS2, SULF1, CLDN18, ATP4B) were associated with GC overall survival, of which 6 key genes (COL1A1, COL1A2, THBS2, BGN, TFF2, COL11A1) is closely related to the staging of gastric cancer. Conclusion: Screening of differentially expressed genes and signalling pathways by bioinformatics may contribute to the study of the molecular mechanism of gastric cancer and obtain key genes related to the survival and prognosis of gastric cancer, providing new ideas for cancer diagnosis and treatment.

Keywords:GC, Bioinformatics, Prognosis, Differentially Expressed Genes

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃癌是世界范围内一项重要的疾病,每年新增约一百万人,为全球第四大恶性肿瘤 [1] 。因为胃癌在被发现时往往是在晚期,死亡率很高,2018年全球有78.4万人死亡 [2] 。中国是一个GC发病和死亡高发的国家,并且大多数GC患者预后不佳 [3] 。早期胃癌因其缺乏特异的表现,且检出率较低,大部分病人确诊时已到晚期,部分病人甚至丧失了手术治疗的可能;晚期胃癌多伴有临近或远处的转移,因此总体预后不佳 [4] 。近年来,许多新辅助化疗、放射疗法和分子靶向疗法已经成为提高胃癌疗效的重要手段 [4] 。各种GC靶点基因被开发出来,但总体效果不佳 [5] ,例如,原癌基因人表皮生长因子受体2 (HER2),突变率为6.1%~23.0%,PIK3CA定位于3q26.3,突变率为10%。因此,在胃癌早期筛查、诊断、和预后方面,挖掘出新的肿瘤标记物具有重要意义。本文拟通过分析GEO数据库中胃癌的相关基因芯片,筛选DEGs并对其进行分析,为研究胃癌的诊断和治疗靶点提供理论基础。

1.1. 数据来源

基于人胃组织标本、分为胃癌组和正常胃组织组、样本量 ≥ 15这3个条件,利用GEO DataSets [6] 中选择出3组数据集(GSE54129、GSE13911、GSE19826),3组数据集都来源于GPL570芯片平台,芯片信息为Affymetrix Human Genome U133 Plus 2.0 Array。

1.2. DEGs的筛选

利用GEO2R分析工具对原始数据进行处理,将数据分为胃癌组和正常组进行分析。DEGs筛选标准:① Padj < 0.05;② |logFC| > 2。将logFC > 2的基因作为上调差异基因(UDEGs),logFC < −2的基因作为下调差异基因(DDEGs)。使用在线工具Evenn (http://www.ehbio.com/test/venn/#/)确定3组数据的相交部分。

1.3. KEGG与GO富集分析

选取交集基因,利用DAVIDs [7] (https://david.ncifcrf.gov/)、微生信网站进行GO富集分析与KEGG富集分析。

1.4. PPI网络构建及筛选核心基因

利用String [8] (http://string-db.org/)数据库构建差异基因的蛋白互作网络(PPI)。将PPI网络导入Cytoscape软件进行可视化处理。Degree越高,对疾病的发展越有意义,并使用Cytohubba [9] 插件对关键模块中的DEGs进行degree比较,其中degree为最大的DEGs选为核心基因。本文选择degree最大的15个DEGs作为后续预后分析的关键基因。

1.5. 核心基因的预后分析

使用Kaplan-Meier plotter [10] (http://kmplot.com/analysis/)数据库评估核心基因的预后价值。根据mRNA表达值自动将癌症患者分为高表达和低表达两组进行比较,P < 0.05为差异具有统计学意义。

1.6. 核心基因表达验证

核心基因转录水平表达与总体生存分析:利用GEPIA [11] (http://gepia.cancer-pku.cn/)数据库验证核心基因表达,并通过使用箱线图来可视化基因在胃癌和癌旁胃组织中表达差异及其与临床分期关系。并用cBioPortal [12] 数据库探索基因组改变。

2. 结果

2.1. 筛选DEGs

应用GEO2R在线处理3组数据集,得到表达上调和下调的差异基因,并且绘制火山图(图1)。经筛选后得到GSE54129差异基因1080个,其中包括562个UDEGs,518个DDEGs。GSE13911经筛选后得到DEGs503个,其中包括121个UDEGs,382个DDEGs。GSE19826经筛选后得到DEGs453个,其中包括111个UDEGs,342个DDEGs。3组数据集均有交集的基因共106个,其中上调基82个,下调基因24个(图1(d))。

2.2. GO功能分析和 KEGG Pathway富集分析

利用DAVID数据库,对交集基因进行功能分析和通路富集分析。GO功能富集分析显示,在生物学进程中,这些DEGs的作用以蛋白降解、细胞粘附为主;在细胞组分中主要影响胞外间隙;在分子功能中主要影响相同蛋白结合(图2)。KEGG功能注释主要集中于胃酸分泌、蛋白质消化吸收、细胞色素P450的药物代谢等通路(图3)。

(a) (b) (c) (d)

Figure 1. Screening of DEGs. (a), (b), and (c) are volcanic plots of 3 datasets, and (d) is the intersecting Wayne plot

图1. DEGs的筛选。(a),(b)和(c)为3个数据集的火山图,(d)为交集韦恩图

2.3. PPI网络构建和核心基因鉴定

通过STRING网站对差异共表达基因构建PPI (图4(a)),PPI网络共涉及100个节点和146条边。利用String数据库预测差异基因间的相互作用,并将在所有数据集中都差异表达的差异基因导入Cytoscape软件进行研究。利用cytohHubba插件,根据Degree值筛选top15Hub基因。选取PPI网络中连通度排序前15的为核心基因。Degree最高的基因为COL1A1,其次分别为COL1A2、COL11A1、COL10A1、BGN、TFF2、MUC6、ATP4A、GKN1、MUC5AC、THBS2、SULF1、CLDN18、PGC、ATP4B (图4(b))。

2.4. 核心基因分析

用Kaplan-Meier ploter进行预后分析,对于每个基因根据表达量将癌症患者分为高表达和低表达两组。在Kaplan-Meier Plotter网站上共有881例胃癌患者可用于分析总生存率(P < 0.05有意义)。除GKN1 (P = 0.19),MUC5AC (P = 0.19),PGC (P = 0.12)对胃癌患者总存活率无明显影响,其他的12个基因(COL1A1、

Figure 2. GO function enrichment analysis of differentially expressed genes

图2. 差异表达基因GO功能富集分析

Figure 3. Bubble chart of pathway enrichment results

图3. Pathway富集结果气泡图

(a) (b)

Figure 4. (a) PPI network diagram; (b) Gastric cancer differentially expressed gene coding protein action network diagram

图4. (a) PPI网络图;(b) 胃癌差异表达基因编码蛋白作用网络图

COL1A2、COL11A1、COL10A1、BGN、TFF2、MUC6、ATP4A、THBS2、SULF1、CLDN18、ATP4B) 的上调差异表达均显著影响胃癌患者的总体生存率(见图5)。

Figure 5. Survival analysis of key genes in gastric cancer

图5. 胃癌关键基因的生存分析

2.5. 核心基因在癌组织及其正常组织中的表达情况

将上述12个基因通过GEPIA进行表达量分析。结果表明,COL1A1、COL1A2、COL11A1、COL10A1、BGN、THBS2、SULF1在胃癌中表达增高,TFF2、MUC6在癌组织中表达降低,而ATP4A、ATP4B、CLDN18的差异无统计学意义。

2.6. 相关DEGs在STAD组织及正常组织中的表达水平

其中6个基因(COL1A1、COL1A2、THBS2、BGN、TFF2、COL11A1)表达与胃癌患者分期相关(见图6(b)),随着分期增加,COL1A1,COL1A2,THBS2,BGN,TFF2,COL11A1表达上升,然后在III和IV期进入稳定表达期,MUC6 (P = 0.504),COL10A1 (P = 0.083),SULF1 (P = 0.072)的表达与分期无相关性(P > 0.05)。

COL1A1 COL1A2 COL11A1 COL10A1 BGN TFF2 THBS2 SULF1 (a) COL1A1 COL1A2 THBS2 BGN TFF2 COL11A1(b)

Figure 6. (a) Expression of key genes in gastric cancer (red for tumor tissue, gray for normal tissue); (b) expression of target gene in GEPIA database A is the expression of 6 target genes in GEPIA database, and the stage relationship between target B gene and gastric cancer patients

图6. (a) 胃癌关键基因的表达情况(红色为肿瘤组织,灰色为正常组织);(b) GEPIA数据库中靶点基因的表达A为GEPIA数据库6个靶点基因的表达,B靶点基因与胃癌患者分期关系

利用cBioPortal数据库对胃癌目标基因进行基因组学分析,发现:在6个目标基因中,有441例目标基因(35.3%)发生了明显变化,包括突变,扩增,深度丢失等。单个基因改变的比例为2.3%~13% (TFF2,2.3%;BGN,5%;COL1A1,5%;THBS2,7%;COL11A1,10%;COL1A2,13%),胃癌中6个靶点基因改变频率如图7所示。

Figure 7. Using cBioPortal to explore genomic changes in gastric cancer target genes

图7. 使用cBioPortal探索胃癌靶点基因的基因组变化

3. 讨论

尽管外科、全身多线化疗相结合等多模式治疗已经大大地提高了病人的生存率,但是仍然无法拯救70%的病人,应加强对胃癌的早期诊断及早期治疗 [13] 。本研究通过分析GSE54129、GSE13911、GSE19826 3组芯片数据集得到共表达差异基因共106个,其中上调基因82个,下调基因24个通过GO分析发现差异基因生物过程中主要影响蛋白质的降解,细胞的粘附;在细胞组分中主要影响胞外间隙;在分子功能中主要影响相同蛋白结合。KEGG分析发现差异基因主要富集于胃酸分泌、蛋白质消化吸收、细胞色素P450的药物代谢等通路。发现12个基因与GC预后相关(COL1A1、COL1A2、COL11A1、COL10A1、BGN、TFF2、MUC6、ATP4A、THBS2、SULF1、CLDN18、ATP4B)。COL1A1、COL1A2、COL11A1、COL10A1、BGN、THBS2、SULF1在胃癌中表达增高,TFF2、MUC6在癌组织中表达降低,其中6个基因(COL1A1、COL1A2、THBS2、BGN、TFF2、COL11A1)表达与胃癌患者分期相关,在6个基因主要变化包括突变,扩增,深度丢失等。

细胞外基质(ECM)是由细胞分泌到细胞外间质中的大分子物质所构成的复杂网架动态结构,由间质基质和基底膜构成。间质基质主要由细胞分泌产生,是一种以I型、III型胶原蛋白、纤连蛋白、弹性蛋白和多种蛋白聚糖为主要成分的松散的胶原纤维网络结构。基底膜是由IV型胶原蛋白、层粘连蛋白、巢蛋白以及硫酸乙酰肝素蛋白聚糖等构成的致密薄片状蛋白网络结构,它能够将细胞与周围的基质分开,作为物质运输的屏障发挥作用 [14] 。ECM以胶原为主要成份,大部分的结缔组织及胚胎组织均含有I型胶原,I型胶原蛋白由两条I型胶原α1 (COL1A1)链和一条I型胶原α2 (COL1A2)链组成;在某些肿瘤中,胶原蛋白家族的成员参与了多种组织的癌变,其中COL1A1、COL1A2的异常表达可能与某些肿瘤相关 [15] 。COL1A1、COL1A2 mRNA在胃癌中的表达明显高于正常组织,COL1A1、COL1A2的表达与胃癌的总体生存率有很大关系 [16] 。我们证明COL1A1和COLA2在胃癌中过表达,高COL1A1可能是早期胃癌的监测因素,高COL1A1和COL1A2 mRNA表达可能是预测总生存时间的预后因素 [17] 。

TFF2肽属于三叶因子家族,它包括两个TFF区域,主要在胃上皮及十二指肠腺瘤中与粘液MUC6共同表达;TFF2在维持胃粘膜完整性方面起着关键作用,并可以抑制胃内肿瘤的发生;一方面,TFF2通过GlcNAcα1→4Galβ1→R的非共价凝集素相互作用与MUC6结合;另一方面,TFF2也可能通过二硫桥与MUC6共价结合 [18] 。TFFs蛋白可用于保护和修复胃肠黏膜。除口服和皮下注射外,TFF1、TFF2和TFF3蛋白可通过胃肠内窥镜直接喷射到损伤黏膜上。其次,由于TFF1是胃癌抑制因子,TFF2是胃癌抑制因子候选因子,它们将有可能被用于胃癌的防治。血栓反应蛋白-2 (THBS2)是基质细胞钙结合糖蛋白家族的一员,与生长因子、细胞受体和细胞外基质(ECM)相互作用,THBS2在细胞增殖、粘附和凋亡中起重要作用 [19] 。通过PI3K-Akt信号途径,COL1A2、THBS2等表达途径对胃癌细胞的增殖、迁移和侵袭有一定的抑制作用,THBS2已被证实能有效抑制血管生成和肿瘤生长,同时促进细胞粘附和迁移 [20] 。一项研究表明,BGN与上皮间充质转化(EMT)过程相关,增加了肿瘤上皮细胞的迁移和侵袭能力,使原发肿瘤能够扩散并形成继发性肿瘤转移,为GC转移提供了潜在的生物标志物和治疗靶点 [21] 。COL11A1在卵巢癌、结直肠癌、乳腺癌、胰腺癌和头颈部鳞状细胞癌等多种癌症中表达上调 [22] ,COL11A1 mRNA在晚期GC中的表达明显高于早期GC,其高表达与肿瘤的年龄、大小及淋巴结转移密切相关。COL11A1通过与特定受体结合,激活关键的细胞存活信号通路,促进肿瘤进展、转移和耐药路 [23] 。高水平COL11A1表达的患者可以通过阻断COL11A1信号的药物抑制剂来治疗,以减轻肿瘤细胞的化疗耐药和复发,对COL11A1的深入研究将为制定个体化靶向药物提供新思路 [24] 。利用cBioPortal数据库对胃癌关键基因进行了深入的探讨,结果表明,6个靶点基因在胃癌中的改变主要是扩增和突变,从而使其表达上调从而促进胃癌的发生。

综上所述,本文通过生物信息学方法,筛选出了6个与胃癌预后、分期密切相关的关键基因,并将其作为肿瘤早期诊断及治疗的潜在靶点,为GC的病因研究和深入探讨其发病机制提供新的理论依据。由于缺乏对上述6个基因进行组织和细胞水平的研究以及预测出的小分子药物对上述6个基因是否具有抑制作用,后续将进一步完善相关内容,使研究结果更有说服力。

文章引用

庞胜楠,胡凤丽. 通过生物信息学方法筛选胃癌潜在关键基因
Identification of Potential Critical Genes in Gastric Cancer by Bioinformatic Analysis[J]. 临床医学进展, 2023, 13(11): 17216-17229. https://doi.org/10.12677/ACM.2023.13112414

参考文献

  1. 1. Askari, N., Salek Esfahani, B., Parvizpour, S., Shafieipour, S. and Hadizadeh, M. (2023) Long Non-Coding RNAs as Potential Biomarkers or Therapeutic Targets in Gastric Cancer. Gastroenterology and Hepatology from Bed to Bench, 16, 297-306.

  2. 2. Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648. https://doi.org/10.1016/S0140-6736(20)31288-5

  3. 3. Sha, R., Zhang, J., Meng, F. and Zhaori, G. (2023) Gastric Cancer Metastasis-Related NT5DC2 Indicates Unfavorable Prognosis of Patients. Medicine, 102, e35030. https://doi.org/10.1097/MD.0000000000035030

  4. 4. Song, Z., Wu, Y., Yang, J., Yang, D. and Fang, X. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumor Biology, 39, Article 1010428317714626. https://doi.org/10.1177/1010428317714626

  5. 5. Patel, T.H. and Cecchini, M. (2020) Targeted Therapies in Ad-vanced Gastric Cancer. Current Treatment Options in Oncology, 21, Article No. 70. https://doi.org/10.1007/s11864-020-00774-4

  6. 6. Barrett, T., Wilhite, S.E., Ledoux, P., et al. (2013) NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Research, 41, D991-D995. https://doi.org/10.1093/nar/gks1193

  7. 7. Huang, D.W., Sherman, B.T., Tan, Q., Collins, J.R., Alvord, W.G., Ro-ayaei, J., Stephens, R., Baseler, M.W., Lane, H.C. and Lempicki, R.A. (2007) The DAVID Gene Functional Classifica-tion Tool: A Novel Biological Module-Centric Algorithm to Functionally Analyze Large Gene Lists. Genome Biology, 8, Article No. R183. https://doi.org/10.1186/gb-2007-8-9-r183

  8. 8. Szklarczyk, D., Franceschini, A., Wyder, S., et al. (2015) STRING v10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452. https://doi.org/10.1093/nar/gku1003

  9. 9. Smoot, M.E., Ono, K., Ruscheinski, J., et al. (2011) Cytoscape 2.8: New Features for Data Integration and Network Visualization. Bioinformatics, 27, 431-432. https://doi.org/10.1093/bioinformatics/btq675

  10. 10. Stel, V.S., Dekker, F.W., Tripepi, G., Zoccali, C. and Jager, K.J. (2011) Survival Analysis I: The Kaplan-Meier Method. Nephron Clinical Practice, 119, c83-c88. https://doi.org/10.1159/000324758

  11. 11. Tang, Z., Li, C., Kang, B., et al. (2017) GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Research, 45, W98-W102. https://doi.org/10.1093/nar/gkx247

  12. 12. Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C. and Schultz, N. (2012) The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery, 2, 401-404. https://doi.org/10.1158/2159-8290.CD-12-0095

  13. 13. Petryszyn, P., Chapelle, N. and Matysiak-Budnik, T. (2020) Gastric Cancer: Where Are We Heading? Digestive Diseases, 38, 280-285. https://doi.org/10.1159/000506509

  14. 14. Theocharis, A.D., Skandalis, S.S., Gialeli, C. and Karamanos, N.K. (2016) Extracellular Matrix Structure. Advanced Drug Delivery Reviews, 97, 4-27. https://doi.org/10.1016/j.addr.2015.11.001

  15. 15. Salimian, N., Peymani, M., Ghaedi, K., Hashemi, M. and Rahimi, E. (2023) Collagen 1A1 (COL1A1) and Collagen11A1 (COL11A1) as Diagnostic Biomarkers in Breast, Colorectal and Gastric Cancers. Gene, 892, Article ID: 147867. https://doi.org/10.1016/j.gene.2023.147867

  16. 16. Ma, H.P., Chang, H.L., Bamodu, O.A., Yadav, V.K., Huang, T.Y., Wu, A.T.H., Yeh, C.T., Tsai, S.H. and Lee, W.H. (2019) Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metasta-sis. Cancers, 11, Article 786. https://doi.org/10.3390/cancers11060786

  17. 17. Li, J., Ding, Y. and Li, A. (2016) Identification of COL1A1 and COL1A2 as Candidate Prognostic Factors in Gastric Cancer. World Journal of Surgical Oncology, 14, Article No. 297. https://doi.org/10.1186/s12957-016-1056-5

  18. 18. Hoffmann, W. (2015) TFF2, a MUC6-Binding Lectin Stabilizing the Gastric Mucus Barrier and More (Review). International Journal of Oncology, 47, 806-816. https://doi.org/10.3892/ijo.2015.3090

  19. 19. Bornstein, P., Armstrong, L.C., Hankenson, K.D., Kyriakides, T.R. and Yang, Z. (2000) Thrombospondin 2, a Matricellular Protein with Diverse Functions. Matrix Biology, 19, 557-568. https://doi.org/10.1016/S0945-053X(00)00104-9

  20. 20. Ao, R., Guan, L., Wang, Y. and Wang, J.N. (2018) Re-tracted: Silencing of COL1A2, COL6A3, and THBS2 Inhibits Gastric Cancer Cell Proliferation, Migration, and Invasion While Promoting Apoptosis through the PI3k-Akt Signaling Pathway. Journal of Cellular Biochemistry Journal of Cel-lular Biochemistry, 119, 4420-4434. https://doi.org/10.1002/jcb.26524

  21. 21. Wu, H., Xiang, Z., Huang, G., He, Q., Song, J., Dou, R., Yang, C., Wang, S. and Xiong, B. (2023) BGN/FAP/STAT3 Positive Feedback Loop Mediated Mutual Interaction between Tumor Cells and Mesothelial Cells Contributes to Peritoneal Metastasis of Gastric Cancer. International Journal of Biological Sciences, 19, 465-483. https://doi.org/10.7150/ijbs.72218

  22. 22. Raglow, Z. and Thomas, S.M. (2015) Tumor Matrix Protein Collagen XIα 1 in Cancer. Cancer Letters, 357, 448-453. https://doi.org/10.1016/j.canlet.2014.12.011

  23. 23. Thorlacius-Ussing, J., Jensen, C., Nissen, N.I., Cox, T.R., Kalluri, R., Karsdal, M. and Willumsen, N. (2023) The Collagen Landscape in Cancer: Profiling Collagens in Tumors and in Circulation Reveals Novel Markers of Cancer-Associated Fibroblast Subtypes. The Journal of Pathology. https://doi.org/10.1002/path.6207

  24. 24. Nallanthighal, S., Heiserman, J.P. and Cheon, D.J. (2021) Collagen Type XI α 1 (COL11A1): A Novel Biomarker and a Key Player in Cancer. Cancers, 13, Article 935. https://doi.org/10.3390/cancers13050935

  25. NOTES

    *通讯作者。

期刊菜单