Advances in Clinical Medicine
Vol. 12  No. 05 ( 2022 ), Article ID: 51293 , 9 pages
10.12677/ACM.2022.125578

m6A甲基转移酶KIAA1429在恶性肿瘤中的作用及研究进展

王昊,吴若卿,李铀,肖辉*

哈尔滨医科大学附属第二医院,黑龙江 哈尔滨

收稿日期:2022年4月12日;录用日期:2022年5月7日;发布日期:2022年5月16日

摘要

N6-甲基腺嘌呤(m6A)修饰是真核信使RNA (mRNA)上最普遍的内部修饰之一,它也参与了各种RNA相关功能,尤其是在人类恶性肿瘤发生发展的过程中发挥着重要作用。作为一种动态且可逆的修饰,m6A的表达水平受m6A甲基转移酶、去甲基酶及m6A结合蛋白的共同调节。目前已发现的甲基转移酶主要有METTL3、METTL14、KIAA1429 (VIRMA)、WTAP等。目前多篇文献报道了m6A甲基转移酶KIAA1429可促进癌症的进展,并与癌症的低生存率具有一定的相关性,如乳腺癌、肝癌和肾癌等。本文总结了KIAA1429在多种癌症中的研究进展及相关作用,其以m6A依赖性或非依赖性的方式通过ID2、lncRNA、CDK1及c-Jun等靶向干细胞因子影响癌细胞的发生、增殖、侵袭、转移和抗凋亡。KIAA1429在不同恶性肿瘤中的致癌作用以及KIAA1429促进癌症发生发展的机制为恶性肿瘤的治疗提供了一定的方向,恢复m6A甲基化的理想水平而纠正KIAA1429在癌症中的表达将可能成为治疗的关键。

关键词

KIAA1429,m6A甲基转移酶,恶性肿瘤,靶点

The Role and Research Progress of m6A Methyltransferase KIAA1429 in Malignant Tumors

Hao Wang, Ruoqing Wu, You Li, Hui Xiao*

The 2nd Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang

Received: Apr. 12th, 2022; accepted: May 7th, 2022; published: May 16th, 2022

ABSTRACT

N6-methyladenine (m6A) modification is one of the most common internal modifications on eukaryotic messenger RNA (mRNA), and it is also involved in various RNA-related functions, especially plays an important role in the occurrence and development of human malignant tumors. As a dynamic and reversible modification, the expression level of m6A is co-regulated by m6A methyltransferases, demethylases and m6A-binding proteins. The methyltransferases that have been discovered so far mainly include METTL3, METTL14, KIAA1429 (VIRMA), WTAP and so on. At present, many literatures have reported that m6A methyltransferase KIAA1429 can promote the progression of cancer, and has a certain correlation with the low survival rate of cancer, such as breast cancer, hepatocellular carcinoma and renal cell carcinoma. This paper summarizes the research progress and related roles of KIAA1429 in various cancers. It affects the occurrence, proliferation, proliferation, differentiation and progression of cancer cells through targeting stem cell factors such as ID2, lncRNA, CDK1 and c-Jun in an mA-dependent or independent manner. The oncogenic role of KIAA1429 in different malignant tumors and the mechanism by which KIAA1429 promotes the occurrence and development of cancer provide a certain direction for the treatment of malignant tumors. Restoring the ideal level of m6A methylation and correcting the expression of KIAA1429 in cancer may become the key to treatment.

Keywords:KIAA1429, m6A Methyltransferase, Malignant Tumors, Target

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

N6-甲基腺苷(N6-methyladenosine, m6A)修饰是真核信使RNA (messenger RNA, mRNA)上最普遍的内部修饰之一,是指在转录后水平上,发生在腺苷氮原子第六位的甲基化,活性甲硫氨酸(S-adenosyl methionine, SAM)作为m6A形成的甲基供体 [1]。m6A修饰普遍存在于哺乳动物的mRNA [2]、长链非编码RNA (long non-coding RNA, lncRNA) [3] 和微小RNA (micro RNA, miRNA) [4] 等RNA中,并参与RNA的各种功能 [5] [6]。m6A修饰的可逆调节由所谓的“书写者”、“擦除者”和“阅读者” [7] [8] 共同作用。“书写者”即m6A甲基转移酶,已知的包括甲基转移酶样蛋白3 (methyltransferase like 3, METTL3),甲基转移酶样蛋白4 (methyltransferase like 4, METTL4),Wilms肿瘤1-结合蛋白(Wilms’ tumor 1-associating protein, WTAP) [9],vir样m6A甲基转移酶相关(vir like m6A methyltransferase associated, VIRMA, KIAA1429) [10] [11],甲基转移酶样蛋白16 (methyltransferase like 16, METTL16) [12],RNA结合基序蛋白15 (RNA binding motif protein 15, RBM15) [13] [14] 和Hakai的CCCH型锌指蛋白 [15] 等。研究表明,m6A修饰在组织发育、干细胞形成和分化 [16] [17] 和昼夜节律控制 [18] 等起着至关重要的作用,尤其是在恶性肿瘤的发展过程中。其中KIAA1429已被证实与多种癌症的进展相关,包括肝癌 [19]、胃癌 [20] [21]、头颈部鳞状细胞癌(head and neck squamous cellcarcinoma, HNSCC) [22] 和睾丸生殖细胞瘤(Testicular germ cell tumors, TGCTs) [23] 等,并使患者存活率降低。并且,KIAA1429能以m6A依赖性或非依赖性方式参与癌症进展,在这些癌症类型中观察到的KIAA1429的明显致癌作用表明KIAA1429可能作为癌症治疗的潜在靶点。

2. m6A甲基转移酶KIAA1429

Schwartz等人首次报道了人类细胞中mRNA甲基化的整个过程中需要KIAA1429的参与 [10],其位于核斑点中,与WTAP的位置相同 [24]。作为甲基转移酶复合物的最大已知组分,KIAA1429从SUN结构域(130 aa)开始,包含一个N-末端(1130 aa)作为N-KIAA1429和一个C-末端(1131-1812 aa)作为C-KIAA1429 [13] [25]。在KIAA1429基因敲除后,m6A峰值分数下降了四倍,比在METTL3和METTL14基因敲除后在人类细胞中观察到的下降更为明显 [10]。据报道,在人类的海拉细胞系中,KIAA1429可以招募m6A甲基转移酶METTL3、METTL14及WTAP来指导区域选择性甲基化 [26],这表明KIAA1429在m6A修饰中起着重要作用。KIAA1429对m6A的修饰富集在3’-非翻译区(3’-untranslated area, 3’-UTR)和RNA底物的终止密码子附近 [11] [26]。

研究发现KIAA1429与“书写者”中最积极的致癌途径相关 [27],表明KIAA1429可能具有多种不同的功能,并在癌症途径中发挥重要作用。Li等人的研究显示了不同组织中KIAA1429表达的差异 [27],分析显示在头颈部鳞状细胞癌、胃癌(gastric carcinoma, GC)、结肠腺癌(Colon adenocarcinoma, COAD) [28]、乳腺癌(breast cancer, BRCA) [11] [29]、肝细胞癌(Hepatocellular carcinoma,HCC) [19] [30]、子宫体子宫内膜癌(Uterine Corpus Endometrial Carcinoma, UCEC) [31]、肺腺癌(Lung adenocarcinoma, LUAD) [32]、食管癌(esophageal cancer, ESCA) [33]、肾嫌色细胞癌(chromophobe renal cell carcinoma, chRCC)及肾乳头状细胞癌(papillary renal cell carcinoma, pRCC) [34] 等中,KIAA1429的表达较高,而在卵巢癌(Ovarian Cancer, OC) [35] 及甲状腺乳头状癌(Papillary thyroid carcinoma, PTC) [36] 中表达较低。

3. KIAA1429在恶性肿瘤中的表达

3.1. 乳腺癌

在乳腺癌组织中,KIAA1429调节细胞周期蛋白依赖性激酶 1 (cyclin-dependent kinase 1, CDK1)来促进癌细胞的增殖和转移 [11]。Qian及Liu等人发现KIAA1429在乳腺癌组织中的表达高于在非肿瘤乳腺组织中的表达,同时KIAA1429的高表达也预示着乳腺癌患者的总生存期(Overall survival, OS)较低 [11] [27]。实验及临床样本显示了KIAA1429在体内外均能促进乳腺癌细胞的增殖和转移,即KIAA1429能促进乳腺癌的进展,并与乳腺癌的发病机制有关。此外,Qian等人证实5’-氟尿嘧啶可以降低乳腺癌组织中 KIAA1429和CDK1的表达 [11]。

3.2. 头颈部鳞状细胞癌

Arumugam等人使用cBioPortal癌症基因组图谱(The cancer genome atlas, TCGA)分析了HNSCC中m6A调节基因的遗传改变和表达水平,观察到这些基因显示出不同的突变和表达模式,其中KIAA1429是最常见的突变,其次是YTHDF3、METTL3和YTHDF1 [21]。此外,这些基因的拷贝数状态与HNSCC患者的mRNA表达呈正相关,并且显示KIAA1429的过度表达可能与癌症分期、肿瘤分级和淋巴结转移显著相关 [21]。

3.3. 肝癌

在TCGA数据库和临床样本中,与邻近正常组织相比,肝癌组织中观察到更高的KIAA1429表达,这预示着肝癌患者的OS和无病生存率(Disease free survival, DFS)水平较低 [19] [30] [37],在体外实验中,敲除KIAA1429可抑制癌细胞增殖和转移 [30]。Lan等人进一步证明,KIAA1429在体外显著促进了细胞周期进程、细胞增殖、侵袭和迁移以及抗凋亡 [19]。它还促进了肿瘤的生长,以及向肺和肝内转移,这证实并确定了KIAA1429是肝恶性肿瘤生长和转移的强大驱动因素。Qu等人分析了TCGA数据库中的异常的DNA拷贝数变化(Copy number variation, CNV)和单核苷酸多态性(Single nucleotide polymorphism, SNP)数据,发现HCC组织中的KIAA1429主要表现为使HCC组织中的DNA拷贝数增加,还观察到,HCC组织中的SNP突变非常低,这表明KIAA1429的上调并不完全是由相应基因中的CNV或SNP突变引起的 [37]。

Wang等人在研究中发现了来自KIAA1429的hsa_circ_0084922,命名为circ_KIAA1429,其在肝癌细胞和肿瘤组织中上调 [38]。circ_KIAA1429的过度表达可促进HCC迁移、侵袭和间质转化(Epithelial-mesenchymal transition, EMT)过程,而敲除circ_KIAA1429会导致相反的结果。此外,还证明了Zeb1是circ_KIAA1429的下游目标。Zeb1的上调会导致circ_KIAA1429诱导的肝癌细胞转移 [38]。

3.4. 泌尿生殖系统肿瘤

研究显示KIAA1429在四种主要泌尿生殖系统肿瘤中上调,包括睾丸癌、前列腺癌、膀胱癌和肾癌 [30]。

TGCTs是睾丸癌的主要组织学类型,约占睾丸癌的90%~95%,其又分为精原细胞瘤和非精原细胞瘤。Lobo等人根据生物信息学分析发现,在TGCTs中KIAA1429与YTHDF3为最常改变的m6A相关基因,与非精原细胞瘤相比,KIAA1429和YTHDF3在精原细胞瘤中显著过表达,且两者呈正相关 [22]。

在前列腺癌的临床病理相关因素中,Lobo等人发现III/IV期肿瘤的KIAA1429和YTHDF3 mRNA表达水平显著高于II期肿瘤,同时,较高的KIAA1429转录水平与较高的各年级组(grade group, GG)相关,表明其在更具侵袭性的疾病中表达较高 [30]。

在膀胱癌中,最常见的去调控基因是KIAA1429 (约占样本的29%) [30]。在不同类型的膀胱癌中,KIAA1429在非乳头状肿瘤(最具侵袭性,更容易转移)中显著上调,约占33% [30]。Chen等人也证实KIAA1429在高等级膀胱癌中高表达 [39]。

根据WHO2016年的分类,肾癌(renal cell carcinoma,RCC)主要分为三个亚型:肾透明细胞癌(Clear cell renal cell carcinoma, ccRCC)、肾乳头状细胞癌和肾嫌色细胞癌。在肾癌中,KIAA1429表达可能是区分这些RCC亚型的生物标志物,并且与OS和DFS相关 [30]。ccRCC、chRCC和pRCC中的KIAA1429、RBM15B和YTHDC2 mRNA表达水平存在差异;与ccRCC相比,chRCC和pRCC中KIAA1429和YTHDC2的转录水平较低。关于生存分析,对生存率有影响的基因是chRCC中的KIAA1429和YTHDC2,mRNA上调导致更差的OS和DFS [30]。在chRCC中最常见的改变基因是KIAA1429和HNRNPA2B1,主要是由于mRNA下调 [30]。同时Sun等人发现KIAA1429的高表达与pRCC的高分级相关,并可预测较差的OS和DFS [40]。

3.5. 胃癌

Miao等人 [20] 发现KIAA1429在GC组织中上调,而在癌旁组织中表达较低。上调的KIAA1429促进了胃癌细胞的增殖,而下调的KIAA1429在体外和体内均被证明能抑制胃癌细胞的增殖。在Yang等人的研究中,同样发现KIAA1429在GC癌变中的致癌作用,特别是胃腺癌(stomach adenocarcinoma, STAD)组织中KIAA1429表达上调 [21]。

3.6. 子宫内膜癌

Wang等人分析了TCGA数据库中UCEC患者的拷贝数变化、单核苷酸变异(single nucleotide variants, SNVs)和基因表达谱以及匹配的临床信息,发现IGF2BP1、KIAA1429、IGF2BP3、YTDF3和IGF2BP2与UCEC患者生存结果密切相关,并且基因富集分析表明,KIAA1429基因表达与细胞核酸代谢有关 [31]。

3.7. 结肠腺癌

为了分析COAD中m6ARNA调节因子的分布情况,并探索潜在的诊断和预后生物标志物,Xu等人根据TCGA数据库分析了418例COAD患者和41例对照组之间m6A RNA甲基化调节因子的差异表达模式数据库。他们观察到,与正常样本相比,COAD样本中的YTHDF1、METTL3和KIAA1429显著上调,而YTHDF3、YTHDC2、METTL14和ALKBH5显著下调 [28]。

3.8. 卵巢癌与甲状腺乳头状癌

与上面出现的几种恶性肿瘤不同,在OC与PTC组织中KIAA1429被发现下调 [35] [36]。Fan等人发现OC组织中的KIAA1429蛋白下调,而在正常组织中富集 [35]。Hou等人研究显示在PTC中,KIAA1429下调,并预测PTC的OS更好 [27] [36]。与对照样本相比,PTC样本中的WTAP、RBM15、YTHDC2及KIAA1429等的表达水平显著下调。单变量和多变量分析表明,KIAA1429的风险评分是PTC的独立预后因素,表明KIAA1429可能作为肿瘤抑制因子。由RBM15、KIAA1429和FTO组成的三基因预后特征可以预测PTC患者的总体生存率 [36]。

4. KIAA1429在恶性肿瘤中的相关机制

在关于KIAA1429的研究中发现,KIAA1429以m6A依赖方式通过DNA结合抑制因子2 (DNA binding inhibitor 2, ID2)、GATA结合蛋白3 (GATA-binding protein-3, GATA3)等靶向干细胞因子影响癌细胞的增殖、侵袭、转移和抗凋亡。除了m6A依赖性途径外,KIAA1429还能以m6A非依赖性途径调节下游靶点,如CDK1、c-Jun靶点等。

4.1. KIAA1429以m6A依赖的方式调节下游靶点

在KIAA1429缺失的细胞系中,3’-UTR和终止密码子附近的m6A修饰显著消失,表明KIAA1429可以通过介导3’-UTR和终止密码子附近的mRNA m6A甲基化发挥作用 [26]。Yue等人认为KIAA1429通过招募甲基转移酶核心组分并与多聚腺苷酸化切割因子CPSF5和CPSF6相互作用发挥作用,这表明m6A甲基化和多聚腺苷酸化在mRNA加工和mRNA代谢过程中相互作用 [26]。

4.1.1. ID2靶点

在肝癌组织中,KIAA1429通过增加ID2 mRNA的m6A修饰促进肝癌细胞的侵袭,导致了ID2表达的降低 [30]。减少ID2可调节血管内皮生长因子的分泌,促进肝癌转移 [41]。ID基因家族在各种癌症中被发现上调,特别是ID2与多种疾病的发生有关 [42] [43]。

4.1.2. GATA3靶点

通过结合免疫沉淀测序(RNA immunoprecipitation sequencing, RIP-seq)和甲基化RNA免疫共沉淀结合高通量测序(Methylated RNA immunoprecipitation sequencing, MeRIP-Seq),GATA3被确定为肝癌中KIAA1429介导的m6A修饰的直接下游靶点 [19]。KIAA1429诱导GATA3不均一核RNA (pre-messageRNA, pre-mRNA)的3’UTR上的m6A甲基化,导致RNA结合蛋白人类抗原R(Human antigen R, HuR)的分离和GATA3 pre-mRNA的降解 [19]。引人注目的是,从GATA3基因的反义链转录而来的lncRNAGATA3-AS,起着顺式作用元件的作用,用于KIAA1429与GATA3 pre-mRNA的相互作用 [19]。

4.1.3. circ_KIAA1429 and Zeb1

近年来,环状RNA(circular RNA,circRNA)在多种癌症研究中引起了广泛关注。Wang等人的研究显示circ_KIAA1429的过度表达可促进HCC癌细胞的迁移和侵袭,而circ_KIAA1429的敲除可抑制这些作用,并且Zeb1被确定为circ_KIAA1429的下游目标 [38]。还发现了m6A读取器YTHDF3可以稳定Zeb1 mRNA并延长其半衰期。一般来说,circ_KIAA1429可以通过m6A-YTDF3-Zeb1途径促进肝癌的进展,从而稳定Zeb1的表达,这可能代表了癌症治疗的一个新靶点 [38]。

4.1.4. lncRNA靶点

m6A甲基化被认为是lncRNA中最普遍的修饰之一 [44]。KIAA1429基因敲除可降低前列腺癌中结肠癌相关转录因子1(Colon cancer associated transcription factor 1, CCAT1)和结肠癌相关转录因子2 (Colon cancer associated transcription factor 2, CCAT2) lncRNA的m6A水平和稳定性。另一项研究表明,敲除KIAA1429后细胞以m6A依赖的方式降低CCAT1和CCAT2 lncRNA的稳定性,从而调节MYC基因转录,促进前列腺癌的进展 [45]。Barros-Silva等人在前列腺癌中发现CCAT1/2和MYC基因转录水平之间存在直接相关性 [46]。通过m6A修饰稳定lncRNAs CCAT1/2可通过两种不同的机制来放大癌细胞中MYC基因表达水平的影响:1) 两种lncRNAs直接作为MYC mRNA正调控的超级增强子 [47];2) CCAT1/2间接的作用于MYC基因靶向miRNAs let7A和miR-145的microRNA海绵 [10] [48] [49]。

在lncRNA中,LINC00958是一种经典且经过验证的RNA,并在GC细胞中被发现上调。在Yang等人的研究中,表明LINC00958促进GC细胞的有氧糖酵解和肿瘤生长,提示LINC00958的致癌作用,而且LINC00958在GC侵袭中的致癌功能是由KIAA1429的异位表达驱动的 [21]。在功能上,LINC00958加速GC细胞的有氧糖酵解。在机制上,KIAA1429识别LINC00958的m6A位点以抑制LINC00958的衰变 [21]。研究结果揭示了KIAA1429-LINC00958介导的GC肿瘤进展调节的新机制,并为GC治疗干预提供了见解。

4.2. KIAA1429以m6A非依赖性方式调节下游靶点

4.2.1. CDK1靶点

在乳腺癌细胞中,细胞周期途径在KIAA1429的致癌活性中发挥了重要作用 [11]。在细胞周期相关蛋白中,CDK1作为癌基因在癌症中发挥作用,并且在不同的乳腺细胞中与KIAA1429最相关。反向实验、RIP-seq和RTqPCR证实CDK1是乳腺癌中KIAA1429的主要靶点,并且KIAA1429通过m6A非依赖性方式调节CDK1 mRNA的表达促进乳腺癌 [11]。METTL3基因敲除可通过m6A修饰减少CDK1 mRNA,而KIAA1429基因敲除不会改变CDK1 mRNA中m6A修饰的水平,表明m6A修饰不会干扰癌细胞中KIAA1429和CDK1之间的相互作用 [11]。

4.2.2. c-Jun靶点

与其他几种癌症相关途径相比,GC细胞中的转录物在TNF信号途径中最为丰富 [20]。通过RIP-seq和mRNA-seq结合相关基因,研究者确定了潜在的KIAA1429调控基因为c-Jun,并通过荧光素酶分析,证实了KIAA1429以m6A非依赖性方式调节c-Jun的表达 [11] [20] [26]。原癌蛋白c-Jun是激活蛋白1 (Activator protein 1, AP-1)家族的成员,已被证明参与细胞增殖和凋亡以及肿瘤发生发展。研究表明,KIAA1429主要通过直接与c-Jun mRNA的3’-UTR结合,以RNA结合活性而非m6A依赖性的方式调节c-Jun的表达,从而促进胃细胞的进展 [20]。并且基因集富集分析(Gene set enrichment analysis, GSEA)研究结果表明,对于三种选定的调节因子KIAA1429、IGF2BP1和ZC3H13,它们也都与癌症和WNT信号通路相关。

5. 总结与展望

m6A修饰通过影响RNA转录、剪接和翻译等而发挥作用,并参与各种癌症类型的发生发展,其中KIAA1429是m6A修饰中甲基转移酶复合物的必需成分。研究显示KIAA1429在多种癌症类型中上调,并与低生存率相关,如乳腺癌、肝癌和肾癌等,而在卵巢癌和甲状腺乳头状癌中下调。其中关于甲状腺乳头状癌、结肠腺癌及子宫内膜癌等癌症中的KIAA1429研究均来自TCGA数据库,需要进一步的临床研究。KIAA1429通过不同靶点,不同途径促进癌细胞增殖和侵袭,包括以ID2为靶点、以CDK1为靶点的细胞周期途径、通过CCAT1/2途径降低其lncRNA稳定性、通过GATA3途径降解GATA3 pre-mRNA以及在TNF途径以c-Jun为靶点。但与其他m6A甲基化酶相比,关于KIAA1429介导的信号通路的研究相对较少。

近年来,随着m6A甲基化修饰检测技术的发展,关于m6A甲基化及其相关酶在肿瘤中作用的研究取得实质性进展,但KIAA1429在各种癌症中的关键功能以及作为癌症治疗的潜在靶向性尚未得到强调。m6A甲基化修饰是一把“双刃剑”,某些基因的过度修饰可能改变RNA的表达,导致恶性肿瘤的发生发展,而有些基因在缺乏m6A甲基化修饰时,可能导致肿瘤发生。由于肿瘤的异质性,相同“书写者”,“擦除者”和“阅读者”在不同肿瘤中的作用机制亦不同,可表现为癌基因或抑癌基因,但均通过蛋白质表达的失调来影响肿瘤进展,这为肿瘤的治疗指明了方向。针对m6A甲基化修饰的相关酶在肿瘤发生发展中的调控机制仍需深入探索,若未来关于m6A甲基化修饰功能的研究有重大突破,其中恢复m6A甲基化的理想水平而纠正KIAA1429在癌症中的表达将可能成为治疗的关键。

文章引用

王 昊,吴若卿,李 铀,肖 辉. m6A甲基转移酶KIAA1429在恶性肿瘤中的作用及研究进展
The Role and Research Progress of m6A Methyltransferase KIAA1429 in Malignant Tumors[J]. 临床医学进展, 2022, 12(05): 3985-3993. https://doi.org/10.12677/ACM.2022.125578

参考文献

  1. 1. Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., et al. (2012) Topology of the Human and Mouse m6A RNA Methylomes Revealed by m6A-seq. Nature, 485, 201-206. https://doi.org/10.1038/nature11112

  2. 2. Wang, X., Zhao, B.S., Roundtree, I.A., et al. (2015) N6-Methyladenosine Modulates Messenger RNA Translationefficiency. Cell, 161, 1388-1399. https://doi.org/10.1016/j.cell.2015.05.014

  3. 3. Wu, Y., Yang, X., Chen, Z., et al. (2019) m6A-Induced lncRNA RP11 Triggers the Dissemination of Colorectal Cancer Cells via Upregulation of Zeb1. Molecular Cancer, 18, Article No. 87. https://doi.org/10.1186/s12943-019-1014-2

  4. 4. Han, J., Wang, J.Z., Yang, X., et al. (2019) METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating Pri-miR221/222 Maturation in m6A-Dependent Manner. Molecular Cancer, 18, 110. https://doi.org/10.1186/s12943-019-1036-9

  5. 5. Zhu, W., Si, Y., Xu, J., et al. (2020) Methyl-Transferase like 3 Promotes Colorectal Cancer Proliferation by Stabilizing CCNE1 mRNA in an m6A-Dependent Manner. Cellular and Molecular Medicine, 24, 3521-3533. https://doi.org/10.1111/jcmm.15042

  6. 6. Zhao, X., Yang, Y., Sun, B.F., et al. (2014) FTO-Dependent Demethyla-tion of N6-Methyladenosine Regulates mRNA Splicing and Is Required for Adipogenesis. Cell Research, 24, 1403-1419. https://doi.org/10.1038/cr.2014.151

  7. 7. Luo, G.Z., MacQueen, A., Zheng, G., et al. (2014) Unique Features of the m6A Methylome in Arabidopsis Thaliana. Nature Communications, 5, Article No. 5630. https://doi.org/10.1038/ncomms6630

  8. 8. Zhu, W., Wang, J.Z., Xu, Z., et al. (2019) Detection of N6methyladenosine Modification Residues (Review). International Journal of Molecular Medicine, 43, 2267-2278. https://doi.org/10.3892/ijmm.2019.4169

  9. 9. Ping, X.L., Sun, B.F., Wang, L., et al. (2014) Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyla- denosine Methyltransferase. Cell Research, 24, 177-189. https://doi.org/10.1038/cr.2014.3

  10. 10. Zhu, W., Wang, J.Z., Wei, J.F., et al. (2021) Role of m6A Methyltransferase Component VIRMA in Multiple Human cancers (Review). Cancer Cell International, 7, Article No. 172. https://doi.org/10.1186/s12935-021-01868-1

  11. 11. Qian, J.Y., Gao, J., Sun, X., et al. (2019) KIAA1429 acts as an Oncogenic Factor in Breast Cancer by Regulating CDK1 in an N6-Methyladenosine-Independent Manner. Oncogene, 38, 6123-6141. https://doi.org/10.1038/s41388-019-0861-z

  12. 12. Pendleton, K.E., Chen, B., Liu, K., et al. (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 169, 824-835.E14. https://doi.org/10.1016/j.cell.2017.05.003

  13. 13. Knuckles, P., Lence, T., Haussmann, I.U., et al. (2018) Zc3h13/Flacc Is Required for Adenosine Methylation by Bridging the mRNA-Binding Factor Rbm15/ Spenito to the m6A Machinery Component Wtap/Fl(2)d. Genes & Development, 32, 415-429. https://doi.org/10.1101/gad.309146.117

  14. 14. Deng, X., Su, R., Weng, H., et al. (2018) RNA N6-Methyladenosine Modification in Cancers: Current Status and Perspectives. Cell Research, 28, 507-517. https://doi.org/10.1038/s41422-018-0034-6

  15. 15. Ruzicka, K., Zhang, M., Campilho, A., et al. (2017) Identification of Factors Required for m6 A mRNA Methylation in Arabidopsis Reveals a Role for the Conserved E3 Ubiquitin Ligase HAKAI. New Phytologist, 215, 157-172. https://doi.org/10.1111/nph.14586

  16. 16. Chen, T., Hao, Y.J., Zhang, Y., et al. (2015) m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell, 16, 289-301. https://doi.org/10.1016/j.stem.2015.01.016

  17. 17. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., et al. (2015) Stem Cells. m6A mRNA Methylation facilitates Resolution of Naive Pluripotency toward Differentiation. Science, 347, 1002-1006. https://doi.org/10.1126/science.1261417

  18. 18. Fustin, J.M., Kojima, R., Itoh, K., et al. (2018) Two Ck1delta Tran-scripts Regulated by m6A Methylation Code for Two Antagonistic Kinases in the Control of the Circadian Clock. Cell Bi-ology, 115, 5980-5985. https://doi.org/10.1073/pnas.1721371115

  19. 19. Lan, T., Li, H., Zhang, D., Xu, L., et al. (2019) KIAA1429 Contrib-utes to Liver Cancer Progression through N6-me- thyl-0denosine-Dependent Post-Transcriptional Modification of GATA3. Molecular Cancer, 18, Article No. 186. https://doi.org/10.1186/s12943-019-1106-z

  20. 20. Miao, R., Dai, C.C., Mei, L., et al. (2020) KIAA1429 Regulates Cell Proliferation by Targeting C-Jun Messenger RNA-Directly in Gastric Cancer. Journal of Cellular Physiology, 235, 7420-7432. https://doi.org/10.1002/jcp.29645

  21. 21. Yang, D.S., Chang, S., Li, F.C., et al. (2021) m6A Transferase KIAA1429-Stabilized LINC00958 Accelerates Gastric Cancer Aerobic Glycolysis through Targeting GLUT1. IUBMB Life, 73, 1325-1333. https://doi.org/10.1002/iub.2545

  22. 22. Paramasivam, A., George, R. and Vijayashree Pri-yadharsini, J. (2021) Aberrations of m6A Regulators Are Associated with Tumorigenesis and Metastasis in Head and Neck Squamous Cell Carcinoma. Archives of Oral Biology, 122, Article ID: 105030. https://doi.org/10.1016/j.archoralbio.2020.105030

  23. 23. Lobo, J., Costa, A.L., Cantante, M., et al. (2019) m6A RNA Modification and Its Writer/Reader VIRMA/YTHDF3 in Testicular Germ Cell Tumors: A Role in Seminoma Phenotype Maintenance. Journal of Translational Medicine, 17, Article No. 79. https://doi.org/10.1186/s12967-019-1837-z

  24. 24. Horiuchi, K., Kawamura, T., Iwanari, H., et al. (2013) Identifica-tion of Wilms’ Tumor 1-Associating Protein Complex and Its Role in Alternative Splicing and the Cell Cycle. Biological Chemistry, 288, 33292-33302. https://doi.org/10.1074/jbc.M113.500397

  25. 25. Wen, J., Lv, R., Ma, H., et al. (2018) Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cancer, 69, 1028-1038.E6. https://doi.org/10.1016/j.molcel.2018.02.015

  26. 26. Yue, Y., Liu, J., Cui, X., et al. (2018) VIRMA Mediates Prefer-ential m6A mRNA Methylation in 3’UTR and near Stop Codon and Associates with Alternative Polyadenylation. Cell Discovery, 4, Article No. 10. https://doi.org/10.1038/s41421-018-0019-0

  27. 27. Li, Y.K., Xiao, J., Bai, J., et al. (2019) Molecular Characterization and Clinical Relevance of m6A Regulators across 33 Cancer Types. Molecular Cancer, 18, Article No. 137. https://doi.org/10.1186/s12943-019-1066-3

  28. 28. XU, D., SHAO, J., SONG, H., et al. (2020) The YTH Domain Family of N6-Methyladenosine“Readers”in the Diagnosis and Prognosis of Colonic Adenocarcinoma. BioMed Research International, 2020, Article ID: 9502560. https://doi.org/10.1155/2020/9502560

  29. 29. Liu, L., Liu, X., Dong, Z., et al. (2019) N6-Methyladenosine-Related Genomic Targets Are Altered in Breast Cancer Tissue and Associated with Poor Survival. Cancer, 10, 5447-5459. https://doi.org/10.7150/jca.35053

  30. 30. Cheng, X., Li, M., Rao, X., et al. (2019) KIAA1429 Regulates the Migra-tion and Invasion of Hepatocellular Carcinoma by Altering m6A Modification of ID2 mRNA. OncoTargets and Thera-py, 12, 3421-3428. https://doi.org/10.2147/OTT.S180954

  31. 31. Wang, Y.Z., Ren, F., Song, Z.X., et al. (2020) Multiomics Profile and Prognostic Gene Signature of m6A Regulators in Uterine Corpus Endometrial Carcinoma. Journal of Cancer, 11, 6390-6401. https://doi.org/10.7150/jca.46386

  32. 32. Li, F.W., Wang, H., Huang, H.R., et al. (2020) m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocar-cinoma. Frontiers in Genetics, 11, Article No. 994. https://doi.org/10.3389/fgene.2020.00994

  33. 33. Zhao, H.Y., Xu, Y., Xie, Y.L., et al. (2021) m6A Regulators Is Differently Expressed and Correlated with Immune Response of Esophageal Cancer. Frontiers in Cell and Developmen-tal Biology, 9, Article ID: 650023. https://doi.org/10.3389/fcell.2021.650023

  34. 34. Lobo, J., Barros-Silva, D., Henrique, R., et al. (2018) The Emerging role of Epitranscriptomics in Cancer: Focus on Urological Tumors. Genes, 9, Article No. 552. https://doi.org/10.3390/genes9110552

  35. 35. Fan, L., Lin, Y., Lei, H., et al. (2020) A Newly Defined Risk Signature, Consisting of Three m6A RNA Methylation Regulators, Predicts the Prognosis of Ovarian Cancer. Aging, 12, 18453-18475. https://doi.org/10.18632/aging.103811

  36. 36. Hou, J., Shan, H., Zhang, Y., et al. (2020) m6A RNA Methylation Regulators Have Prognostic Value in Papillary Thyroid Carcinoma. American Journal of Otolaryngology, 41, Article ID: 102547. https://doi.org/10.1016/j.amjoto.2020.102547

  37. 37. Qu, N., Qin, S., Zhang, X., et al. (2020) Multiple m6 A RNA Methylation Modulators Promote the Malignant Progression of Hepatocellular Carcinoma and Affect Its Clinical Progno-sis. BMC Cancer, 20, Article No. 165. https://doi.org/10.1186/s12885-020-6638-5

  38. 38. Wang, M., Yang, Y., Yang, J., et al. (2020) Circ_KIAA1429 Accelerates Hepatocellular Carcinoma Advancement through the Mechanism of m6 A-YTHDF3-Zeb1. Life Sciences, 257, Article ID: 118082. https://doi.org/10.1016/j.lfs.2020.118082

  39. 39. Chen, M., Nie, Z.Y., Wen, X.H., et al. (2019) m6A RNA Methyla-tion Regulators Can Contribute to Malignant Progression and Impact the Prognosis of Bladder Cancer. Bioscience Re-ports, 39, Article ID: BSR20192892. https://doi.org/10.1042/BSR20192892

  40. 40. Sun, Z., Jing, C., Xiao, C., et al. (2020) Prognostic Risk Signature Based on the Expression of Three m6A RNA Methylation Regulatory Genes in Kidney Renal Papillary Cell Carcinoma. Aging, 12, 22078-22094. https://doi.org/10.18632/aging.104053

  41. 41. Tsunedomi, R., Iizuka, N., Tamesa, T., et al. (2008) Decreased ID2 Promotes Metastatic Potentials of Hepatocellular Carcinoma by Altering Secretion of Vascular Endothelial Growth Fac-tor. Clinical Cancer Research, 14, 1025-1031. https://doi.org/10.1158/1078-0432.CCR-07-1116

  42. 42. Lasorella, A., Benezra, R. and Iavarone, A. (2014) The ID Proteins: Master Regulators of Cancer Stem Cells and Tumour Aggressiveness. Nature Reviews Cancer, 14, 77-91. https://doi.org/10.1038/nrc3638

  43. 43. Havrda, M.C., Paolella, B.R., Ran, C., et al. (2014) Id2 Mediates Oligoden-drocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment. Cancer Research, 74, 1822-1832. https://doi.org/10.1158/0008-5472.CAN-13-1839

  44. 44. Jacob, R., Zander, S. and Gutschner, T. (2018) The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 18, Article No. 2387. https://doi.org/10.3390/ijms18112387

  45. 45. Barros-Silva D, Lobo, J., Guimarães-Teixeira, C., et al. (2020) VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer. Cancers, 12, Article No. 771. https://doi.org/10.3390/cancers12040771

  46. 46. Barros-Silva, D. and Costa-Pinheiro, P. (2018) Duarte HMi-croRNA-27a-5p Regulation by Promoter Methylation and MYC Signaling in Prostate Carcinogenesis. Cell Death & Disease, 9, Article No. 167. https://doi.org/10.1038/s41419-017-0241-y

  47. 47. Hamilton, M.J., Young, M.D., Sauer, S., et al. (2015) The Inter-play of Long Non-Coding RNAs and MYC in Cancer. Aims Biophysics, 2, 794-809. https://doi.org/10.3934/biophy.2015.4.794

  48. 48. Zhuang, K., Wu, Q., Jiang, S., et al. (2016) CCAT1 Promotes Laryngeal Squamous Cell Carcinoma Cell Proliferation and Invasion. American Journal of Translational Research, 8, 4338-4345.

  49. 49. Yu, Y., Nangia-Makker, P., Farhana, L., et al. (2017) A Novel Mechanism of lncRNA and miRNA Interaction: CCAT2 Regulates miR-145 Expression by Suppressing Its Maturation Process in Colon Cancer Cells. Mo-lecular Cancer, 16, Article No. 155. https://doi.org/10.1186/s12943-017-0725-5

  50. NOTES

    *通讯作者。

期刊菜单