Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65155 , 8 pages
10.12677/ACM.2023.1351026

创伤性患者早期颅内血肿进展的临床研究

朱佳佳1,吴海涛2*

1青海大学研究生院,青海 西宁

2青海大学附属医院急诊科,青海 西宁

收稿日期:2023年4月9日;录用日期:2023年5月3日;发布日期:2023年5月11日

摘要

在世界范围内,颅脑损伤(traumatic brain injury, TBI)是导致死亡和神经性疾病的首要因素,其发生率仅次于四肢外伤。先前的研究表明,全世界每年有超过5000万人患有TBI。中国脑外伤病人的人数比世界上大部分国家都要多,这给家庭和社会造成了很大的负担。TBI后,创伤性实质损伤、急性硬脑膜下血肿、急性硬脑膜外血肿产生的肿块效应都会导致继发性脑损伤、永久性神经功能恶化、昏迷或死亡,需要引起临床医师的足够重视。临床研究发现,颅脑外伤患者一旦出现颅内血肿进展,那么其临床恶化风险增加5倍。在我国,由于近些年工业化和城市化发展,颅脑外伤的发生率仍旧居高不下。本文将对颅脑创伤患者颅内血肿进展相关情况进行综述。

关键词

创伤,颅脑损伤,颅内血肿

Clinical Study of Early Intracranial Hematoma Progress in Traumatic Patients

Jiajia Zhu1, Haitao Wu2*

1Graduate School of Qinghai University, Xining Qinghai

2Emergency Department, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 9th, 2023; accepted: May 3rd, 2023; published: May 11th, 2023

ABSTRACT

Worldwide, traumatic brain injury is the leading cause of death and neurological disease, second only to limb trauma in incidence. Previous studies have shown that more than 50 million people worldwide suffer from TBI each year. The number of brain trauma patients in China is higher than in most other countries in the world, which puts a great burden on families and society. After TBI, traumatic parenchymal injury, acute subdural hematoma, and acute epidural hematoma can lead to secondary brain injury, permanent neurological deterioration, coma, or death, which should be paid sufficient attention by clinicians. Clinical studies have found that once intracranial hematoma progresses in patients with craniocerebral trauma, the risk of clinical deterioration increases by 5 times. In our country, because of recent industrialization and urbanization development, the incidence of craniocerebral trauma is still very high. This article will review the progress of intracranial hematoma in patients with craniocerebral trauma.

Keywords:Trauma, Craniocerebral Injury, Intracranial Hematoma

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 创伤性颅脑损伤的概述

创伤性脑损伤通常被称为无声流行病 [1] ,被定义为由施加到头部的机械力引起的神经损伤,是世界上死亡率和致残率最高的疾病之一 [2] 。根据创伤的时间和类型可将其划分为两类:一类是因创伤时受到的外部力学刺激而造成,临床上很难对其进行有效的干预;二类是指创伤后体内多种内稳态的改变,以及多种生物化学的反应,对其进行有效的防治具有重要意义 [3] 。临床研究发现,TBI后约有35%~65%的患者出现颅脑损伤进展 [4] 。原发性脑损伤包括脑震荡(cerebral concussion)和脑挫裂伤(cerebral contusion);继发性脑损伤包括脑水肿、脑肿胀和颅内血肿等。

2. 颅内血肿进展的定义

颅内血肿(intracranial hematomas)是指当脑内的或者脑组织和颅骨之间的血管破裂之后,血液积聚于脑内或者脑与颅骨之间,形成局限性的占位病变,并对脑组织产生压迫,引起相应的临床症状,可由颅脑外伤、动脉瘤破裂或者肿瘤破裂等疾病引起。颅内血肿是属于TBI后最常见的继发性损伤过程,与不良预后和死亡率相关,研究显示,颅脑损伤患者伤后24 h内颅内血肿进展的发生率为21%~64% [5] [6] 。根据患者头颅CT表现,依据多田公式计算血肿体积 [7] ,满足下列任何一条标准即可明确为颅内血肿进展:① 单个血肿体积扩大 > 33%或血肿体积扩大 > 6 mL;② 有新增其他部位的颅内血肿;③ 硬膜外/硬膜下血肿扩大引起中线移位 > 5 mm或有基底池受压表现;④ 幕下出血进展,有第四脑室受压变形表现。颅内血肿是颅脑损伤中最多见且最危险的继发性病变,需要临床工作者高度重视,因为若诊断和处理不及时,可能会危及患者生命。

3. 发生机制

创伤性颅内血肿可发生于脑组织的任何部位。颅内血肿进展与多种机制有关,比如全身缺氧后改变学说、血管调节机制异常学说、凝血功能异常学说、保护性机制学说等等。缺氧后酸性物质聚集和损伤后局部的自由基相互影响,血管自主调节机制功能进一步失调,血管直径异常扩张,血管通透性发生改变,血液渗出形成血肿。有多种类型的颅内血肿,如硬膜外血肿、硬膜下血肿、蛛网膜下腔出血、脑内血肿、特殊部位血肿、脑室出血、脑干血肿、基底节血肿、后颅窝血肿等。

硬脑膜外血肿(extradural hematoma, EDH)是位于颅骨内板与硬脑膜之间的血肿,好发于幕上半球凸面 [8] 。目前有关TBI导致硬膜外血肿的发病机制尚未完全阐明,有研究 [9] 发现,当由于外力作用发生颅骨变形及颅骨骨折,撕破了位于骨沟内的静脉窦或硬膜动脉引起颅内出血,高达60%的硬膜外血肿被认为是继发于动脉出血源,通常来自脑膜中动脉。

硬脑膜下血肿(Subdural hematoma, SDH)是指血肿发生在硬脑膜下与脑组织表面即硬脑膜下腔 [10] 。其中,颅脑损伤为其主要病因,炎症反应、凝血与纤溶功能障碍、新生血管异常及包膜形成等是其主要病理机制 [11] 。

脑内血肿可以出现在脑组织的任意位置,位于脑实质内的血肿。脑内血肿的发生机制尚不清楚,总结其发生机制可能是:① 颅脑损伤后出现不同程度的低氧血症,从而造成了局部二氧化碳和酸性代谢产物的积累,导致受损的血管扩张、血细胞外渗,最终会形成血管周围血肿,并可以与原有的血肿融合在一起,复查CT可呈现为扩大的血肿;② 早期应用大量脱水剂或过度换气,使脑水肿消退,颅内压降低,引起脑组织回缩,失去脑水肿填塞效应对破裂血管的压迫作用使血管继续出血,此外颅脑损伤后脑脊液漏使颅内压降低,出血血管减压亦可导致血肿增大 [12] ;③ 颅脑损伤后,受损的脑组织释放大量的组织因子,进入血液循环,激活VI I因子,促发外源性凝血途径,在合并缺氧、酸中毒、细菌感染和休克等情况下,血管内皮损伤可促进内源性凝血途径和血小板的聚集,同时纤溶酶原与纤溶蛋白结合可增加纤溶酶原激活物的敏感性,或纤溶酶原激活后引起纤溶亢进,这些异常的凝血及纤溶功能,在外伤进展性脑内血肿的发生发展中起着重要作用 [13] ;④ 颅脑创伤后随时间的推移,病变部位的小血管变性、坏死、破裂及血栓脱落再次出血,导致原有血肿扩大;⑤ 颅脑外伤多伴随着低血压,在应用血管活性药物、输血、补液等治疗后,由于血管远端的压差增加,原有受损的、失去自主调节能力的血管会发生破裂、出血,导致血肿扩大。

4. 颅内血肿进展的相关危险因素

4.1. 颅内血肿进展与年龄

很多医生认为颅内血肿进展与年龄有相关性,综合不同文献报道,一些研究显示,年龄的增加与颅内血肿进展有关联 [14] 早期,Oretel等人研究一组TBI病例后,观察到50岁以上TBI患者57%出现在颅脑外伤中发生血肿进展损伤,而50岁以下患者中仅仅40%的颅脑损伤患者出现血肿进展 [15] 。在老年患者中,人们认为与年龄相关的微血管结构缺陷、内皮丢失和静息脑血量减少导致创伤性半暗区进展的机制更大 [16] 。因此,高龄患者容易发生颅内血肿进展。

4.2. 颅内血肿进展与血压

在Wan等人的一项研究中,既往高血压病史是TBI进展的独立预测因素,这类患者出现进展的可能性是那些不知道是高血压 [17] 的患者的4.5倍。慢性高血压诱发脑血管重构和内皮功能障碍,与正常血压患者 [18] 相比,导致血脑屏障通透性内在增加。由于血脑屏障通透性增加是TBI进展的一个重要阶段,高血压患者较高的基线血脑屏障通透性可能导致固有的脑水肿发生风险,以及随后的TBI进展。虽然如上所述,有高血压疾病史可能导致TBI后进展,但只有两项研究表明入院收缩压升高与进展 [19] 之间存在一定关联。在大多数研究中,入院血压和进展之间明显缺乏关联 [14] [17] [20] ,可能是低血压患者接受积极的融合复苏的结果,这本身可能导致TBI后的进展。

4.3. 颅内血肿进展与凝血功能

凝血功能障碍是创伤性脑损伤的一种常见临床表现,高达63%的严重创伤性脑损伤患者在入院 [21] 时显示凝血试验异常。入院凝血功能障碍对病变进展的预测价值主要是在进行性出血性损伤的背景下进行的,很少有研究其在预测颅内血肿进展中的作用。因此,凝血功能障碍在预测颅内血肿进展方面仍存在争议。颅脑损伤后直接的血管破坏可能导致血脑屏障的损伤,有可能释放或激活TF。TF的释放可能启动外部凝血途径,该途径将消耗凝血因子,可能促进弥散性血管内凝血,并使身体易于持续出血,可能导致病变进展。此外,血小板的微粒被磷脂酰丝氨酸增强,这可能进一步促进凝血因子的膜粘附,从而使促凝复合物的形成。血小板计数和纤维蛋白原浓度在脑外伤后的早期阶段出现下降,并因消耗性凝血功能障碍而持续出血。因此,血液中血小板含量的减低可能作为预测是TBI后凝血功能异常的因素 [22] 。TBI是一种复杂的疾病状态。局部损伤部位血管收缩或痉挛,随后内皮肿胀以及全身低血压 [23] 。在分子水平上,TBI通过血小板/白细胞的活化和粘附诱导血管微血栓形成。这表明通过缺血和低灌注促进整体损伤和凝血功能障碍,并发创伤性脑损伤和严重低血压同时激活凝血和补体系统,进而促进内皮细胞脱落,激活蛋白C通路,促进纤溶,抑制凝血因子(F) Va和FVIIIa,抑制炎症过程 [24] 。

4.4. 颅内血肿进展与复合炎症指数

目前普遍认为,急性炎症反应是导致颅脑损伤患者继发性脑损伤的主要机制。神经炎症是颅脑损伤后IH的主要特征 [25] 。在正常生理条件下,炎症细胞向大脑的渗透在很大程度上受到血脑屏障的限制;然而,在脑损伤患者中,单核细胞、中性粒细胞和淋巴细胞从外周侵入并导致损伤过程。单核细胞在颅脑损伤后继发性脑损伤中起关键作用。脑损伤后单核细胞增多已被证明有助于中性粒细胞在大脑中的浸润,这与不良结果相关 [26] [27] 。单核细胞–淋巴细胞比率(MLR)反映了先天免疫和适应性免疫之间的平衡,并提供了免疫状态和炎症水平的简单指标。作为一种廉价且容易获得的生物标志物,MLR最近被建议用于预测多种疾病的预后,包括癌症 [28] [29] [30] 、心血管疾病 [31] [32] 和神经疾病 [33] [34] 。MLR对创伤性颅内血肿进展的预测价值尚未探索。对于创伤患者,MLR为评估个体神经炎症状态提供了一个简单的参数。

4.5. 颅内血肿进展与GCS评分

特格拉斯哥昏迷评分(GCS)是损伤严重程度的一个指标,初始GCS已被确定为颅内血肿进展 [35] 的预测因子。White等人表明,与GCS < 14 [36] 患者相比,初始GCS ≥ 14患者更不可能经历随后的进展,并且在Qureshi等人的一项研究中,进展的存在与初始GCS ≤ 5 [19] 相关。除了更大的进展发生率外,卡内瓦莱等人报道,入院时GCS较低(≤8)的患者比GCS > 8的患者有更高的进展率。但在Patel等 [37] 、Chang等 [38] 的研究中并没有发现初始GCS和损伤进展之间的关联,尽管这可能是由于院前护理期间不可靠的GCS评分或由于镇静对入院患者神经系统评估的干扰;因此,初始GCS评分在预测挫伤进展方面的临床效用可能有限。

4.6. 颅内血肿进展与其他因素

关于吸烟、饮酒对疾病进展的影响相关研究较少,在其他研究中,长期饮酒及吸烟均对大脑有损害作用;除此之外,电解质失衡在脑外伤中很常见,主要的机制可能是因为颅脑外伤的患者常引起下丘脑–垂体–醛固酮系统异常,导致体内醛固酮含量增加,最终引起低钾、高钠血症。持续的低钾、高钠血症会引起脑细胞内脱水及皱缩,最终导致病情进展 [39] [40] 。

5. 影像学检查

5.1. 头颅CT

对于轻度至中度损伤的患者,进一步的诊断测试可能仅限于头颅和颈部X光片,以检查骨折。对于在接受神经系统检查后表现出中度至重度TBI的患者,金标准的成像测试是计算机断层扫描(CT),它创建了一系列头部和大脑的横截面X射线图像,可以显示骨折以及出血、血肿、挫伤、脑组织肿胀和肿瘤的存在。CT扫描是判断外伤性颅内血肿的首选检查手段,已经证明能明显地提高预后。对于保守治疗的患者,CT的动态观察可以及时发现颅内血肿的扩大,避免血肿对脑组织的继发性损害。CT上的4个标记物,如“混合征”、“漩涡征”、“黑洞征”、“卫星征” [41] [42] 被证实能够识别出血高风险患者 [43] [44] 。这些标志物反映血肿的密度和形状异质性,被认为是活动性多灶出血过程的指示 [42] ,与颅内血肿进展密切相关。

5.2. 头颅磁共振成像(MRI)

头颅磁共振成像(MRI)使用磁场检测脑组织内容的细微变化,比X射线或CT更详细,可在TBI患者的初步评估和治疗后使用。但是MRI检查耗时长,费用高,而外伤性颅内血肿患者一旦出现病情恶化,其抢救必然是争分多秒,因此MRI的应用价值有限。

5.3. 近红外光谱法(NIRS)

脑的非对比计算机断层扫描(CT)是TBI患者的主要调查方法。尽管脑部CT扫描是检测TBI患者颅内异常的金标准,但它也有一些缺点,包括成本、辐射暴露和可用性。便携式近红外光谱(NIRS)是检测颅内血肿的非侵入性设备 [45] 。NIRS的优点包括实时结果和无辐射暴露。NIRS是一种利用电磁光谱近红外区域对各种亚态分子振动的光谱,如水中的OeH、有机物/油中的CeH和蛋白质中的NeH。为了检测颅内出血,使用大脑中血红蛋白分子的不同光吸收来显示血肿 [46] 。

6. 预防及治疗

6.1. 一般保守治疗

颅内血肿介入治疗的时机对其成功至关重要,特别是因为出血的扩大可能导致虚弱甚至致命的后果。按颅脑损伤相应原则对创伤性颅内血肿患者进行处理,主要方法包括:检查脉搏、呼吸、瞳孔、加强气道管理与预防误吸、给予止血药物、脑保护药物、颅内高压者适当脱水药物(甘油果糖、利尿剂、20%的甘露醇、胶体液等)、休克患者予以补液、抗休克治疗、预防感染及对症处理、适当抬高床头、监测生命体征、动态颅脑CT复查等。并根据临床症状及复查颅脑CT结果及时调整治疗方案。

6.2. 外科治疗

外科手术治疗颅内血肿的目标是:清除颅内血肿、控制颅内出血、降低颅内压、防止脑移位、脑疝形成,并防止迟发性颅内高压等。符合手术指征的颅内血肿原则上都应行开颅血肿清除术。手术治疗适应症主要包括:1. 保守治疗无效,病情加重;2. 直径大于10 mm或中线偏移大于5 mm;3. 从受伤到入院时GCS降低2分或更多分至低于9分;4. 难治性颅内高压;5. 与肿块效应相关的血肿或位于颞叶前部或小脑的血肿。根据受伤部位以及机制不同,手术方式可以选择颅内压监测、去骨瓣减压血肿清除术、小骨窗开颅血肿清除术、颅骨钻孔血肿引流术等。

7. 小结与展望

综上所述,颅内血肿是一种往往呈进行性发展的疾病,可能短时间内就会形成脑疝,导致患者生命垂危,即便幸存,患者的预后亦往往较差,所以必须及时干预。TBI患者在急诊科需要做出快速诊断和适当的治疗,以改善病人预后。临床上颅内血肿进展的发生并不是单一因素所致,了解颅内血肿进展的临床特点,严格管控各种危险因素是避免早期发生颅内血肿进展的重要措施,一旦发生颅内血肿进展,应采取积极有效的治疗方案来改善TBI患者的预后,避免患者发生严重的不良后果。

文章引用

朱佳佳,吴海涛. 创伤性患者早期颅内血肿进展的临床研究
Clinical Study of Early Intracranial Hematoma Progress in Traumatic Patients[J]. 临床医学进展, 2023, 13(05): 7341-7348. https://doi.org/10.12677/ACM.2023.1351026

参考文献

  1. 1. Hoffman, S.W. and Harrison, C. (2009) The Interaction between Psychological Health and Traumatic Brain Injury: A Neuroscience Perspective. The Clinical Neuropsychologist, 23, 1400-1415. https://doi.org/10.1080/13854040903369433

  2. 2. Dewan, M.C., Rattani, A., Gupta, S., et al. (2018) Estimating the Global Incidence of Traumatic Brain Injury. Journal of Neurosurgery, 130, 1080-1097. https://doi.org/10.3171/2017.10.JNS17352

  3. 3. Kochanek, P.M., Jackson, T.C., Ferguson, N.M., et al. (2015) Emerging Therapies in Traumatic Brain Injury. Seminars in Neurology, 35, 83-100. https://doi.org/10.1055/s-0035-1544237

  4. 4. Wang, F., Xue, Y., Zhao, S.-S., et al. (2015) Suturing-Free Artificial Dura with Dacron Heart Patch in Decompressive Craniectomy and Cranioplasty. Indian Journal of Surgery, 77, 1008-1011. https://doi.org/10.1007/s12262-014-1111-9

  5. 5. Adatia, K., Newcombe, V.F.J. and Menon, D.K. (2021) Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influence on Outcome. Neurocritical Care, 34, 312-324. https://doi.org/10.1007/s12028-020-00994-4

  6. 6. Zhang, D., Gong, S., Jin, H., et al. (2015) Coagulation Parame-ters and Risk of Progressive Hemorrhagic Injury after Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BioMed Research International, 2015, Article ID: 261825. https://doi.org/10.1155/2015/261825

  7. 7. Demchuk, A.M., Dowlatshahi, D., Rodriguez-Luna, D., et al. (2012) Prediction of Haematoma Growth and Outcome in Patients with Intracerebral Haemorrhage Using the CT-Angiography Spot Sign (PREDICT): A Prospective Observational Study. The Lancet Neurology, 11, 307-314. https://doi.org/10.1016/S1474-4422(12)70038-8

  8. 8. Balik, V., Lehto, H., Hoza, D., Sulla, I. and Hernesniemi, J. (2010) Posterior Fossa Extradural Haematomas. Central European Neurosurgery, 71, 167-172. https://doi.org/10.1055/s-0030-1249046

  9. 9. Terada, Y., Toda, H., Hashikata, H., et al. (2016) Treatment of Non-Traumatic Spinal Epidural hematoma: A Report of Five Cases and a Systematic Review of the Litera-ture. No Shinkei Geka, 44, 669-677. (In Japanese)

  10. 10. Ayaz, H., Izzetoglu, M., Izzetoglu, K., Onaral, B. and Dor, B.B. (2019) Early Diagnosis of Traumatic Intracranial Hematomas. Journal of Biomedical Optics, 24, Article ID: 051411. https://doi.org/10.1117/1.JBO.24.5.051411

  11. 11. Bounajem, M.T., Campbell, R.A., Denorme, F. and Grandhi, R. (2021) Paradigms in Chronic Subdural Hematoma Pathophysiology: Current Treatments and New Directions. Journal of Trauma and Acute Care Surgery, 91, e134-e141. https://doi.org/10.1097/TA.0000000000003404

  12. 12. Becker, D.P., Gade, G.F. and Young, H.F. (1990) Intracrab-nial Hematoma. In: Youmans, J.R., Ed., Neurological. Surgery, Saunders WB, Phiadephia, 2070-2080.

  13. 13. 夏志浩. 114例急性颅脑损伤病人凝血和抗凝血功能监测及其预后的研究[J]. 中国临床神经科学, 2001, 9(1): 70-71.

  14. 14. Carnevale, J.A., Segar, D.J., Powers, A.Y., et al. (2018) Blossoming Contusions: Identifying Factors Con-tributing to the Expansion of Traumatic Intracerebral Hemorrhage. Journal of Neurosurgery, 129, 1305-1316. https://doi.org/10.3171/2017.7.JNS17988

  15. 15. Oertel, M., Kelly, D.F., McArthur, D., et al. (2002) Progressive Hemorrhage after Head Trauma: Predictors and Consequences of the Evolving Injury. Journal of Neurosurgery, 96, 109-116. https://doi.org/10.3171/jns.2002.96.1.0109

  16. 16. Purkayastha, S. and Sorond, F.A. (2014) Cerebral He-modynamics and the Aging Brain. International Journal of Clinical Neurosciences and Mental Health, 1, Article No. S07. https://doi.org/10.21035/ijcnmh.2014.1(Suppl.1).S07

  17. 17. Wan, X., Fan, T., Wang, S., et al. (2017) Progres-sive Hemorrhagic Injury in Patients with Traumatic Intracerebral Hemorrhage: Characteristics, Risk Factors and Impact on Management. Acta Neurochirurgica, 159, 227-235. https://doi.org/10.1007/s00701-016-3043-6

  18. 18. Pires, P.W., Dams Ramos, C.M., Matin, N. and Dorrance, A.M. (2013) The Effects of Hypertension on the Cerebral Circulation. American Journal of Physiology—Heart and Circulato-ry Physiology, 304, H1598-H1614. https://doi.org/10.1152/ajpheart.00490.2012

  19. 19. Qureshi, A.I., Malik, A.A., Adil, M.M., Defllo, A., Sherr, G.T. and Suri, M.F.K. (2015) Hematoma Enlargement among Patients with Traumatic Brain Injury: Analysis of a Prospective Multicenter Clinical Trial. Journal of Vascular and Interventional Neurology, 8, 42-49.

  20. 20. Yuan, F., Ding, J., Chen, H., et al. (2012) Predicting Progressive Hemorrhagic Injury after Traumatic Brain Injury: Derivation and Validation of a Risk Score Based on Admission Characteristics. Journal of Neurotrauma, 29, 2137-2142. https://doi.org/10.1089/neu.2011.2233

  21. 21. Juratli, T.A., Zang, B., Litz, R.J., et al. (2014) Early Hemorrhagic Pro-gression of Traumatic Brain Contusions: Frequency, Correlation with Coagulation Disorders, and Patient Outcome: A Prospective Study. Journal of Neurotrauma, 31, 1521-1527. https://doi.org/10.1089/neu.2013.3241

  22. 22. Roozenbeek, B., Maas, A.I. and Menon, D.K. (2013) Changing Pat-terns in the Epidemiology of Traumatic Brain Injury. Nature Reviews Neurology, 9, Article No. 231. https://doi.org/10.1038/nrneurol.2013.22

  23. 23. Lustenberger, T., Talving, P., Kobayashi, L., et al. (2010) Early Co-agulopathy after Isolated Severe Traumatic Brain Injury: Relationship with Hypoperfusion Challenged. The Journal of Trauma: Injury, Infection, and Critical Care, 69, 1410-1414. https://doi.org/10.1097/TA.0b013e3181cdae81

  24. 24. Laroche, M., Kutcher, M.E., Huang, M.C., Cohen, M.J. and Manley, G.T. (2012) Coagulopathy after Traumatic Brain Injury. Neurosurgery, 70, 1334-1345. https://doi.org/10.1227/NEU.0b013e31824d179b

  25. 25. Lustenberger, T., Kern, M., Relja, B., Wutzler, S., Störmann, P. and Marzi, I. (2016) The Effect of Brain Injury on the Inflammatory Response Following Severe Trauma. Immunobi-ology, 221, 427-431. https://doi.org/10.1016/j.imbio.2015.11.011

  26. 26. Makinde, H.M., Cuda, C.M., Just, T.B., Perlman, H.R. and Schwulst, S.J. (2017) Nonclassical Monocytes Mediate Secondary Injury, Neurocognitive Outcome, and Neutrophil In-filtration after Traumatic Brain Injury. Journal of Immunology, 199, 3583-3591. https://doi.org/10.4049/jimmunol.1700896

  27. 27. Chou, A., Krukowski, K., Morganti, J., Riparip, L.-K. and Rosi, S. (2018) Persistent Infiltration and Impaired Response of Peripherally-Derived Monocytes after Traumatic Brain Injury in the Aged Brain. International Journal of Molecular Sciences, 19, Article No. 1616. https://doi.org/10.3390/ijms19061616

  28. 28. Nishijima, T.F., Muss, H.B., Shachar, S.S., Tamura, K. and Takamatsu, Y. (2015) Prognostic Value of Lymphocyte-to-Monocyte Ratio in Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 41, 971-978. https://doi.org/10.1016/j.ctrv.2015.10.003

  29. 29. Mano, Y., Yoshizumi, T., Yugawa, K., et al. (2018) Lymphocyte-to-Monocyte Ratio Is a Predictor of Survival after Liver Trans-plantation for Hepatocellular Carcinoma. Liver Transplantation, 24, 1603-1611. https://doi.org/10.1002/lt.25204

  30. 30. Kwon, B.S., Jeong, D.H., Byun, J.M., et al. (2018) Prognostic Value of Pre-operative Lymphocyte-Monocyte Ratio in Patients with Ovarian Clear Cell Carcinoma. Journal of Cancer, 9, 1127-1134. https://doi.org/10.7150/jca.24057

  31. 31. Lin, Y., Peng, Y., Chen, Y., et al. (2019) Association of Lymphocyte to Monocyte Ratio and Risk of in-Hospital Mortality in Patients with Acute Type A Aortic Dissection. Biomarkers in Med-icine, 13, 1263-1272. https://doi.org/10.2217/bmm-2018-0423

  32. 32. Fan, Z., Li, Y., Ji, H. and Jian, X. (2018) Prognostic Utility of the Combination of Monocyte-to-Lymphocyte Ratio and Neutrophil-to-Lymphocyte Ratio in Patients with NSTEMI after Primary Percutaneous Coronary Intervention: A Retrospective Cohort Study. BMJ Open, 8, e023459. https://doi.org/10.1136/bmjopen-2018-023459

  33. 33. Song, Q., Pan, R., Jin, Y., et al. (2020) Correction to: Lym-phocyte-to-Monocyte Ratio and Risk of Hemorrhagic Transformation in Patients with Acute Ischemic Stroke. Neurology Science, 42, 765. https://doi.org/10.1007/s10072-020-04871-y

  34. 34. Hemond, C.C., Glanz, B.I., Bakshi, R., Chitnis, T. and Healy, B.C. (2019) The Neutrophil-to-Lymphocyte and Monocyte-to-Lymphocyte Ratios Are Independently Associated with Neurological Disability and Brain Atrophy in Multiple Sclerosis. BMC Neurology, 19, Article No. 23. https://doi.org/10.1186/s12883-019-1245-2

  35. 35. Yadav, Y., Basoor, A., Jain, G. and Nelson, A. (2006) Expanding Traumatic Intracerebral Contusion/Hematoma. Neurology India, 54, 377-381. https://doi.org/10.4103/0028-3886.28109

  36. 36. White, C.L., Grifth, S. and Caron, J.-L. (2009) Early Progression of Traumatic Cerebral Contusions: Characterization and Risk Factors. The Journal of Trauma: Injury, Infection, and Critical Care, 67, 508-515. https://doi.org/10.1097/TA.0b013e3181b2519f

  37. 37. Patel, N.Y., Hoyt, D.B., Nakaji, P., et al. (2000) Traumatic Brain Injury: Patterns of Failure of Nonoperative Management. Journal of Trauma and Acute Care Surgery, 48, 367-375. https://doi.org/10.1097/00005373-200003000-00001

  38. 38. Chang, E.F., Meeker, M. and Holland, M.C. (2006) Acute Traumatic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neuro-surgery, 58, 647-656. https://doi.org/10.1227/01.NEU.0000197101.68538.E6

  39. 39. Paiva, W.S., Bezerra, D.A.F., Amorim, R.L.O., et al. (2011) Serum Sodium Disorders in Patients with Traumatic Brain Injury. Therapeutics and Clinical Risk Management, 7, 345-349. https://doi.org/10.2147/TCRM.S17692

  40. 40. Vedantam, A., Robertson, C.S. and Gopinath, S.P. (2017) Morbidity and Mortality Associated with Hypernatremia in Patients with Severe Traumatic Brain Injury. Neurosurgical Focus, 43, E2. https://doi.org/10.3171/2017.7.FOCUS17418

  41. 41. Shimoda, Y., Ohtomo, S., Arai, H., Okada, K. and Tominaga, T. (2017) Satellite Sign: A Poor Outcome Predictor in Intracerebral Hemorrhage. Cerebrovascular Diseases, 44, 105-112. https://doi.org/10.1159/000477179

  42. 42. Barras, C.D., Tress, B.M., Christensen, S., et al. (2009) Density and Shape as CT Predictors of Intracerebral Haemorrhage Growth. Stroke, 40, 1325-1331. https://doi.org/10.1161/STROKEAHA.108.536888

  43. 43. Boulouis, G., Morotti, A., Charidimou, A., Dowlatshahi, D. and Goldstein, J.N. (2017) Noncontrast Computed Tomography Markers of Intracerebral Hemorrhage Expansion. Stroke, 48, 1120-1125. https://doi.org/10.1161/STROKEAHA.116.015062

  44. 44. Morotti, A., Boulouis, G., Romero, J.M., et al. (2017) Blood Pressure Reduction and Noncontrast CT Markers of Intracerebral Haemorrhage Expansion. Neurology, 89, 548-554. https://doi.org/10.1212/WNL.0000000000004210

  45. 45. Peters, J., Van Wageningen, B., Hoogerwerf, N. and Tan, E. (2017) Near-Infrared Spectroscopy: A Promising Prehospital Tool for Management of Traumatic Brain Inju-ry. Prehospital and Disaster Medicine, 32, 414-418. https://doi.org/10.1017/S1049023X17006367

  46. 46. Leon-Carrion, J., Dominguez-Roldan, J.M., Leon-Dominguez, U. and Murillo-Cabezas, F. (2010) The Infrascanner, a Handheld Device for Screening in Situ for the Presence of Brain Haematomas. Brain Injury, 24, 1193-1201. https://doi.org/10.3109/02699052.2010.506636

期刊菜单