Advances in Clinical Medicine
Vol. 12  No. 08 ( 2022 ), Article ID: 54503 , 8 pages
10.12677/ACM.2022.1281048

再生医学在治疗终末期肝病中的临床应用

刘洪1,游海波1,王孟皓2*

1重庆市长寿区人民医院肝胆外科,重庆

2重庆医科大学附属第二医院肝胆外科,重庆

收稿日期:2022年7月5日;录用日期:2022年8月2日;发布日期:2022年8月9日

摘要

感染、代谢紊乱、酗酒、恶性肿瘤等急慢性损伤均可导致终末期肝病(end-stage liver disease, ESLD)的发生。迄今为止,肝移植仍是治疗ESLD唯一被证实的有效手段。然而由于供体数量严重短缺,肝移植在临床中开展受到了极大限制,许多患者在等待器官过程中由于疾病进展而错失肝移植机会甚至死亡。因此,在临床中如何改善ESLD患者肝功能具有重要意义。再生医学作为组织工程和分子生物学转化研究的一个分支,旨在通过临床医学、材料科学及生命科学等前沿交叉领域对人体各种组织器官功能进行替代、修复甚至重建。肝脏作为哺乳动物体内唯一具有再生能力的内脏器官,在经历大部分切除(75%)后仍能基本恢复至原有功能从而满足机体代谢需求。正因其具有如此巨大的再生能力让肝脏在再生医学领域备受关注。肝脏再生医学主要包括自身组织再生、细胞疗法以及组织工程三个方面,本文将对近年来上述技术在治疗肝脏疾病中的临床应用进行综述。

关键词

肝脏再生,再生医学,终末期肝病,临床应用

Clinical Application of Regenerative Medicine in the Treatment of End-Stage Liver Diseases

Hong Liu1, Haibo You1, Menghao Wang2*

1Department of Hepatobiliary Surgery, People’s Hospital of Changshou Chongqing, Chongqing

2Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Jul. 5th, 2022; accepted: Aug. 2nd, 2022; published: Aug. 9th, 2022

ABSTRACT

Acute and chronic damage such as infection, metabolic disorders, alcohol abuse, and malignant tumors can lead to the occurrence of end-stage liver disease (ESLD). Liver transplantation is still the only proven effective treatment for ESLD. However, due to the severe shortage of donor numbers, the clinical development of liver transplantation has been greatly limited. Many patients miss the opportunity of liver transplantation or even die due to disease progression while waiting for the donors. Therefore, how to improve liver function of ESLD patients is of great clinical significance. As a branch of tissue engineering and molecular biology transformation research, regenerative medicine aims to replace, repair and even reconstruct various tissues and organs in the human body through cutting-edge fields such as clinical medicine, materials science and life sciences. The liver, as the only regenerative visceral organ in the mammal, can still recover to its original function after subtotal hepatectomy (75%) to meet the metabolic needs of the body. Because of its huge regenerative capacity, the liver has attracted much attention in the field of regenerative medicine. Liver regenerative medicine mainly includes three main aspects: self-regeneration, cell therapy and tissue engineering. This paper will review the clinical application of the above techniques in the treatment of liver diseases in recent years.

Keywords:Liver Regeneration, Regenerative Medicine, End-Stage Liver Disease, Clinical Application

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肝脏是全身最大的实质性器官,它不仅负责碳水化合物、脂肪、维生素的代谢、合成、储存和再分配,还产生包括白蛋白和急性期蛋白在内的大量血清蛋白以及酶和辅助因子以支持身体其他器官组织的重要功能 [1] 。1931年Higgins和Anderson首次通过大鼠2/3肝切除术(partial hepatectomy, PH)实验清晰地展示了肝脏惊人的再生能力 [2] 。正由于其独特的再生能力,使得临床上可通过切除手术安全的治疗各种良、恶性疾病,但在大多数情况下,各种原因所导致急、慢性肝功能损伤的病理状态会严重损害肝脏再生的能力进而导致终末期肝病(end-stage liver disease, ESLD)的发生 [3] 。ESLD是目前主要的全球性公共卫生危机,其唯一有效的治疗方法是肝移植(liver transplantation, LT),但供体极度短缺制约了其大范围的临床应用,超过20%的病人在等待器官的过程中死亡 [4] 。近年来活体肝移植(living donor liver transplantation, LDLT)技术的发展虽然一度缓解了供受体严重失衡,可是移植术后相关并发症和巨大的经济负担仍旧限制着接受移植的患者数量 [5] [6] 。再生医学(regenerative medicine)在既往20年内飞速发展,使得替代疗法(alternative treatment)在临床中具有可行性,有效缓解了LT在治疗ESLD中的制约 [7] 。广义上讲,任何维持、修复或改善损伤组织和器官功能的治疗方法都属于再生医学的研究范畴,肝脏天生强烈的再生和自我修复能力更使其成为再生医学领域的研究重点。因此,本文将综述目前临床上通过再生医学治疗ESLD的主要方法,旨在更全面的认识再生医学的临床意义及应用价值。

2. 外科手段诱导肝脏再生

手术切除目前仍是治疗肝脏肿瘤的主要方式,而术后肝功能衰竭(postoperative liver failure, PLF)是扩大肝切除术后最常见的死亡原因 [8] 。在实际临床工作中需为患者保留足够未来肝脏残余(future liver remnant, FLR)以避免PLF发生已成为提高R0切除率的主要障碍。对于正常的人,FLR ≥ 25%总肝脏体积足以避免PLF;患有慢性肝病但没有肝硬化的患者通常需要30%;而患有肝硬化但没有门静脉高压的患者至少需要40%的FLR。肝脏自身强大的再生能力使得外科医生在既往数十年中一直致力于通过诱导FLR增加来避免PLF。1990年Makuuchi等 [9] 首次报道了通过门静脉栓塞术(portal vein embolization, PVE)诱导左侧肝脏肥大来增加肝切除术治疗肝门部胆管癌的安全性。随后Adam等 [10] 又描述了利用二步法肝切除术(two-stage hepatectomy, TSH)在双叶肝肿瘤患者中实现R0切除的手段。门静脉结扎(portal vein ligation, PVL)亦可诱导与PVE相似或更好的再生反应 [11] 。在TSH中常规采用的门静脉阻塞方法(PVE或PVL),可在3~8周内增加多至40%的FLR,但却有约27%病人无法开展2期切除手术,其原因主要与疾病进展、再生不足及手术合并症相关 [12] 。在此背景下,联合肝脏离断和门静脉结扎二步肝切除术(associating liver partition and portal vein ligation for staged hepatectomy, ALPPS)应运而生。2007年德国医生首先在临床中开展类似“ALPPS”的治疗。Schlitt [13] 将肝实质沿着镰状韧带进行原位分离(in situ splitting, ISS)以寻找肝肠吻合的最佳位置,同时结扎右侧门静脉诱导II、III段肥大以此增加病人FLR。1期手术8天后的CT检查提示左肝明显增生肥大,随后该病人顺利完成扩大肝右叶切除术。2012年,Schnitzbauer等人通过25例病人的临床研究正式提出了这种手术方式的概念并被Santibanes等引用为ALPPS [13] [14] 。传统ALPPS主要包括1期手术探查:将病侧肝脏与正常肝脏分割并对病侧肝脏门静脉支进行结扎,其中IV段内所有的门静脉、动脉以及胆管分支都被逐一解剖分离并阻断,仅保留右肝动静脉及胆道引流,待1~2周后健侧肝脏代偿性增大至具备正常所需的肝脏功能后再行2期手术。2期手术主要完成右肝动静脉及胆道阻断并行右三叶切除术 [14] 。近年来,APLLS在全球各地已经演变出包括腔镜下ALPPS、混合ALPPS、部分ALPPS等在内的不同改良术式 [15] 。

ALPPS最大优点是可在短时间内诱导FLR的高度再生。传统TSH诱导足量FLR需要约32~210天,而ALPPS仅需7~14天即可使FLR增加47%~93% [16] 。ALPPS中肝再生机制主要涉及三方面 [17] [18] :PVL引起血液动力学改变;ISS后应激信号产生(由单位体积肝脏能量需求增加所致);ISS所诱导促增殖细胞因子释放。上述机制可能是ALPPS能快速诱导肝脏再生的主要原因。同时ALPPS的可行性及2期R0切除率也远高于传统TSH。在肝移植开展严重受限的情况下,ALPPS似乎是治疗不可切除肝脏肿瘤的最可行方法。据统计,ALPPS的可行性为97%,2期手术实施率接近100% [19] 。此外,其手术间隔短,完全避免了传统TSH中等待肝脏再生期间所致的疾病进展。FLR的快速再生同时保证了2期手术的可行性。现阶段研究表明ALPPS的R0切除率可达83%~100%不等,仅一例研究提示R0切除率为0% [20] 。虽然ALPPS较传统TSH有如此明显的优点,但术后高死亡率、发病率以及早期肿瘤复发已成为制约其发展的主要因素。在Schnitzbauer等最初报道ALPPS时,其发病率和院内死亡率分别为68%及12% [14] 。近年的技术改进大大降低了ALPPS的死亡率和发病率,目前总体并发症发生率和90天死亡率分别为36%及0% [21] 。需注意的是ALPPS在促进FLR的同时可能导致肿瘤生长。先前研究已经证实PVE术后会导致肿瘤增殖活性增加 [22] 。而Oldhafer等 [23] 近期研究提示:ALPPS同样具有与PVE相似的效应,在7名ALPPS术后患者中有6名出现肿瘤复发,平均复发时间为8个月。Fukami等 [24] 在第一次和第二次剖腹术后立即对同一段肝转移病灶进行活检,结果提示Ki-67标记指数由第一次手术期间为60%增加至80%,PET-CT检测表明肿瘤葡萄糖代谢标志物在此过程中同样增加。尽管该技术为治愈无法用其他技术切除的肝脏恶性肿瘤提供了可能,但目前ALPPS仍然存在很多局限性:首先,该手术必须由经验丰富的肝胆外科医生主刀以及放射科和肿瘤科医生之间的良好配合,包括围手术期对患者整体治疗方案的多学科评估,对方案做出适时调整,共同为患者诊断、制定方案、选择适合的治疗手段,在实施任何治疗决策前,首诊医生一定会召集不同学科共同讨论商议,不会单科做主,对于不同专科之间的有争议的问题也有健全的制度保障(更高级别多学科诊疗);其次,手术适应症还存在争议,标准化ALPPS程序尚未建立;最后PVE较ALPPS有更低的发病率和死亡率且更易于开展。因此还需更多研究去改进该项技术在临床中的实际应用。

3. 肝细胞移植

肝实质细胞是执行肝脏主要功能的重要细胞,因此肝细胞移植(hepatocyte transplantation, HT)是细胞移植中的首选方案,HT治疗较LT有更小的损伤和更高的可行性。临床上通常采用不适宜行LT的边缘性器官(缺血时间较长、脂肪型病变或解剖结构异常等)分离提取大量肝细胞并用于多个患者的治疗 [25] 。目前,常规的HT移植途径主要包括经门静脉、脾脏内以及腹膜内输注,在低龄患者中还可以通过荧光透视经脐静脉将肝细胞输注到门静脉中 [26] 。针对凝血功能障碍不适宜行血管穿刺的患者,还可将肝细胞封装在纯化藻酸盐制作的微珠中通过腔镜植入腹腔,微珠内表面的半透膜允许小分子通过,有利于肝细胞发挥代其代谢功能同时有效阻止了免疫细胞攻击 [27] 。临床上HT可用于治疗各种肝脏代谢性疾病(Crigler-Najjar综合征、尿素循环缺陷及VII因子缺乏等)和急性肝功能衰竭(acute liver failure, ALF) [28] 。尽管LT是Crigler-Najjar综合征的远期治疗选择,但不合适的移植物尺寸及血液配型会导致不可逆神经功能障碍。有文献报道HT治疗降低了8名Crigler-Najjar综合征患者的胆红素、UGT酶活性以及对光线治疗的需求 [29] 。HT不仅可改善尿素循环缺陷患者血氨并增加其尿素生成,还有助于降低家族性高胆固醇血症患者血清LDL水平。HT亦可用于ALF患者的治疗:在10例由各种原因导致的AFL患者中,2例患者在HT之后肝功能完全恢复避免了LT治疗,3名患者的肝功得到明显改善并于后期顺利进行LT治疗 [30] 。尽管上述研究展示了HT临床应用的优越性,但该技术仍有许多问题亟待解决:① 如何大量分离、培养、保存以及体外扩增肝细胞;② 原代肝细胞经低温冻存复苏后细胞活性显著降低;③ 如何建立细胞耐受和抑制免疫排斥反应的有效策略;④ 在病例情况下HT的移植部位及数量尚不完全明确,如何有效检测移植后临床效用;⑤ 如何有效构建HT基因治疗的适宜载体。从实验数据来看,HT的主要并发症及不良反应症是门静脉血栓形成,严重者可造成急性门脉高压和肝细胞肺栓塞。在HT过程中若出现门脉高压往往会伴随肝细胞肺内沉积。同时亦有证据显示,HT通过门静脉注射后会并发一过性的门脉高压及肺功能低下。但迄今为止所进行的临床HT尚未见严重并发症的报道 [31] 。

肝细胞样细胞(hepatocyte-like cells, HLCs)具有同肝细胞高度相似的生理功能,是目前HT最好的替代来源,多种细胞在不同条件下可被诱导分化为HLCs。诱导多能干细胞(induced pluripotent stem cells, iPSCs)来源于患者体细胞,在骨形成蛋白(bone morphogenetic protein, BMP)和肝细胞生长因子(hepatocyte-growth factor, HGF)刺激和3D人工基底膜等特殊培养环境中可分化为HLCs [32] 。iPSCs产生的HLCs移植到患者体内时不会激活免疫系统,避免了术后免疫抑制剂使用 [33] 。另外iPSCs的无限增殖能力可形成巨大HLCs库,允许患者在必要时接受多次移植。但研究表明iPSCs来源的HLCs中存在甲胎蛋白的表达,同时由于c-Myc之类的癌基因存在,因此该类细胞临床应用存在诱发肿瘤的风险 [34] 。Huang等人通过慢病毒转染HNF1α、HNF4α和FOXA3等转录因子成功诱导胎儿和成人结缔组织中的纤维母细胞(fibroblast)重编程为HLCs [35] 。同iPSCs诱导的HLCs一样,纤维母细胞来源HLCs的特异性可明显降低免疫排斥得发生机率。但纤维母细胞来源的HLCs并不具备无限增殖能力,因此不能不能用于单个患者的重复输注。此外,纤维母细胞对肝脏转分化(transdifferentiation)效应具有抵抗作用,同时由其诱导的HLCs仍会保留纤维母细胞的表观遗传学记忆,因此在纤维母细胞产生HLCs的过程中,遗传背景差异有可能进一步增加转分化效应抵抗最终降低HLCs功能 [36] 。间充质干细胞(mesenchymal stem cells, MSCs)是HLCs又一重要来源,其作为“免疫特惠细胞”在肝脏疾病的免疫调节中备受关注。MSCs可以从各种组织中(骨髓、脂肪、脐带等)分离后通过BMP、成纤维细胞生长因子(fibroblast growth factor, FGF)、地塞米松及IL-16刺激最终可转化为HLCs [37] 。该过程产生的细胞通常在培养后2~3周表现出肝细胞生理特征,长期培养则会导致其功能丢失 [37] 。因此,MSCs来源的HLCs是否能为受体肝脏提供足够有效的功能目前仍然存在争议。但MSCs缺乏MHC-I/MHC-II受体因此理论上不会诱导T细胞免疫应答,其输注可减少T细胞增殖和细胞毒性,改善了肝脏损伤有助于细胞再生 [38] 。在HT治疗时可利用该特性将MSCs与肝细胞混合植入从而降低免疫应答。与其他HLCs不同,肝脏祖细胞(hepatic progenitor cells, HPCs)来源的HLCs已经达到临床应用标准。经HPCs分化的HLCs在体外仍具有糖原储存、白蛋白分泌及细胞色素p450活性等生理特征。Sokal等 [39] 通过HPCs移植缓解了常规HT未能改善的临床症状,在移植后14周活组织检查显示约有3%的供体细胞存在患者肝脏中定植存活。由此可见,HLCs的临床应用具有很大前景,但目前仍没有一种HLCs可以完全取代原代肝细胞的功能功效,将来需更多临床试验去全方位探索安全有效的HLCs。

4. 3D生物打印技术

为了应对临床上日益严峻的供肝需求,生物工程学目前着重研究可用于移植的人造肝脏。可移植的人造肝脏需满足如下特点:合适的三维器官结构;完整的脉管系统;人工结构内肝细胞长期存活;具备天然肝脏相似的生理学功能 [40] 。最近在器官3D生物打印取得的重大技术进展使人造肝脏的临床应用成为可能。在该技术的帮助下,已在体外成功构建实质器官的复杂结构和完整脉管系统。作为当今组织工程最前沿的技术,它以“生物墨水”(各种细胞及细胞外基质等)为原料并结合该器官的影像学资料,通过打印机逐层构建特定器官的三维结构。Faulkner-Jones等 [41] 将iPSCs和胚胎干细胞(embryonic stem cells, ESCs)打印到藻酸盐水凝胶中并诱导其分化为HLCs,最终在体外展现出良好的肝脏形态、肝脏标志物(HNF4α、白蛋白等)以及生理学功能;Lee等 [42] 通过胶原蛋白、肝细胞、人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVECs)及成纤维细胞构建的3D复合物可稳定维持肝细胞功能;Ma等 [43] 利用HUVECs和脂肪来源的MSCs共同打印来增强HPCs的功能及表型成熟,并较传统的2D培养或3D培养表现出更好的肝细胞形态、特异性基因和代谢产物。最近,具有特定生物活性的打印肝组织已通过临床可行性测试。NovoGen生物打印平台申请了第一份相关专利并于2016年成立了Organovo Inc.公司,开发出了第一个商用级exVive3D™人类肝组织。通过该公司的打印技术,Robbins等利用iPSC、内皮细胞及肝星状细胞构建出具有稳定生理学特性的人工肝脏,主要表现为:天然组织样细胞密度、高细胞活力、细胞区室化、多层结构以及多种肝脏标志代谢物(白蛋白、胆固醇、纤维蛋白原、转铁蛋白等)合成等多方面特征 [44] 。在动物实验中,3D打印的小型肝脏同样取得了客观成果。利用HL-7702肝细胞系打印的肝脏显著改善了由肝切除术或射线引起的血清酶学异常并延长了实验组小鼠的生存时间 [45] 。3D打印肝脏的安全性及有效性在大鼠肝植模型中已经得到证实,该研究表明人造肝脏中的HLCs具有长达4周的生物活性,人造肝脏的移植有效改善了二甲基亚硝胺诱导的ALF [46] 。

上述研究成果表明3D打印在支持肝细胞体外培养中有积极作用。同时移植3D打印构建的小型肝脏可明显改善了各种原因所致的肝功能衰竭。最新研究已通过3D打印技术帮助脊髓严重受损的大鼠成功恢复了运动功能 [47] 。随着HLCs特异性及生存时间的延长,未来3D生物打印技术将在治疗ESLD中发挥重要作用。

5. 展望

我国作为世界第一人口大国,其社会老龄化程度正在快速加深。同时,中国仍是世界上乙型肝炎感染绝对人数最多的国家。因此由衰老和肝脏疾病造成的肝损伤、功能障碍或衰竭进而导致ESLD也位居世界各国之首。供体器官的严重匮乏早已无法满足临床上的巨大需求,这种情况极大束缚了以传统移植手术为基本支柱的经典医学治疗手段。再生医学作为组织工程和分子生物学转化研究的分支,已初步展示出其用于临床治疗ESLD的巨大潜力。再生医学的飞速发展标志着医学将步入重建、替代、制造组织器官的新时代,在未来有望解决包括ESLD在内的全球性重大难题,引发继传统药物和手术治疗之后的新一轮医学技术革命。

文章引用

刘 洪,游海波,王孟皓. 再生医学在治疗终末期肝病中的临床应用
Clinical Application of Regenerative Medicine in the Treatment of End-Stage Liver Diseases[J]. 临床医学进展, 2022, 12(08): 7256-7263. https://doi.org/10.12677/ACM.2022.1281048

参考文献

  1. 1. Diehl-Jones, W.L. and Askin, D.F. (2002) The Neonatal Liver, Part 1: Embryology, Anatomy, and Physiology. Neonatal Network: NN, 21, 5-12. https://doi.org/10.1891/0730-0832.21.2.5

  2. 2. Higgins, G.M. and Anderson, R.M. (1931) Experimental Pathology of the Liver. I. Restoration of the Liver of the White Rat Following Partial Surgical Removal. Archives of Pathology & Laboratory Medicine, 12, 186-202.

  3. 3. Liou, I.W. (2014) Management of End-Stage Liver Disease. The Medical Clinics of North America, 98, 119-152. https://doi.org/10.1016/j.mcna.2013.09.006

  4. 4. Olivo, R., Guarrera, J.V. and Pyrsopoulos, N.T. (2018) Liver Transplantation for Acute Liver Failure. Clinics in Liver Disease, 22, 409-417. https://doi.org/10.1016/j.cld.2018.01.014

  5. 5. Soin, A.S., Chaudhary, R.J., Pahari, H., et al. (2019) A Worldwide Survey of Live Liver Donor Selection Policies at 24 Centers with a Combined Experience of 19009 Adult Living Donor Liver Transplants. Transplantation, 103, e39-e47. https://doi.org/10.1097/TP.0000000000002475

  6. 6. Miller, C.M., Quintini, C., Dhawan, A., et al. (2017) The In-ternational Liver Transplantation Society Living Donor Liver Transplant Recipient Guideline. Transplantation, 101, 938-944. https://doi.org/10.1097/TP.0000000000001571

  7. 7. Nicolas, C.T., Hickey, R.D., Chen, H.S., et al. (2017) Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengi-neered Grafts. Stem Cells (Dayton, Ohio), 35, 42-50. https://doi.org/10.1002/stem.2500

  8. 8. Rahbari, N.N., Garden, O.J., Padbury, R., et al. (2011) Posthepatectomy Liver Failure: A Definition and Grading by the International Study Group of Liver Surgery (ISGLS). Surgery, 149, 713-724. https://doi.org/10.1016/j.surg.2010.10.001

  9. 9. Makuuchi, M., Thai, B.L., Takayasu, K., et al. (1990) Preoperative Portal Embolization to Increase Safety of Major Hepatectomy for Hilar Bile Duct Carcinoma: A Preliminary Report. Sur-gery, 107, 521-527.

  10. 10. Adam, R., Laurent, A., Azoulay, D., et al. (2000) Two-Stage Hepatectomy: A Planned Strate-gy to Treat Irresectable Liver Tumors. Annals of Surgery, 232, 777-785. https://doi.org/10.1097/00000658-200012000-00006

  11. 11. Furrer, K., Tian, Y., Pfammatter, T., et al. (2008) Selec-tive Portal Vein Embolization and Ligation Trigger Different Regenerative Responses in the Rat Liver. Hepatology (Bal-timore, Md.), 47, 1615-1623. https://doi.org/10.1002/hep.22164

  12. 12. Shindoh, J., Vauthey, J.N., Zimmitti, G., et al. (2013) Analysis of the Effi-cacy of Portal Vein Embolization for Patients with Extensive Liver Malignancy and Very Low Future Liver Remnant Volume, Including a Comparison with the Associating Liver Partition with Portal Vein Ligation for Staged Hepatectomy Approach. Journal of the American College of Surgeons, 217, 126-133. https://doi.org/10.1016/j.jamcollsurg.2013.03.004

  13. 13. de Santibanes, E. and Clavien, P.A. (2012) Playing Play-Doh to Prevent Postoperative Liver Failure: The “ALPPS” Approach. Annals of Surgery, 255, 415-417. https://doi.org/10.1097/SLA.0b013e318248577d

  14. 14. Schnitzbauer, A.A., Lang, S.A., Goessmann, H., et al. (2012) Right Portal Vein Ligation Combined with in Situ Splitting Induces Rapid Left Lateral Liver Lobe Hypertrophy Enabling 2-Staged Extended Right Hepatic Resection in Small-for-Size Settings. Annals of Surgery, 255, 405-414. https://doi.org/10.1097/SLA.0b013e31824856f5

  15. 15. Olthof, P.B., Schnitzbauer, A.A. and Schadde, E. (2018) The HPB Controversy of the Decade: 2007-2017—Ten Years of ALPPS. European Journal of Surgical Oncology: The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 44, 1624-1627. https://doi.org/10.1016/j.ejso.2018.06.005

  16. 16. Chua, T.C., Liauw, W., Chu, F., et al. (2013) Summary Outcomes of Two-Stage Resection for Advanced Colorectal Liver Metastases. Journal of Surgical Oncology, 107, 211-216. https://doi.org/10.1002/jso.23170

  17. 17. Schlegel, A., Lesurtel, M., Melloul, E., et al. (2014) ALPPS: From Human to Mice Highlighting Accelerated and Novel Mechanisms of Liver Regeneration. Annals of Surgery, 260, 839-846. https://doi.org/10.1097/SLA.0000000000000949

  18. 18. Kwon, Y.J., Lee, K.G. and Choi, D. (2015) Clinical Implica-tions of Advances in Liver Regeneration. Clinical and Molecular Hepatology, 21, 7-13. https://doi.org/10.3350/cmh.2015.21.1.7

  19. 19. Schadde, E., Schnitzbauer, A.A., Tschuor, C., et al. (2015) System-atic Review and Meta-Analysis of Feasibility, Safety, and Efficacy of a Novel Procedure: Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy. Annals of Surgical Oncology, 22, 3109-3120. https://doi.org/10.1245/s10434-014-4213-5

  20. 20. Tanaka, K., Matsuo, K., Murakami, T., et al. (2015) Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS): Short-Term Outcome, Functional Changes in the Future Liver Remnant, and Tumor Growth Activity. European Journal of Surgical Oncology: The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 41, 506-512. https://doi.org/10.1016/j.ejso.2015.01.031

  21. 21. Hernandez-Alejandro, R., Bertens, K.A., Pineda-Solis, K., et al. (2015) Can We Improve the Morbidity and Mortality Associated with the Associating Liver Partition with Portal Vein Ligation for Staged Hepatectomy (ALPPS) Procedure in the Management of Colorectal Liver Metastases? Surgery, 157, 194-201. https://doi.org/10.1016/j.surg.2014.08.041

  22. 22. Hoekstra, L.T., van Lienden, K.P., Doets, A., et al. (2012) Tumor Progression after Preoperative Portal Vein Embolization. Annals of Surgery, 256, 812-817. https://doi.org/10.1097/SLA.0b013e3182733f09

  23. 23. Oldhafer, K.J., Donati, M., Jenner, R.M., et al. (2014) ALPPS for Patients with Colorectal Liver Metastases: Effective Liver Hypertrophy, But Early Tumor Recurrence. World Journal of Surgery, 38, 1504-1509. https://doi.org/10.1007/s00268-013-2401-2

  24. 24. Fukami, Y., Kurumiya, Y. and Kobayashi, S. (2014) Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS): An Analysis of Tumor Activity. Updates in Surgery, 66, 223-225. https://doi.org/10.1007/s13304-014-0256-1

  25. 25. Hossein, A.M., Geramizadeh, B., Azarpira, N., et al. (2013) Hepatocyte Isolation from Unused/Rejected Livers for Transplantation: Initial Step toward Hepatocyte Transplantation, the First Experience from Iran. Hepatitis Monthly, 13, e10397. https://doi.org/10.5812/hepatmon.10397

  26. 26. Wang, F., Zhou, L., Ma, X., et al. (2014) Monitoring of Intrasplenic Hepatocyte Transplantation for Acute-on-Chronic Liver Failure: A Prospective Five-Year Follow-Up Study. Transplantation Proceedings, 46, 192-198. https://doi.org/10.1016/j.transproceed.2013.10.042

  27. 27. Jitraruch, S., Dhawan, A., Hughes, R.D., et al. (2014) Al-ginate Microencapsulated Hepatocytes Optimised for Transplantation in Acute Liver Failure. PLOS ONE, 9, e113609. https://doi.org/10.1371/journal.pone.0113609

  28. 28. Dhawan, A., Puppi, J., Hughes, R.D., et al. (2010) Human Hepatocyte Transplantation: Current Experience and Future Challenges. Nature Reviews. Gastroenterology & Hepatology, 7, 288-298. https://doi.org/10.1038/nrgastro.2010.44

  29. 29. Lysy, P.A., Najimi, M., Stephenne, X., et al. (2008) Liver Cell Transplantation for Crigler-Najjar Syndrome Type I: Update and Perspectives. World Journal of Gastroenter-ology, 14, 3464-3470. https://doi.org/10.3748/wjg.14.3464

  30. 30. Fisher, R.A. and Strom, S.C. (2006) Human Hepatocyte Transplantation: Worldwide Results. Transplantation, 82, 441-449. https://doi.org/10.1097/01.tp.0000231689.44266.ac

  31. 31. Nguyen, M.P., Jain, V., Iansante, V., et al. (2020) Clinical Application of Hepatocyte Transplantation: Current Status, Applicability, Limitations, and Future Outlook. Expert Review of Gastroenterology & Hepatology, 14, 185-196. https://doi.org/10.1080/17474124.2020.1733975

  32. 32. Sauer, V., Roy-Chowdhury, N., Guha, C., et al. (2014) In-duced Pluripotent Stem Cells as a Source of Hepatocytes. Current Pathobiology Reports, 2, 11-20. https://doi.org/10.1007/s40139-013-0039-2

  33. 33. Roy-Chowdhury, N., Wang, X., Guha, C., et al. (2017) Hepato-cyte-Like Cells Derived from Induced Pluripotent Stem Cells. Hepatology International, 11, 54-69. https://doi.org/10.1007/s12072-016-9757-y

  34. 34. Chen, Y., Li, Y., Wang, X., et al. (2015) Amelioration of Hyper-bilirubinemia in Gunn Rats after Transplantation of Human Induced Pluripotent Stem Cell-Derived Hepatocytes. Stem Cell Reports, 5, 22-30. https://doi.org/10.1016/j.stemcr.2015.04.017

  35. 35. Huang, P., Zhang, L., Gao, Y., et al. (2014) Direct Reprogram-ming of Human Fibroblasts to Functional and Expandable Hepatocytes. Cell Stem Cell, 14, 370-384. https://doi.org/10.1016/j.stem.2014.01.003

  36. 36. Ivanov, N.A., Tao, R., Chenoweth, J.G., et al. (2016) Strong Components of Epigenetic Memory in Cultured Human Fibroblasts Related to Site of Origin and Donor Age. PLoS Ge-netics, 12, e1005819. https://doi.org/10.1371/journal.pgen.1005819

  37. 37. Stock, P., Bruckner, S., Ebensing, S., et al. (2010) The Genera-tion of Hepatocytes from Mesenchymal Stem Cells and Engraftment into Murine Liver. Nature Protocols, 5, 617-627. https://doi.org/10.1038/nprot.2010.7

  38. 38. Faiella, W. and Atoui, R. (2016) Immunotolerant Properties of Mesen-chymal Stem Cells: Updated Review. Stem Cells International, 2016, Article ID: 1859567. https://doi.org/10.1155/2016/1859567

  39. 39. Sokal, E.M., Stephenne, X., Ottolenghi, C., et al. (2014) Liver En-graftment and Repopulation by in Vitro Expanded Adult Derived Human Liver Stem Cells in a Child with Ornithine Car-bamoyltransferase Deficiency. JIMD Reports, 13, 65-72. https://doi.org/10.1007/8904_2013_257

  40. 40. Vishwakarma, S.K., Lakkireddy, C., Bardia, A., et al. (2018) Bioen-gineered Functional Humanized Livers: An Emerging Supportive Modality to Bridge the Gap of Organ Transplantation for Management of End-Stage Liver Diseases. World Journal of Hepatology, 10, 822-836. https://doi.org/10.4254/wjh.v10.i11.822

  41. 41. Faulkner-Jones, A., Fyfe, C., Cornelissen, D.J., et al. (2015) Bi-oprinting of Human Pluripotent Stem Cells and Their Directed Differentiation into Hepatocyte-Like Cells for the Genera-tion of Mini-Livers in 3D. Biofabrication, 7, Article ID: 044102. https://doi.org/10.1088/1758-5090/7/4/044102

  42. 42. Lee, J.W., Choi, Y.J., Yong, W.J., et al. (2016) Development of a 3D Cell Printed Construct Considering Angiogenesis for Liver Tissue Engineering. Biofabrication, 8, Article ID: 015007. https://doi.org/10.1088/1758-5090/8/1/015007

  43. 43. Ma, X., Qu, X., Zhu, W., et al. (2016) Deterministi-cally Patterned Biomimetic Human iPSC-Derived Hepatic Model via Rapid 3D Bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 113, 2206-2211. https://doi.org/10.1073/pnas.1524510113

  44. 44. Robbins, J.B., O’Neill, C.M., Gorgen, V., et al. (2013) Bioprinted Three-Dimensional (3D) Human Liver Constructs Provide a Model for Interrogating Liver Biology. American Society for Cell Biology, Rockville.

  45. 45. Zhong, C., Xie, H.Y., Zhou, L., et al. (2016) Human Hepatocytes Loaded in 3D Bi-oprinting Generate Mini-Liver. Hepatobiliary & Pancreatic Diseases International, 15, 512-518. https://doi.org/10.1016/S1499-3872(16)60119-4

  46. 46. Lee, J.-S., Yoon, H., Yoon, D., et al. (2017) Development of Hepatic Blocks Using Human Adipose Tissue-Derived Stem Cells through Three-Dimensional Cell Printing Techniques. Journal of Materials Chemistry B, 5, 1098-1107. https://doi.org/10.1039/C6TB03055F

  47. 47. Koffler, J., Zhu, W., Qu, X., et al. (2019) Biomimetic 3D-Printed Scaf-folds for Spinal Cord Injury Repair. Nature Medicine, 25, 263-269. https://doi.org/10.1038/s41591-018-0296-z

  48. NOTES

    *通讯作者。

期刊菜单