Advances in Clinical Medicine
Vol. 10  No. 07 ( 2020 ), Article ID: 36641 , 7 pages
10.12677/ACM.2020.107215

Research Progress on Epigenetic Mechanism of Neuropathic Pain

Pei Ma1, Deqiang Wang1, Qianqian Fan1, Cuijie Shao2*

1Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou Shandong

2Department of Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou Shandong

Received: Jul. 1st, 2020; accepted: Jul. 16th, 2020; published: Jul. 23rd, 2020

ABSTRACT

Neuropathic pain (NP) was redefined that pain was caused by injury or disease of the somatosensory nervous system directly by IASP in 2011. The pathogenesis of NP is so complicated that haven’t been illuminated. Otherwise, the effect of traditional analgesics is poor in clinical practice now. NP brings distress to patients’ physical and psychological, and is also a major challenge for the medical field. Recently, a lot of research has confirmed that epigenetic modifications participate in the induction and maintenance of NP by altering the transcription or expression of pain-related molecules. Our article introduces the generation mechanism of NP from the following Epigenetic modifications: DNA methylation, Histone acetylation and Non-conding RNA.

Keywords:Neuropathic Pain, Epigenetic Modification, DNA Methylation, Histone Acetylation, Non-Conding RNA

神经病理性疼痛形成的表观遗传学机制的研究进展

马裴1,王德强1,范倩倩1,邵翠杰2*

1滨州医学院附属医院康复医学科,山东 滨州

2滨州医学院附属医院临床实验中心,山东 滨州

收稿日期:2020年7月1日;录用日期:2020年7月16日;发布日期:2020年7月23日

摘 要

神经病理性疼痛(Neuropathic pain, NP)在2011年由IASP重新定义:由躯体感觉神经系统的损伤或疾病而直接造成的疼痛。其发病机制复杂目前尚未完全阐明,并且在临床上应用传统镇痛药物的治疗效果欠佳。NP给患者身体及心理上都带来巨大困扰,对医学领域也是一大挑战。近年来越来越多的研究证实表观遗传调控参与疼痛相关分子的转录及表达从而参与NP的形成和发展。本文主要从DNA甲基化、组蛋白乙酰化、非编码RNA三大表观遗传修饰方式参与神经病理性疼痛的产生机制进行综述。

关键词 :神经病理性疼痛,表观遗传修饰,DNA甲基化,组蛋白乙酰化,非编码RNA

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

NP由躯体感觉神经损伤或疾病而直接造成,可表现为触诱发痛、痛觉过敏及自发性疼痛且存在个体差异 [1]。NP属于慢性疼痛,不仅严重影响患者身心健康和生活质量,同时加重家庭和社会经济负担,严重会导致出现焦虑抑郁等神经症状。据统计其患病率高达6.9%~10%,仍有继续增长的趋势 [2]。但是NP的发病机制复杂且未完全阐明,目前临床上应用传统药物及其他手段治疗NP的效果不理想,所以明确其产生机制从而开发新型镇痛药物及治疗靶点至关重要 [3]。研究证实NP会导致细胞和分子水平上产生持续的适应性变化,其中外周及中枢感觉神经元的兴奋及敏感性增强是疼痛维持的关键。而感觉神经元兴奋性增强与信号传导过程中离子通道及受体的表达、转运及功能的改变有关 [4]。近年来随着光遗传学、RNA测序等技术的发展让我们得以在基因水平了解NP的发生发展 [5]。NP导致脊髓和大脑中相关离子通道、神经元受体、神经胶质细胞及突触可塑性等一系列改变受到基因表达的影响,而且越来越多的研究显示表观遗传调控在其中发挥了重要作用,这将为NP管理提供新的策略 [6]。

2. 表观遗传学修饰简介

表观遗传学是指基因的DNA序列不发生改变的情况下基因表达发生可遗传的变化。主要有三种方式DNA甲基化、组蛋白修饰(包括磷酸化、乙酰化、泛素化和甲基化)、非编码RNA。它们在控制个体发育、组织分化及细胞应答反应中发挥作用,另外还与多种疾病的发生相关 [7]。

2.1. DNA甲基化

DNA甲基化是目前研究最深入也最重要的表观遗传学机制,是核苷酸的胞嘧啶5′碳位在DNA甲基转移酶(DNMTs)催化下通过共价键结合一个甲基基团的化学修饰过程,DNA甲基化主要发生于基因启动子区CpG位点上。DNA甲基化分为从头甲基化和保留甲基化两种形式。目前认为基因启动子区域DNA甲基化对其表达有抑制作用 [8]。

2.2. 组蛋白乙酰化

组蛋白乙酰化修饰在组蛋白修饰中占据重要地位,受到组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)的调控,对蛋白N末端特定位点进行翻译后修饰。HDACs导致组蛋白去乙酰化,增加DNA结合的亲和力,使染色质结构相对致密,基因表达受到抑制。相反地,HATs使组蛋白发生乙酰化,促进基因的表达。正常情况下两种酶处于平衡状态共同调控基因表达。当细胞发生转化时,HDACs的表达增强会打破平衡,而导致疾病的发生 [9]。

2.3. 非编码RNA

非编码RNA (non-conding RNA, ncRNA)是一类不参与蛋白质编码的RNA,但是它可以和RNA、DNA、蛋白质等相互作用,对转录及转录后翻译有调节作用。它种类繁多包括rRNA、tRNA、snRNA、snoRNA等已知功能的RNA。现在我们按照其长度进一步划分:>200个核苷酸称为长链非编码RNA (lncRNAs),<200个则称短链非编码RNA (miRNAs, siRNAs, piRNAs)。ncRNA在神经系统的发育中有着重要的作用,其表达失调与人类多种疾病有关 [10]。

3. 神经病理性疼痛的表观遗传学

3.1. DNA甲基化与神经病理性疼痛

DNA甲基化是表观遗传修饰的重要机制,大量证据显示它和NP的产生及维持密切相关。DNA甲基化的发生离不开DNMTs家族(包括DNMT1、DNMT3a和DNMT3b和DNMT3L)的参与,其中DNMT3a和DNMT3b负责从头甲基化 [11]。在多个NP动物模型的脊髓背根神经节(dorsal root ganglionDRG)中均出现DNMT3a表达增加的现象。研究发现DRG中DNMT3a表达增加会引起的DNA甲基化水平的升高,不仅抑制阿片类受体的表达,使NP对阿片类药物产生耐受性 [12];而且还导致神经元中Kv1.2、K2p1.1等离子通道的减少,造成脊髓DRG中神经元兴奋性增高及中枢敏化从而出现NP的相关症状 [13] [14]。还有研究指出DNMT1也参与了Kcna2 (编码Kv1.2)基因的甲基化水平增加 [15],因此Kcna2的反义RNA有望成为治疗NP的重要靶点之一。此外,研究还发现坐骨神经结扎大鼠模型的脊髓中大量DNMT3a引起的高DNA甲基化水平还可以抑制CDK5调控亚单位相关蛋白1的表达,使脊髓感觉神经元的敏感性增加参与NP的维持 [16]。不仅如此,NP模型的脊髓中发现一些分子的去甲基化作用也参与疼痛的维持。有学者发现脊神经结扎大鼠模型中GPR151启动子区CpG岛与DNMT3b的结合率会降低,使GPR151发生去甲基化而过表达,从而增加疼痛相关基因表达 [17]。炎性细胞趋化因子CXCR3受体基因的也因去甲基化而过表达,通过与CXCL10 (CXCR3的配体)结合促进突触传递的兴奋性,有助于NP的维持 [18]。瞬时受体电位通道(transient receptor potentialTRP)是一种在伤害性感受中有重要作用的离子通道,在中枢和外周神经系统中广泛分布。ukenaga等人发现慢性疼痛患者TRPA1基因启动子区的甲基化水平与其神经病理性疼痛症状有关 [19]。另外健康人的全血细胞中TRPA1基因上的甲基化水平被证实可影响热痛与压痛阈值 [20]。Garriga等人通过SNL大鼠模型发现神经损伤后引起了DRG中广泛的DNA甲基化重新编程,并导致脊髓DRG神经元兴奋性增强,但是其DNA甲基化水平在疼痛的急慢性期有所不同。实验还从幼鼠阶段开始为其鞘内注射DNA甲基转移酶抑制剂(RG108)或喂食缺乏甲基供体的食物,一段时间后它们均出现疼痛过敏现象,说明DNA甲基化在神经的发育及分化过程中也发挥重要作用 [21]。综上所述,疼痛相关分子基因的DNA甲基化水平在NP的发生发展中非常重要,因此我们可以通过抑制或增强神经损伤后所诱发DNA甲基化改变从而阻碍NP的产生。

3.2. 组蛋白乙酰化与神经病理性疼痛

大量临床前和临床实验表明HATs和HDACs在NP的产生发展中发挥重要作用 [22]。其中HDACs抑制剂有显著的镇痛作用成为了研究的热点。研究发现脊神经结扎大鼠模型的脊髓中HDAC1增加,并与c-Jun组成的异源二聚体相互作用,最终活化JNK信号通路参与NP的维持。然而应用LG325 (HDAC1抑制剂)则能抑制c-Jun活化可明显缓解疼痛 [23]。另外,为脊髓损伤大鼠模型应用外源性D-β-羟基丁酸(DBHB),不仅可以缓解大鼠的机械及热痛觉过敏,还能改善其运动功能。其原因之一与DBHB具有HDACs抑制剂的作用有关,它可以逆转受损部位Foxo3a、过氧化氢酶及SOD2等分子的乙酰化和表达水平过低的现象 [24]。目前临床上常应用阿片、吗啡类传统止痛药物对NP进行治疗,但是效果一般。有研究通过给大鼠应用HDAC抑制剂如丙戊酸钠、曲古霉素A可使其体内阿片及吗啡受体上调,从而改善NP对这两种药物的耐药性达到较好的镇痛效果 [25] [26]。因此,HDAC抑制剂可作为辅助剂与传统药物合用治疗NP。P300、CREB结合蛋(CBP)是HAT家族中的功能相似的两种蛋白,有研究在CCI模型中发现P300/CBP通过增强疼痛相关分子如脑源性神经营养因子(BDNF)、环氧合酶-2 (Cox-2)的乙酰化促进其转录表达,而姜黄素可作为其乙酰化抑制剂发挥镇痛作用并且具有剂量依赖性 [27]。L5前根切断大鼠模型的DRG中相关信号通路编码Nav1.6基因启动子区的乙酰化水平升高导致Nav1.6表达增强,促进神经元的兴奋性参与NP的发生 [28]。体育锻炼可在一定程度上缓解NP,这一现象引起了Kami等人的研究,选择坐骨神经部分损伤大鼠模型并将其分为运动与不运动组,经过对比发现后者的机械及热痛敏更加显著,其机制与运动组浅层脊髓背角中的小胶质细胞中HDAC1的下调及H3K9的高乙酰化有关 [29]。有研究指出硼替佐米(化疗药物)会引起的痛觉过敏症状,可能与脊髓背角神经元中沉默信息调节因子2相关酶1 (sirtuin1SIRT1)下调引起炎症因子NALP1启动子区域的高乙酰化,最终导致NALP1高表达有关 [30]。脊髓背角中疼痛性中间神经元可塑性增强也是导致NP的中枢敏化的关键,近期研究发现DNP大鼠模型中SIRT1下降,利用SRT1720 (SIRT1激活剂)能降低疼痛神经元可塑性并减轻大鼠的疼痛行为 [31]。为坐骨神经结扎大鼠鞘内注射表达SIRT2的载体可缓解其痛觉敏感性,其机制可能与SIRT2的去乙酰化作用抑制NF-KBp65的信号通路以及多种炎症介质释放有关 [32]。总结以上多个研究不难发现HDACs和HATs通过单独或相互作用的多种机制,在NP的产生及维持中发挥重要作用。但目前仍以动物实验为主,今后它们有望应用于人体成为新型镇痛药物。

3.3. ncRNA与神经病理性疼痛

ncRNA参与体内细胞发育、分化等过程,其表达失调或突变与多种疾病的发生密切相关。有研究利用基因测序手段发现NP动物模型脊髓中多种ncRNA及mRNA的表达发生了异常的改变,且mRNA表达也受到ncRNA的调控,说明ncRNA在NP的产生中发挥作用 [33]。lncRNA的是ncRNA中所占比例最高且长度大于200 bp的一类核苷酸,它在神经发育及可塑性调节中发挥作用 [34]。最近有研究在三叉神经痛模型的神经节中发现lncRNA uc.48+表达下调,不仅使P2X7受体(一种嘌呤类受体)数量增加而且促进细胞外调节蛋白激酶(ERK1/2)的磷酸化,二者相互作用导致神经元兴奋性增高能引起痛觉过敏 [35]。结肠癌转录相关因子-1 (CCAT1)是一种新型lncRNA常在胃及结肠癌时表达上调。然而研究却发现CCAT1在一侧坐骨神经结扎大鼠模型的脊髓背角、DRG、海马、前扣带皮质等部位表达减少,逆转CCAT1的低水平会通过增加SGK3 (miR-155的靶基因)的表达而缓解冷痛觉过敏现象 [36]。另外,神经损伤后受损部位细胞会释放的炎性介质,导致的炎症反应也是NP产生的关键。研究发现糖尿病致NP的大鼠模型的DRG中lncRNA BC168687的水平明显升高,为其鞘内注射lncRNA BC168687 siRNA能降低P2X7受体和TRPV1的表达从而逆转DNP大鼠的提高机械及热痛阈;还能抑制ERK和p38信号通路的激活,减少TNF-α和IL-1β等炎性因子的释放也有缓解疼痛的作用 [37] [38]。另外,lncRNA PKIA-AS1在脊神经结扎大鼠模型中的表达上调,而且直接调控CD6的释放进而对疼痛行为有调节作用,敲除大鼠PKIA-AS1基因后能明显缓解疼痛 [39]。在NP动物模型的受伤部位及DRG中巨噬细胞浸润能改变痛觉传导轴突及细胞的特性,从而导致外周敏化。研究发现神经元细胞可以分泌包括mir-21在内的外泌体,它有增强神经元与巨噬细胞间的这种相互作用的能力 [40]。坐骨神经结扎大鼠模型的DRG及脊髓背角中的miRNA-146a-5p通过调节白介素受体信号通路中调节自身免疫相关的因子如:IRAK1、TRAF表达参与NP的维持 [41]。在中枢神经系统集落刺激因子-1 (CSF-1)的过表达可调节神经炎性反应、神经元兴奋性及谷氨酸受体亚基等从而增加SNL模型的疼痛行为。有研究上调NP模型神经鞘内miR-214-3p表达不仅直接抑制CSF-1的转录表达,还能抑制过度活跃的星形胶质及IL-6的表达从而缓解NP [42]。综合以上研究ncRNA的表达失调导致的感觉神经元的改变参与NP的产生,而且其调节疼痛的机制复杂多样,这为我们研究NP的发生开辟了新思路。

4. 总结与展望

根据现有的研究我们发现表观遗传机制通过抑制或活化疼痛相关分子的基因、炎症介质、信号通路等的表达在NP的发生及发展中发挥重要作用。另外参与NP形成的同一传导通路可能受到多个表观遗传方式的共同调控。表观遗传修饰中相关酶的抑制剂或活化剂具有缓解疼痛的作用,但是目前这些研究仍局限于动物实验阶段。临床上NP的病因及症状千变万化,而目前研究应用的NP模型比较单一,这些机制在不同模型是否有普遍适用性尚无定论。另外以上机制中哪些在NP的维持中居于主导地位?在疼痛的不同阶段是否会产生不同的遗传学改变?这些问题都值得我们进一步去探索,总之所有研究都将向着使饱受NP折磨的患者最终能摆脱疼痛而努力着。

文章引用

马 裴,王德强,范倩倩,邵翠杰. 神经病理性疼痛形成的表观遗传学机制的研究进展
Research Progress on Epigenetic Mechanism of Neuropathic Pain[J]. 临床医学进展, 2020, 10(07): 1430-1436. https://doi.org/10.12677/ACM.2020.107215

参考文献

  1. 1. Finnerup, N.B., Haroutounian, S., Kamerman, P., et al. (2016) Neuropathic Pain: An Updated Grading System Forresearch and Clinical Practice. Pain, 157, 1599-1606. https://doi.org/10.1097/j.pain.0000000000000492

  2. 2. van Hecke, O., Austin, S.K., Khan, R.A., et al. (2014) Neuropathic Pain in the General Population: A Systematic Review of Epidemiological Studies. Pain, 155, 654-662. https://doi.org/10.1016/j.pain.2013.11.013

  3. 3. Widerström-Noga, E. (2017) Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs, 77, 967-984. https://doi.org/10.1007/s40265-017-0747-8

  4. 4. Fernandes, V., Sharma, D., Vaidya, S., et al. (2018) Cellular and Molecular Mechanisms Driving Neuropathic Pain: Recent Advancements and Challenges. Expert Opinion on Therapeutic Targets, 22, 131-142. https://doi.org/10.1080/14728222.2018.1420781

  5. 5. Penas, C. (2018) Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain after Neural Trauma. Frontiers in Cellular Neuroscience, 12, 158. https://doi.org/10.3389/fncel.2018.00158

  6. 6. Descalzi, G., Ikegami, D., Ushijima, T., et al. (2015) Epigenetic Mechanisms of Chronic Pain. Trends in Neurosciences, 38, 237-246. https://doi.org/10.1016/j.tins.2015.02.001

  7. 7. Feinberg, A.P. (2018) The Key Role of Epigenetics in Human Disease Prevention and Mitigation. The New England Journal of Medicine, 378, 1323-1334. https://doi.org/10.1056/NEJMra1402513

  8. 8. Schubeler, D. (2015) Function and Information Content of DNA Methylation. Nature, 517, 321-326. https://doi.org/10.1038/nature14192

  9. 9. Shahbazian, M.D. (2007) Functions of Site-Specific Histone Acetylation and Deacetylation. Annual Review of Biochemistry, 76, 75-100. https://doi.org/10.1146/annurev.biochem.76.052705.162114

  10. 10. Subhramanyam, C.S. (2017) Non-Coding RNA in Brain Development and Disorder. Current Medicinal Chemistry, 24, 1983-1997. https://doi.org/10.2174/0929867324666170124151436

  11. 11. Gowher, H. (2018) Mammalian DNA Methyltransferases: New Discoveries and Open Questions. Biochemical Society Transactions, 46, 1191-1202. https://doi.org/10.1042/BST20170574

  12. 12. Sun, L., Zhao, J.Y., Gu, X., et al. (2017) Nerve Injury-Induced Epigenetic Silencing of Opioid Receptors Controlled by DNMT3a in Primary Afferent Neurons. Pain, 158, 1153-1165. https://doi.org/10.1097/j.pain.0000000000000894

  13. 13. Mao, Q., Wu, S., Gu, X., et al. (2019) DNMT3a-Triggered Downregulation of K 1.1 Gene in Primary Sensory Neurons Contributes to Paclitaxel-Induced Neuropathic Pain. International Journal of Cancer, 145, 2122-2134. https://doi.org/10.1002/ijc.32155

  14. 14. Zhao, J.Y., Liang, L., Gu, X., et al. (2017) DNA Methyltransferase DNMT3a Contributes to Neuropathic Pain by Repressing Kcna2 in Primary Afferent Neurons. Nature Communications, 8, 14712. https://doi.org/10.1038/ncomms14712

  15. 15. Sun, L.L., Gu, X.Y., Pan, Z.Q., et al. (2019) Contribution of DNMT1 to Neuropathic Pain Genesis Partially through Epigenetically Repressing Kcna2 in Primary Afferent Neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39, 6595-6607. https://doi.org/10.1523/JNEUROSCI.0695-19.2019

  16. 16. Zhang, C.J., Sha, H.H., Peng, Y.N., et al. (2019) PiRNA-DQ541777 Contributes to Neuropathic Pain via Targeting Cdk5rap1. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39, 9028-9039. https://doi.org/10.1523/JNEUROSCI.1602-19.2019

  17. 17. Jiang, B.-C., Zhang, W.-W., Yang, T., et al. (2018) Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38, 10535-10551. https://doi.org/10.1523/JNEUROSCI.0702-18.2018

  18. 18. Jiang, B.C., He, L.N., Wu, X.B., et al. (2017) Promoted Interaction of C/EBPα with Demethylated Cxcr3 Gene Promoter Contributes to Neuropathic Pain in Mice. Journal of Neuroscience, 37, 685-700. https://doi.org/10.1523/JNEUROSCI.2262-16.2016

  19. 19. Sukenaga, N., Ikeda-Miyagawa, Y., Tanada, D., et al. (2016) Correlation between DNA Methylation of TRPA1 and Chronic Pain States in Human Whole Blood Cells. Pain Medicine, 17, pnv088. https://doi.org/10.1093/pm/pnv088

  20. 20. Takenaka, S., Sukenaga, N., Ohmuraya, M., et al. (2020) Association between Neuropathic Pain Characteristics and DNA Methylation of Transient Receptor Potential Ankyrin 1 in Human Peripheral Blood. Medicine (Baltimore), 99, e19325. https://doi.org/10.1097/MD.0000000000019325

  21. 21. Judit, G., Geoffroy, L., Shao-Rui, C., et al. (2018) Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. The Journal of Neuroscience, 38, 6090-6101.

  22. 22. Wang, X., Shen, X., Xu, Y., et al. (2018) The Etiological Changes of Acetylation in Peripheral Nerve Injury-Induced Neuropathic Hypersensitivity. Molecular Pain, 14, 1744806918798408. https://doi.org/10.1177/1744806918798408

  23. 23. Sanna, M.D. and Galeotti, N. (2018) The HDAC1/c-JUN Complex Is Essential in the Promotion of Nerve Injury-Induced Neuropathic Pain through JNK Signaling. European Journal of Pharmacology, 825, 99-106. https://doi.org/10.1016/j.ejphar.2018.02.034

  24. 24. Qian, J., Zhu, W.J., Lu, M., et al. (2017) D-β-Hydroxybutyrate Promotes Functional Recovery and Relieves Pain Hypersensitivity in Mice with Spinal Cord Injury. British Journal of Pharmacology, 174, 1961-1971. https://doi.org/10.1111/bph.13788

  25. 25. Uchida, H., Matsushita, Y., Araki, K., et al. (2015) Histone Deacetylase Inhibitors Relieve Morphine Resistance in Neuropathic pain after Peripheral Nerve Injury. Journal of Pharmacological Sciences, 128, 208-211. https://doi.org/10.1016/j.jphs.2015.07.040

  26. 26. Tao, W.J., Zhou, W.J., Wang, Y.P., et al. (2016) Histone Deacetylase Inhibitor-Induced Emergence of Synaptic δ-Opioid Receptors and Behavioral Antinociception in Persistent Neuropathic Pain. Neuroscience, 339, 54-63. https://doi.org/10.1016/j.neuroscience.2016.09.015

  27. 27. Zhu, X., et al. (2014) Curcumin Alleviates Neuropathic Pain by Inhibiting p300/CBP Histone Acetyltransferase Activity-Regulated Expression of BDNF and Cox-2 in a Rat Model. PLoS ONE, 9, e91303. https://doi.org/10.1371/journal.pone.0091303

  28. 28. Ding, H.H., Zhang, S.B., Lv, Y.Y., et al. (2019) TNF-α/STAT3 Pathway Epigenetically Upregulates Nav1.6 Expression in DRG and Contributes to Neuropathic Pain Induced by L5-VRT. Journal of Neuroinflammation, 16, 29. https://doi.org/10.1186/s12974-019-1421-8

  29. 29. Kami, K., Taguchi, S., Tajima, F., et al. (2016) Histone Acetylation in Microglia Contributes to Exercise-Induced Hypoalgesia in Neuropathic Pain Model Mice. The Journal of Pain, 17, 588-599. https://doi.org/10.1016/j.jpain.2016.01.471

  30. 30. Chen, K., Fan, J., Luo, Z.F., et al. (2018) Reduction of SIRT1 Epigenetically Upregulates NALP1 Expression and Contributes to Neuropathic Pain Induced by Chemotherapeutic Drug Bortezomib. Journal of Neuroinflammation, 15, 292. https://doi.org/10.1186/s12974-018-1327-x

  31. 31. Zhang, Z., Ding, X., Zhou, Z., et al. (2019) SIRT1 Alleviates Diabetic Neuropathic Pain by Regulating Synaptic Plasticity of Spinal Dorsal Horn Neurons. Pain, 160, 1082-1092. https://doi.org/10.1097/j.pain.0000000000001489

  32. 32. Zhang, Y. and Chi, D. (2017) Overexpression of SIRT2 Alleviates Neuropathic Pain and Neuroinflammation through Deacetylation of Transcription Factor Nuclear Factor-Kappa B. Inflammation, 41, 569-578. https://doi.org/10.1007/s10753-017-0713-3

  33. 33. Zhou, J., et al. (2017) Identification of the Spinal Expression Profile of Non-Coding RNAs Involved in Neuropathic Pain Following Spared Nerve Injury by Sequence Analysis. Frontiers in Molecular Neuroscience, 10, 91. https://doi.org/10.3389/fnmol.2017.00091

  34. 34. Briggs, J.A., Wolvetang, E.J., et al. (2015) Mechanisms of Long Non-Coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron, 88, 861-877. https://doi.org/10.1016/j.neuron.2015.09.045

  35. 35. Xiong, W., Tan, M., Tong, Z., et al. (2019) Effects of Long Non-Coding RNA uc.48+ on Pain Transmission in Trigeminal Neuralgia. Brain Research Bulletin, 147, 92-100. https://doi.org/10.1016/j.brainresbull.2019.02.009

  36. 36. Dou, L.D., Lin, H.Q., Wang, K.W., et al. (2017) Long Non-Coding RNA CCAT1 Modulates Neuropathic Pain Progression through Sponging miR-155. Oncotarget, 8, 89949-89957. https://doi.org/10.18632/oncotarget.21192

  37. 37. Liu, C., Li, C., Deng, Z., et al. (2018) Long Non-Coding RNA BC168687 Is Involved in TRPV1-Mediated Diabetic Neuropathic Pain in Rats. Neuroscience, 374, 214-222. https://doi.org/10.1016/j.neuroscience.2018.01.049

  38. 38. Liu, C.-L., Deng, Z.-Y., Du, E.-R., et al. (2018) Long Non-Coding RNA BC168687 Small Interfering RNA Reduces High Glucose and High Free Fatty Acid-Induced Expression of P2X7 Receptors in Satellite Glial Cells. Molecular Medicine Reports, 17, 5851-5859. https://doi.org/10.3892/mmr.2018.8601

  39. 39. Hu, J.-Z., Rong, Z.-J., Li, M., et al. (2019) Silencing of lncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain through Epigenetic Downregulation of CDK6 Expression. Frontiers in Cellular Neuroscience, 13, 50. https://doi.org/10.3389/fncel.2019.00050

  40. 40. Simeoli, R., Montague, K., Jones, H.R., et al. (2017) Exosomal Cargo Including microRNA Regulates Sensory Neuron to Macrophage Communication after Nerve Trauma. Nature Communications, 8, 1778. https://doi.org/10.1038/s41467-017-01841-5

  41. 41. Wang, Z., Liu, F., Wei, M., et al. (2018) Chronic Constriction Injury-Induced microRNA-146a-5p Alleviates Neuropathic Pain through Suppression of IRAK1/TRAF6 Signaling Pathway. Journal of Neuroinflammation, 15, 179. https://doi.org/10.1186/s12974-018-1215-4

  42. 42. Liu, L., Xu, D., Wang, T., et al. (2019) Epigenetic Reduction of miR-214-3p Upregulates Astrocytic Colony-Stimulating Factor-1 and Contributes to Neuropathic Pain Induced by Nerve Injury. Pain, 161, 96-108. https://doi.org/10.1097/j.pain.0000000000001681

  43. NOTES

    *通讯作者。

期刊菜单