Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 66813 , 7 pages
10.12677/ACM.2023.1361276

NLR及左房内径预测急性心肌梗死后新发心房颤动的价值

王安毅,杨军*

青岛大学附属烟台毓璜顶医院心内科,山东 烟台

收稿日期:2023年5月7日;录用日期:2023年5月31日;发布日期:2023年6月9日

摘要

目的:探讨血小板平均体积/淋巴细胞比值(Neutrophils to lymphocyte ratio, MPVLR)及左心房内径(Left atrial distance, LAD)预测急性心肌梗死(acute myocardial infarction, AMI)后新发心房颤动(new onset atrial fibrillation, NOAF)的价值。方法:选取符合条件的AMI患者共413名作为研究对象,收集患者一般资料及检验检查结果;分组依据为AMI急性期内是否发生心房颤动,分为新发房颤组(NOAF组)及无新发房颤组(非NOAF组),采用Logistic回归分析NLR及LAD对AMI后NOAF发病的影响;应用受试者工作特征(ROC)曲线分析NLR及LAD对NOAF的预测价值。结果:413名AMI患者中,发生NOAF的患者96例(NOAF组,23.2%),未发生NOAF的患者317例(非NOAF组,76.8%)。多变量Logistic回归分析表明,NLR (OR = 1.555, 95% CI: 1.205~2.009, p < 0.005)是AMI患者发生NOAF的独立预测因素。预测NOAF的最佳临界值为3.86,预测的灵敏度和特异度分别为78.1%和57.7%,曲线下面积为0.765 (95% CI 0.712~0.817, p < 0.001);同时联合NLR及LA (left atrium)前后径时能取得更好的预测效果,其ROC曲线下面积为0.841,灵敏度为90.6%,特异度为61.8%。结论:MPVLR是AMI后NOAF的独立危险因素,且MPVLR联合LA前后径可有更好的预测效果。

关键词

急性心肌梗死,房颤,NLR,左房内径

Value of NLR and Left Atrial Distance in Predicting New Onset Atrial Fibrillation after Acute Myocardial Infarction

Anyi Wang, Jun Yang*

Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong

Received: May 7th, 2023; accepted: May 31st, 2023; published: Jun. 9th, 2023

ABSTRACT

Objective: To investigate the value of mean platelet volume/lymphocyte ratio (MPVLR) and left atrial diameter (LAD) in predicting new onset atrial fibrillation (NOAF) after acute myocardial infarction (AMI). Methods: A total of 413 eligible AMI patients were selected as the research objects, and the general information and inspection results of the patients were collected; the grouping was based on whether atrial fibrillation occurred during the acute period of AMI, and was divided into new onset atrial fibrillation group (NOAF group) and non-new onset atrial fibrillation group (non-NOAF group). In the atrial fibrillation group (non-NOAF group), Logistic regression was used to analyze the influence of NLR and LAD on the incidence of NOAF after AMI; receiver operating characteristic (ROC) curve was used to analyze the predictive value of NLR and LAD on NOAF. Results: Among the 413 AMI patients, 96 patients developed NOAF (NOAF group, 23.2%), and 317 patients did not develop NOAF (non-NOAF group, 76.8%). Multivariate Logistic regression analysis showed that NLR (OR = 1.555, 95% CI: 1.205~2.009, p < 0.005) was an independent predictor of NOAF in AMI patients. The optimal cut-off value for predicting NOAF was 3.86, the predictive sensitivity and specificity were 78.1% and 57.7%, respectively, and the area under the curve was 0.765 (95% CI 0.712~0.817, p < 0.001); while combining NLR and LA (Left atrium) can achieve better prediction results, the area under the ROC curve is 0.841, the sensitivity is 90.6%, and the specificity is 61.8%. Conclusion: MPVLR is an independent risk factor for NOAF after AMI, and MPVLR combined with LA anteroposterior diameter can have a better predictive effect.

Keywords:Acute Myocardial Infarction, Atrial Fibrillation, NLR, Left Atrial Distance

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

《中国心血管健康与疾病报告2020》指出:心血管病患者人数约3.3亿,其中冠心病1139万,冠心病的病死率持续增高,农村地区病死率已然超过城市地区,且已成为我国死亡率居首位的疾病 [1] 。急性心肌梗死(acute myocardial infarction, AMI)是冠心病的一种重要分型 [2] 。心房颤动(Atrial Fibrillation, AF),简称“房颤”,是最常见的AMI的并发症。研究表明,AMI患者入院期间,新发房颤(new onset atrial fibrillation, NOAF)的发生率介于2.4%到22.6%之间 [3] - [8] 。与未发生房颤的患者相比,合并房颤的患者通常具有某些高危因素,如心率更快,年龄更高,心梗面积更大等 [5] 。研究表明,在AMI后NOAF的患者中,炎症反应促进了心肌脂肪浸润及心肌纤维化,进而导致了NOAF的发生 [7] ,而NLR (中性粒细胞计数/淋巴细胞计数)是更敏感的炎症指标,NLR可能与AMI后NOAF的发生关系密切。基于目前进展,本研究首次就NLR及左房内径对AMI后NOAF患者的影响进行了进一步研究。

2. 资料及方法

2.1. 研究对象

回顾性收集2018-01-01至2019-12-30于烟台毓璜顶医院收治的413例AMI患者的临床资料,所有患者均已同意使用其临床资料用于研究,且本研究为回顾性研究已通过医院科研科伦理审查,AMI的诊断标准是根据中华医学会心血管病学分会于2010年制定的指南。依据住院期间(2周急性期内)是否发生AF,分为NOAF组和非NOAF组。1) 纳入标准:a) 成功血运重建;b) 患者既往无房颤病史(包括瓣膜性房颤),且AMI后被收治入院期间内首次发现的房颤。2) 排除标准:a) 肝肾功能障碍、先天性心脏发育不全及严重瓣膜性疾病、风湿性心脏病、血液疾病、自身免疫性疾病、甲状腺功能障碍、持续性感染;b) 心肌炎等心肌病;c) 未服用抗心律失常药物。

2.2. 观察指标

收集两组患者基础临床资料(年龄、性别、吸烟史、饮酒史、心率、血压),既往史(高血压史、糖尿病史),住院后血常规检查(血小板计数值、PDW、MPV、中性粒细胞计数、淋巴细胞计数值),实验室检查(高密度脂蛋白、低密度脂蛋白、肌酐、尿酸、血糖、肌酸激酶同工酶(CK-MB)、超敏肌钙蛋白I (hsTnI)),入院48 h内超声心动图(左心房前后径、左心室射血分数),并计算NLR值 = 中性粒细胞计数值/淋巴细胞计数值。

2.3. 统计学处理

应用SPSS 25.0软件进行统计分析,数据以 x ¯ ± s 表示,符合正态分布。两组间计量资料的比较采用t检验,计数资料的两组间比较采用c²检验。应用Logistic回归模型分析MPVLR是否为AMI患者NOAF的独立危险因素,应用ROC曲线分析MPVLR预测价值。以p < 0.05为差异有统计学意义。

3. 结果

3.1. 一般情况

共纳入在我院心血管内科CCU治疗的AMI急诊PCI术后患者413例,其中324例(78.5%)男性,89例(21.5%)女性。年龄30~87岁。发生NOAF的患者96例(NOAF组,23.2%),未发生NOAF的患者317例(非NOAF组,76.8%)。

3.2. 基础资料比较

与非NOAF组比较,NOAF组与非NOAF组饮酒史、糖尿病史均无明显差异(p > 0.050)。NOAF组入院时心率更快(t = 3.405, p < 0.005),年龄更大(t = 6.205, p < 0.001),空腹血糖更高(t = 2.618, p < 0.050),PDW更高(t = 5.791, p < 0.001),NLR更高(t = 7.337, p < 0.001),肌酐更高(t = 3.531, p < 0.005),超敏肌酐蛋白I更高(t = 4.134, p < 0.001),CK-MB更高(t = 3.849, p < 0.005),BNP更高(t = 4.152, p < 0.001),LA前后径更大(t = 7.801, p < 0.001);NOAF组入院时男性更少(χ² = 4.292, p < 0.050),吸烟者更少(χ² = 5.059, p < 0.050),淋巴细胞计数更低(t = 7.397, p < 0.001),EF值更低(t = 4.885, p < 0.001) (见表1)。

3.3. 影响AMI后NOAF因素的Logistic回归分析

建立Logistic回归模型,以AMI患者是否新发心房颤动为因变量,以表1中p < 0.05的指标为自变量,校正性别、心率、吸烟史、糖尿病史、淋巴细胞计数、中性粒细胞计数、空腹血糖、BNP、EF值、CK-MB等的影响,行多因素Logistic回归分析,结果显示年龄(OR = 1.044, 95% CI: 1.009~1.080, p < 0.050)、肌酐(OR = 1.015, 95% CI: 1.001~1.030, p < 0.050)、NLR (OR = 1.555, 95% CI: 1.205~2.009, p < 0.005)、PDW (OR = 1.445, 95% CI: 1.240~1.683, p < 0.001)、LA前后径(OR = 1.208, 95% CI: 1.115~1.308, p < 0.001)为AMI后NOAF的独立危险因素(见表2)。

Table 1. Comparison of basic data between two groups of patients

表1. 两组患者基础资料比较

注:HsTNI为超敏肌钙蛋白I,NLR为中性粒细胞绝对值/淋巴细胞绝对值比值,PDW为血小板分布宽度,HDL为高密度脂蛋白,LDL为低密度脂蛋白,LA内径为左心房内径,CK-MB为肌酸激酶同工酶,BNP为B型脑钠肽,EF值为心脏射血分数,*标注指存在统计学差异的数据。

Table 2. Multivariate logistic regression analysis of risk factors for NOAF after AMI

表2. 多因素Logistic回归分析AMI后NOAF危险因素

注:NVLR为中性粒细胞绝对值/淋巴细胞绝对值,PDW为血小板分布宽度,LA前后径为左心房前后径,*标注指存在统计学差异的变量。

3.4. ROC曲线分析NLR对新发房颤的预测价值

利用ROC曲线分析AMI后NOAF相关独立危险因素的预测价值,结果显示年龄预测NOAF的最佳临界值为60.5岁,预测的灵敏度和特异度分别为70.8%和52.1%,曲线下面积为0.699 (95% CI 0.638~0.761,p < 0.001)。肌酐预存NOAF的最佳临界值为77.5 μmol/L,预测的灵敏度和特异度分别为42.7%和77.6%,曲线下面积为0.602 (95% CI 0.532~0.673, p < 0.001)。LA前后径预测NOAF的最佳临界值为40.5 mm,预测的灵敏度和特异度分别为37.5%和88.6%,曲线下面积为0.750 (95% CI 0.696~0.804, p < 0.001)。PDW的最佳临界值为12.30 fl,预测的灵敏度和特异度分别为53.1%和78.2%,曲线下面积为0.707 (95% CI 0.647~0.766, p < 0.001)。NLR预测NOAF的最佳临界值为3.86,预测的灵敏度和特异度分别为78.1%和57.7%,曲线下面积为0.765 (95% CI 0.712~0.817, p < 0.001)。NLR及LA前后径并联对NOAF进行预测的灵敏度和特异度分别为90.6%和61.8%,曲线下面积为0.841 (95% CI 0.799~0.884, p < 0.001)。以上结果表明,MPVLR能够对AMI后NOAF进行预测,联合NLR及LA前后径能够对于AMI后NOAF具有更好的预测价值(见表3)。

Table 3. Predictive value of ROC curve analysis for NOAF risk factors after AMI

表3. ROC曲线分析AMI后NOAF危险因素的预测价值

注:NLR为中性粒细胞绝对值/淋巴细胞绝对值比值,PDW为血小板分布宽度,LAD为左心房内径,*标注指存在统计学差异的变量。

4. 讨论

心血管疾病已经成为我国人民健康的重大威胁,需要值得注意的是,冠心病已经成为我国死亡率居于首位的疾病 [1] 。急性冠状动脉综合征(acute coronary syndromes, ACS)是由急性心肌缺血造成的临床综合征,为冠心病的一种重要分型。在英国,每年因ACS住院的患者超8万人,并且其中急性ST抬高型心肌梗死患者(ST segment elevation myocardial infarction, STEMI)在30天内的死亡率高达8.1% [9] ;在美国,每年约有63.5万人因ACS入院,后期随访中发现越有40%的患者在5年内死亡 [10] 。心房颤动(Atrial Fibrillation, AF),是临床中最常见的心律失常类型,同时房颤也是AMI的一种主要并发症 [11] 。Ghushchyan等 [12] 的研究发现,AMI患者合并NOAF住院期间使用了更多的医疗资源,并且患者的花费远远高出无NOAF的患者。因此,明确AMI患者NOAF的危险因素并及时干预,对于改善患者的预后具有重要意义。

研究表明,心室肌缺血导致心室舒缩功能障碍,心室排空受限容量负荷增大,继发左房排空受限房内压升高,由于左房心肌顺应性本身较差,急剧升高的左房充盈压会使左房张力迅速增大,最后诱发房颤 [13] 。Aronson等人 [14] 发现,AMI患者并发心房颤动的一个独立危险因素是左心室舒张功能障碍。同时,当心房肌缺血时,由于细胞缺血坏死调亡和局部血管微循环功能障碍均会影响心肌扩张的速度,除此以外,由于梗死区成纤维细胞大量增殖、局部间质水肿及瘢痕形成直接影响了左房心肌壁的顺应性,导致左房舒张功能出现障碍,进一步引起左房充盈压升高。另有研究发现 [15] ,二尖瓣反流与AMI患者NOAF直接相关,反流程度越重,患者NOAF的几率越大,猜测其可能的机制是急性心肌梗死导致乳头肌功能的暂时或永久性功能障碍或出现腱索断裂或左室缺血容积增大,均会导致二尖瓣出现相对或绝对的关闭不全,进而导致二尖瓣反流增大,使房内压进一步升高,加速房颤的产生。本研究发现,左房内径的升高为AMI后NOAF的独立危险因素,提示心梗后左房扩大可能诱发房颤。

炎症反应是AMI后NOAF的另一重要影响因素,目前广泛被接纳的观点是炎症反应在心肌细胞凋亡、肥大及心肌纤维化的过程中起到了重要作用。Chen [16] 等人发现在孤立性房颤患者的心房组织学检查中,显示有活化的巨噬细胞、单核细胞及中性粒细胞浸润,但在窦性心律患者中没有,并且还伴有粘附分子和炎症细胞因子沉积,提示了炎症反应与房颤的关联。Marcus等研究 [17] 发现发生房颤的AMI患者血清白细胞介素-6 (interleukin-6, IL-6)水平显著增加,并且IL-6血清浓度与左房大小呈现较弱的关联,但目前IL-6导致左房增大的机制尚不明确。另有研究 [18] 纳入了801名AMI患者进行比较,发现出现早期NOAF的患者C反应蛋白(CRP)明显升高,之所以出现这种情况,考虑升高的CRP水平反应了炎症系统的广泛激活,提示在缺血性心肌损伤期存在剧烈的炎症反应。此外Gal-3被发现在AMI合并NOAF的患者血清浓度明显升高,Gal-3作为一种新型炎症反应标志物被认为可通过介导多种炎症通路来促进左房重构,来导致房颤 [19] [20] 。Liu等就NLR与AMI患者预后的相关性进行了研究 [21] ,结果发现NLR水平较高的患者生存率明显下降。本次研究探讨了NLR对AMI后NOAF的预测价值,结果显示高水平NLR的患者发生NOAF的可能性更高,NLR是AMI后NOAF的独立危险因素,并且NLR ≥ 3.86的患者出现房颤的概率约为MPVLR < 3.86的1.34倍,从而提示我们在患者MPVLR ≥ 6.119应警惕发生房颤的可能。并且当联合NLR及LA前后径时,能够对NOAF进行更佳有效的预测,这对于及时预防改善预后具有重要的临床意义。

另外,本研究发现高血压、糖尿病等合并症与NOAF的发生并无独立关联,这与Svartstein等 [13] 的研究结果相符,而Iqbal等 [22] 的研究却指出高血压、糖尿病是NOAF的危险因素。之所以得到不同的研究结论,可能与不同的研究进行多因素分析时调整的混杂因素不同有关,也反映出这些合并疾病与NOAF的关系不是十分确定,因此,合并疾病在NOAF中的作用还有待进一步研究。

但是本研究具有一定的局限性。首先,本研究样本量有限,入选人群类型单一,难以代表全部个体;其次,NOAF的诊断主要通过患者住院期间心电图及心电监护中获得,而某些既往发生过房颤但未明确诊断的患者住院期间可能再次房颤,这使NOAF的诊断率可能较实际情况有所偏差。因此,尚需要更大样本量、更多中心的研究以探究NLR及左房内径预测AMI后NOAF的效果。

综上所述,本项目就MPVLR、左房内径与急性心肌梗死后NOAF的关系进行了研究,可为AMI患者NOAF的早期识别和干预提供证据。

文章引用

王安毅,杨 军. NLR及左房内径预测急性心肌梗死后新发心房颤动的价值
Value of NLR and Left Atrial Distance in Predicting New Onset Atrial Fibrillation after Acute Myocardial Infarction[J]. 临床医学进展, 2023, 13(06): 9111-9117. https://doi.org/10.12677/ACM.2023.1361276

参考文献

  1. 1. 《中国心血管健康与疾病报告》2020 [J]. 心肺血管病杂志, 2021, 40(10): 1005-1009.

  2. 2. Bajaj, A., Sethi, A., Rathor, P., Suppogu, N. and Sethi, A. (2015) Acute Complications of Myocardial Infarction in the Current Era: Diagno-sis and Management. Journal of Investigative Medicine, 63, 844-855. https://doi.org/10.1097/JIM.0000000000000232

  3. 3. Dziewierz, A., Siudak, Z., Rakowski, T., Jakała, J., Dubiel, J.S. and Dudek, D. (2010) Prognostic Significance of New Onset Atrial Fibrillation in Acute Coronary Syndrome Pa-tients Treated Conservatively. Journal of Cardiology, 17, 57-64.

  4. 4. Jons, C., Raatikainen, P., Gang, U.J., Huikuri, H.V., Joergensen, R.M., Johannesen, A., Dixen, U., Messier, M., McNitt, S. and Thomsen, P.E. (2010) Autonomic Dysfunction and New-Onset Atrial Fibrillation in Patients with Left Ventricular Systolic Dysfunction after Acute Myo-cardial Infarction: A CARISMA Substudy. Journal of Cardiovascular Electrophysiology, 21, 983-990. https://doi.org/10.1111/j.1540-8167.2010.01795.x

  5. 5. Braga, C.G., Ramos, V., Martins, J., Arantes, C., Abreu, G., Vieira, C., Salgado, A., Gaspar, A., Azevedo, P., Álvares Pereira, M., Magalhães, S. and Marques, J. (2015) Impact of Atrial Fibrillation Type during Acute Coronary Syndromes: Clinical Features and Prognosis. Revista Portuguesa de Cardiologia, 34, 403-410. https://doi.org/10.1016/j.repc.2015.01.010

  6. 6. González-Pacheco, H., Márquez, M.F., Arias-Mendoza, A., Álva-rez-Sangabriel, A., Eid-Lidt, G., González-Hermosillo, A., et al. (2015) Clinical Features and In-Hospital Mortality As-sociated with Different Types of Atrial Fibrillation in Patients with Acute Coronary Syndrome with and without ST Ele-vation. Journal of Cardiology, 66, 148-154. https://doi.org/10.1016/j.jjcc.2014.11.001

  7. 7. Hudzik, B., Szkodziński, J., Lekston, A., Gierlotka, M., Poloński, L. and Gąsior, M. (2016) Mean Platelet Volume-to-Lymphocyte Ratio: A Novel Marker of Poor Short- and Long-Term Prognosis in Patients with Diabetes Mellitus and Acute Myocardial Infarction. Journal of Diabetes and Its Complications, 30, 1097-1102. https://doi.org/10.1016/j.jdiacomp.2016.04.010

  8. 8. Ulus, T., Isgandarov, K., Yilmaz, A.S., Vasi, I., Moghanchızadeh, S.H. and Mutlu, F. (2018) Predictors of New-Onset Atrial Fibrillation in Elderly Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Aging Clinical and Experimental Research, 30, 1475-1482. https://doi.org/10.1007/s40520-018-0926-9

  9. 9. Kotecha, T. and Rakhit, R.D. (2016) Acute Coronary Syndromes. Clinical Medicine (London), 16, s43-s48. https://doi.org/10.7861/clinmedicine.16-6-s43

  10. 10. Makki, N., Brennan, T.M. and Girotra, S. (2015) Acute Coro-nary Syndrome. Journal of Intensive Care Medicine, 30, 186-200. https://doi.org/10.1177/0885066613503294

  11. 11. Dhein, S., Seidel, T., Salameh, A., Jozwiak, J., Hagen, A., Kostelka, M., et al. (2014) Remodeling of Cardiac Passive Electrical Properties and Susceptibility to Ventricular and Atrial Arrhythmias. Frontiers in Physiology, 5, Article No. 424. https://doi.org/10.3389/fphys.2014.00424

  12. 12. Ghushchyan, V., Nair, K.V. and Page, R.L. (2015) Indirect and Di-rect Costs of Acute Coronary Syndromes with Comorbid Atrial Fibrillation, Heart Failure, or Both. Vascular Health and Risk Management, 11, 25-34. https://doi.org/10.2147/VHRM.S72331

  13. 13. Svartstein, A.W., Lassen, M.H., Skaarup, K.G., Grove, G.L., Vyff, F., Ravnkilde, K., et al. (2022) Predictive Value of Left Atrial Strain in Relation to Atrial Fibrillation Following Acute Myo-cardial Infarction. International Journal of Cardiology, 364, 52-59. https://doi.org/10.1016/j.ijcard.2022.05.026

  14. 14. Aronson, D., Mutlak, D., Bahouth, F., Bishara, R., Hammerman, H., Lessick, J., et al. (2011) Restrictive Left Ventricular Filling Pattern and Risk of New-Onset Atrial Fibrillation after Acute Myocardial Infarction. American Journal of Cardiology, 107, 1738-1743. https://doi.org/10.1016/j.amjcard.2011.02.334

  15. 15. Abe, Y., Takahashi, Y. and Shibata, T. (2021) Looking into the Mechanistic Link between Mitral Regurgitation and Atrial Fibrillation. Cardiology Clinics, 39, 281-288. https://doi.org/10.1016/j.ccl.2021.01.010

  16. 16. Chen, M.C., Chang, J.P., Liu, W.H., Yang, C.H., Chen, Y.L., Tsai, T.H., Wang, Y.H. and Pan, K.L. (2008) Increased Inflammatory Cell Infiltration in the Atrial Myocardium of Patients with Atrial Fibrillation. American Journal of Cardiology, 102, 861-865. https://doi.org/10.1016/j.amjcard.2008.05.038

  17. 17. Marcus, G.M., Whooley, M.A., Glidden, D.V., Pawlikowska, L., Zaroff, J.G. and Olgin, J.E. (2008) Interleukin-6 and Atrial Fibrillation in Patients with Coronary Artery Disease: Da-ta from the Heart and Soul Study. American Heart Journal, 155, 303-309. https://doi.org/10.1016/j.ahj.2007.09.006

  18. 18. Zahler, D., Merdler, I., Rozenfeld, K.L., Shenberg, G., Milwidsky, A., Berliner, S., et al. (2021) C-Reactive Protein Velocity and the Risk of New Onset Atrial Fibrillation among ST Eleva-tion Myocardial Infarction Patients. The Israel Medical Association Journal, 23, 169-173.

  19. 19. Meijers, W.C., van der Velde, A.R., Pascual-Figal, D.A. and de Boer, R.A. (2015) Galectin-3 and Post-Myocardial Infarction Cardiac Remod-eling. European Journal of Pharmacology, 763, 115-121. https://doi.org/10.1016/j.ejphar.2015.06.025

  20. 20. Ibánez, B., James, S., Agewall, S., Antunes, M.J., Bucciarel-li-Ducci, C., Bueno, H., et al. (2017) 2017 ESC Guidelines for the Management of Acute Myocardial Infarction in Pa-tients Presenting with ST-Segment Elevation. Revista Española de Cardiología (English Edition), 70, 1082. https://doi.org/10.1016/j.rec.2017.11.010

  21. 21. Liu, J., Ao, W., Zhou, J., Luo, P., Wang, Q. and Xiang, D. (2021) The Correlation between PLR-NLR and Prognosis in Acute Myocardial Infarction. American Journal of Translational Research, 13, 4892-4899.

  22. 22. Iqbal, Z., Mengal, M.N., Badini, A. and Karim, M. (2019) New-Onset Atrial Fibrillation in Patients Presenting with Acute Myocardial Infarction. Cureus, 11, e4483. https://doi.org/10.7759/cureus.4483

  23. NOTES

    *通讯作者。

期刊菜单