Advances in Clinical Medicine
Vol. 12  No. 10 ( 2022 ), Article ID: 56769 , 7 pages
10.12677/ACM.2022.12101321

异荭草素对2型糖尿病大血管病变小鼠主动脉的保护作用及机制研究

谭娟1,2,车奎3,迟静薇3,王颜刚1*

1青岛大学附属医院内分泌与代谢病科,山东 青岛

2临沂市中心医院内分泌科,山东 临沂

3青岛大学附属医院医学研究中心,山东 青岛

收稿日期:2022年9月16日;录用日期:2022年10月5日;发布日期:2022年10月14日

摘要

目的:探讨异荭草素对T2DM大血管病变小鼠主动脉的保护作用及机制。方法:C57BL/6J雄性小鼠随机分为正常对照组(NC组)和实验组。以高脂饲料(含量60%)喂养和链脲佐菌素(STZ)腹腔注射制备2型糖尿病大血管病变模型。将成模的T2DM大血管病变小鼠随机分成模型组和异荭草素治疗组。异荭草素治疗组再分低、中、高剂量,分别按照10、20、40 mg×kg−1剂量腹腔注射给药。正常组、模型组给予腹腔注射等量溶剂0.5%羧甲基纤维素钠。实验期间观察动物一般状况并测血糖。8周后处死小鼠取胸主动脉标本。光镜下观察其病理结构,ELisa检测血管组织中AGEs水平,RT-qPCR检测RAGE、IL-6、P65、TNF-α、Vcam-1mRNA的表达水平。结果:镜下观察,与模型对照组相比,异荭草素各治疗组内膜增厚、弹力纤维断裂、泡沫细胞聚集明显减轻。与模型对照组相比,异荭草素干预后随机血糖显著下降(F = 82.20, P < 0.001),血管中AGEs浓度显著降低(F = 60.180,P < 0.001),异荭草素各治疗组血管中RAGE、IL-6、NF-κB p65、TNF-α、Vcam-1等因子的表达水平显著下降(F = 68.05~1692, P < 0.01)。结论:异荭草素可通过抑制炎症反应,改善糖尿病大血管病变。

关键词

T2DM,异荭草素,大血管病变,炎症

To Investigate the Protective Effect and Mechanism of Isoorientin on Aortic in T2DM Macrovascular Disease Mice

Juan Tan1,2, Kui Che3, Jingwei Chi3, Yangang Wang1*

1Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Shandong

2Department of Endocrinology, Linyi Central Hopistal, Linyi Shandong

3Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Sep. 16th, 2022; accepted: Oct. 5th, 2022; published: Oct. 14th, 2022

ABSTRACT

Objective: To investigate the protective effect and mechanism of isoorientin on macrovascular diseases in T2DM mice. Methods: Male C57BL/6J mice were randomly divided into normal control group (NC group) and experimental group. Type 2 diabetic macroangiopathopathy model was established by feeding high-fat diet (60%) and intrabitoneal injection of streptozotocin (STZ). Model T2DM macrovascular disease mice were randomly divided into model group and isoorientin treatment group. Isoorientin treatment group was divided into low, medium and high doses by intraperitoneal injection of 10, 20 and 40 mg×kg−1 respectively. Normal group and model group were intraperitoneally injected with 0.5% sodium carboxymethyl cellulose. During the experiment, the general condition of animals was observed and blood glucose was measured. After 8 weeks, the mice were sacrificed for thoracic aorta specimens. The pathological structure was observed under light microscope, AGEs levels in vascular tissues were detected by ELisa, and mRNA expression levels of RAGE, IL-6, P65, TNF-α and VCAM-1 were detected by RT-qPCR. Results: Compared with the model control group, the endometrial thickening, elastic fiber fracture and foam cell aggregation in isoorientin treatment groups were significantly reduced. Results: Compared with the model control group, the isoorientin treatment groups random blood glucose decreased significantly (F = 82.20, P < 0.001) and the concentration of AGEs in blood vessels decreased significantly (F = 60.18, P < 0.001). Compared with the model congtrol group, the isoorientin treatment groups also had significantin decreases in the expression levels of RAGE, IL-6, NF-κB p65, TNF-α, and Vcam-1 in blood vessels (F = 68.05~1692, P < 0.01). Conclusion: Isoorientin can improve diabetic macroangiopathy by inhibiting the inflammatory response.

Keywords:T2DM, Isoorientin, Macroangiopathy, Inflammation

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前全球糖尿病患病率居高不下,患病人数已达4.63亿,其中2型糖尿病(Type 2 diabetes mellitus, T2DM)占95%。大血管病变成为2型糖尿病主要致残和致死原因 [1],文献报道近75%的T2DM者死于心脑血管事件等大血管病变。积极寻求有效治疗或延缓大血管病变的药物,是当前糖尿病学界关注的焦点之一。糖尿病大血管病变主要病理表现为动脉粥样硬化(AS)和血管内皮功能障碍 [2]。AS与血管内皮炎症反应、氧化应激以及胰岛素抵抗密切相关 [3] [4] [5] [6]。多项研究发现,糖尿病状态下晚期糖基化终末代谢产物(AGEs)与其受体(RAGE)结合,激活NF-κB通路,上调IL-6、NF-κBp65、VCAM-1、TNF-α等炎症因子表达介导的内皮细胞功能损害 [7] [8] [9],在大血管病变发生发展过程中至关重要。异荭草素(ISO)广泛存在于多种药用植物中,是一种木犀草素糖苷类黄酮化合物。大量研究发现,它在减轻胰岛素抵抗,促进胰岛素分泌、影响葡萄糖吸收等方面发挥一定作用 [10] [11] [12] [13] [14],但是否调控T2DM状态下炎症因子表达,进而影响其血管内皮功能,尚未见报道。

在上述背景下,本研究以T2DM小鼠为研究对象,旨在探讨异荭草素对T2DM患者大血管病变的保护作用及可能机制,为异荭草素及相关药物或制剂的临床应用提供实验基础。

2. 实验材料与方法

2.1. 主要材料

SPF级C57BL/6J雄性小鼠46只,4~5周龄,体重(25 ± 3) g,购自维通利华实验动物技术有限公司,生产许可编号SCXK (京) 2016-0006。异荭草素(纯度 > 98%),购自北京普天同创生物科技有限公司;链脲佐菌素(STZ)购自美国的MedChe-m Express公司;TRIzol产自美国Invitrogen公司;2 × Sybr Green qPCR Mix荧光定量检测试剂购自湖南艾科瑞生物工程有限公司;PCR实验所需引物由北京六合华大基因科技有限公司提供。

2.2. 实验方法

2.2.1. 造模及药物干预

SPF级C57BL/6J雄性小鼠分笼饲养,每笼4~5只,正常饲料适应性喂养1周。随机分出正常对照组,以普通饲料喂养;其余37只为实验组,以含量60%的高脂饲料喂养。4周后连续5次小剂量STZ (30 mg∙kg−1)腹腔注射,每周定时尾部采血测随机血糖,血糖2次 > 16.7 mmol∙L−1为2型糖尿病小鼠造模成功。继续上述喂养8周,构建小鼠T2DM合并大血管病变模型。将造模成功的小鼠随机分为:模型对照组和异荭草素ISO低剂量干预组、中剂量干预组、高剂量干预组。各干预组分别予以ISO 10、20、40 mg/(kg∙d)腹腔注射给药。正常对照组和模型对照组给予腹腔注射等量溶剂5 g/L羧甲基纤维素钠。以造模成功当天作为第0天,每周定时测血糖,用药8周后处死小鼠,留取主动脉根部至髂动脉的整条血管组织,部分组织于4%多聚甲醛中固定,其余的放在去RNA酶的EP管中−80℃的冰箱保存。

2.2.2. HE染色观察动脉粥样硬化情况

从4%多聚甲醛中取适量血管组织块,经脱水、透明、浸蜡、包埋、切片、贴片制成组织切片。HE染色,脱蜡、脱水、染色、脱水、透明、封固,光镜下采图观察动脉粥样硬化情况。

2.2.3. ELISA检测血管组织中AGEs水平

BCA法检测血管组织中蛋白含量。经预实验选择总蛋白浓度为0.1 g/L进行测定。严格按照ELISA试剂盒操作步骤,检测样本中AGEs浓度。

2.2.4. RT-qPCR法检测血管组织中VCAM-1、RAGE、NF-κB p65、IL-6及TNF-α mRNA表达水平

Trizol法提取血管组织总RNA,反转录成cDNA。取2 μl cDNA,以β-actin为内参,置于荧光定量PCR仪器中反应。每样品设2复孔,若出现主复孔偏差过大,考虑操作不稳定所致,需要重复实验以取得较为稳定的结果。待反应结束,对扩增及融解曲线确认,进行标准曲线分析,计算mRNA相对表达量。引物序列见表1

2.3. 统计学处理

所采集的数据在实验完成后,基于SPSS23.0工具,对各项指标进行描述性统计,计量数据均采用均数±标准差( x ¯ ± s )表示,多组间比较采用单因素方差分析(One Way-ANOVA),组间两两比较采用Bonferroni (B)检验。以P < 0.05为差异具有统计学意义。

Table 1. RT-qPCR primer sequences

表1. RT-qPCR引物序列

3. 结果

3.1. 小鼠一般状况和血管组织病理学改变

正常对照组小鼠的一般情况良好,对刺激反应敏锐,皮毛有光泽,毛发均匀浓密。其余各组小鼠呈现不同程度的精神萎靡,懒动、脱毛等症状,进食量及饮水量明显增加。经异荭草素干预各组的一般状况较模型对照组不同程度改善,ISO中、高剂量治疗组改善较明显。

HE染色镜下观察:正常对照组小鼠血管组织结构完整,内膜光滑,中膜无增厚,平滑肌细胞排列规则整齐;模型对照组血管内膜可见明显增厚,局部见内皮及沉积物向管腔内突出,内皮细胞出现破损,与其内皮下层结构分界不清;ISO各治疗组病变情况改善,低剂量组动脉内膜明显增厚、粗糙,结构紊乱,平滑肌细胞排列不规则,中膜增厚;中剂量组动脉内膜增厚,中膜结构较为松散,内膜下层见增厚;高剂量组的血管内皮结构大致正常,弹力层连续性完整,平滑肌细胞排列整齐。见图1

A:模型组;B:ISO低剂量;C:ISO中剂量;D:ISO高剂量;E:对照组

Figure 1. Comparison of histopathological changes in macrovascular (HE 400×)

图1. 各组小鼠血管组织病理学观察(HE 400×)

3.2. 小鼠血糖和AGEs水平比较

实验第8周,模型对照组血糖水平较正常对照组显著升高,ISO低、中、高剂量组血糖水平较模型对照组显著降低,差异均具有统计学意义(F = 82.20, P < 0.001)。且ISO作用呈剂量依赖性。模型对照组AGEs浓度较正常对照组显著升高,ISO低、中、高剂量组血糖水平较模型对照组显著降低,有统计学意义(F = 60.180, P < 0.001)见表2

Table 2. Comparison of Glu and AGEs levels among five groups ( x ¯ ± s )

表2. 各组血糖和AGEs水平比较( x ¯ ± s )

注:与正常对照组相比,*P < 0.05;与模型对照组相比,#P < 0.05。

3.3. 各组小鼠血管组织中IL-6、P65、TNF-α、RAGE、VCAM-1 mRNA表达水平比较

与正常对照组相比,模型对照组血管组织中炎症因子RAGE、VCAM-1、IL-6、TNF-α及NF-κB p65 mRNA表达量明显升高;与模型组相比,ISO高剂量干预后小鼠血管组织中RAGE、VCAM-1、IL-6、TNF-α及NF-κB p65 mRNA表达水平显著降低,差异有统计学意义(F = 68.05~1692, P < 0.001),且异荭草素的作用与剂量明显相关。见表3

Table 3. Comparison of inflammatory indexes of vascular tissue in mice of each group ( x ¯ ± s )

表3. 各组小鼠血管组织炎症指标比较( x ¯ ± s )

注:与正常对照组相比,*P < 0.01;与模型组相比,#P < 0.01。

4. 讨论

糖尿病大血管病变是2型糖尿病常见的慢性并发症之一,其病理基础是动脉粥样硬化。随着2型糖尿病发病率的不断升高,给社会造成了沉重的负担。T2DM大血管病变的发病机制目前尚不十分明确,包括炎症反应、脂质积聚、氧化应激等。目前广泛认为高血糖所诱导的内皮功能紊乱,是糖尿病大血管病变重要的启动因素,而炎症反应作为动脉粥样硬化的关键环节,贯穿于发生发展的整个过程。目前临床上对糖尿病所导致的动脉粥样硬化无特效办法,只能采用降糖、改善循环、降压、调节血脂为主的综合对症治疗,无法从根本上预防和治疗AS的发生及发展。既往研究显示,2型糖尿病患者血糖波动可影响到血管炎性状态及内皮功能改变 [15] [16] [17] [18],但是单纯降糖难以有效改善糖尿病大血管病变患者预后,新型糖尿病血管病变防治药物研发已成为该领域的新热点。

高糖诱导的AGEs-RAGE途径激活是近期研究较多的机制,该途径通过激活下游多条炎症反应、氧化应激通路,从而启动血管内皮损伤,最终导致动脉粥样硬化的形成。这给未来治疗糖尿病大血管病变提供了新的研究方向。越来越多的证据表明,AGEs在糖尿病大血管并发症的发生发展中起着关键作用,可通过多种途径对血管内皮功能产生破坏作用,从而导致血管硬化和功能异常,其中AGEs-RAGE途径可加速糖尿病大血管病变的进程。AGEs属于多配体受体,广泛存在于血管内皮细胞、神经细胞等多种细胞的表面,其中RAGE被认为是介导AGEs信号转导的关键受体。RAGE广泛分布于多种组织器官中,正常情况下在机体的表达处于基础水平,但在糖尿病、炎症、癌症等应激状态下,特别是AGEs表达增多时,会出现高表达。高糖状态刺激下高表达的AGEs可激活AGEs-RAGE途径,诱发持续级联反应,进一步激活下游NF-κB等通路信号转导,上调IL-6、TNF-α、VCAM-1等炎症因子的表达;同时遭到破坏的相关蛋白促使更多炎症因子生成,加重细胞内炎症反应,对血管内皮产生“二次打击”,也就是“二次打击学说”,加速了动脉粥样硬化的形成 [19] [20] [21] [22]。

异荭草素,一种黄酮类化合物单体,广泛存在于荞麦芽、西番莲、葫芦果等多种植物中,研究显示异荭草素具有降糖、抗炎、抗氧化、调脂等功效 [13]。本研究通过异荭草素干预T2DM大血管病变小鼠模型,观察其对AGEs/RAGE/NF-κB通路的影响。研究结果显示,ISO干预后的小鼠血管内皮破坏、结构紊乱、内膜增厚等情况均得到明显改善;小鼠血管组织中AGEs水平以及RAGE、VCAM-1、IL-6、TNF-α、NF-κB p65的表达量均显著下降(P < 0.01)。说明异荭草素可减少2型糖尿病大血管病变小鼠主动脉中AGEs的蓄积及RAGE的表达,减少AGEs-RAGE的激活,进一步抑制NF-κB及其下游致炎因子的表达及炎症反应,从而改善2型糖尿病合并大血管病变模型小鼠的动脉粥样硬化。

综上所述,本研究显示,异荭草素可抑制T2DM大血管病变小鼠主动脉组织AGEs/RAGE/NF-κB通路,对动脉粥样硬化的发生发展起到一定的抑制作用,故应用异荭草素有望成为治疗糖尿病大血管病变的新方法,但确切的分子机制及单药治疗的降糖效果有限等问题,尚需进一步研究与完善,以探讨其临床应用的可行性。

基金项目

山东省重点研发计划项目(2015GSF118007)。

文章引用

谭 娟,车 奎,迟静薇,王颜刚. 异荭草素对2型糖尿病大血管病变小鼠主动脉的保护作用及机制研究
To Investigate the Protective Effect and Mechanism of Isoorientin on Aortic in T2DM Macrovascular Disease Mice[J]. 临床医学进展, 2022, 12(10): 9140-9146. https://doi.org/10.12677/ACM.2022.12101321

参考文献

  1. 1. Zheng, Y., Ley, S.H. and Hu, F.B. (2018) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. https://doi.org/10.1038/nrendo.2017.151

  2. 2. Madonna, R., Pieragostino, D., Balistreri, C.R., et al. (2018) Diabetic Macroangiopathy: Pathogenetic Insights and Novel Therapeu-tic Approaches with Focus on High Glucose-Mediated Vascular Damage. Vascular Pharmacology, 107, 27-34. https://doi.org/10.1016/j.vph.2018.01.009

  3. 3. Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Ather-osclerosis. Circulation Research, 124, 315-327. https://doi.org/10.1161/CIRCRESAHA.118.313591

  4. 4. Katakami, N. (2018) Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. Journal of Atherosclerosis and Thrombosis, 25, 27-39. https://doi.org/10.5551/jat.RV17014

  5. 5. Scioli, M.G., Cervelli, V., Arcuri, G., et al. (2014) High Insulin-Induced Down-Regulation of Erk-1/IGF-1R/FGFR-1 Signaling Is Required for Oxidative Stress-Mediated Apoptosis of Adi-pose-Derived Stem Cells. Journal of Cellular Physiology, 229, 2077-2087. https://doi.org/10.1002/jcp.24667

  6. 6. Yuan, T., Yang, T., Chen, H., et al. (2019) New Insights into Oxidative Stress and Inflammation during Diabetes Mellitus-Accelerated Atherosclerosis. Redox Biology, 20, 247-260. https://doi.org/10.1016/j.redox.2018.09.025

  7. 7. Akbari, M. and Hassan, Z.V. (2018) IL-6 Signalling Pathways and the Development of Type 2 Diabetes. Inflammopharmacology, 26, 685-698. https://doi.org/10.1007/s10787-018-0458-0

  8. 8. Cui, R., Sun, S.Q., Zhong, N., et al. (2020) The Relationship be-tween Atherosclerosis and Bone Mineral Density in Patients with type 2 Diabetes Depends on Vascular Calcifications and Sex. Osteoporosis International, 31, 1135-1143. https://doi.org/10.1007/s00198-020-05374-4

  9. 9. Luc, K., Schramm-Luc, A., Guzik, T.J., et al. (2019) Oxidative Stress and Inflammatory Markers in Prediabetes and Diabetes. Journal of Physiology and Pharmacology, 70, 809-824.

  10. 10. Li, Y., Zhao, Y., Tan, X., et al. (2020) Isoorientin Inhibits Inflammation in Macrophages and Endotoxe-mia Mice by Regulating Glycogen Synthase Kinase 3β. Mediators of Inflammation, 2020, Article ID: 8704146. https://doi.org/10.1155/2020/8704146

  11. 11. Slim, C., Zaouali, M.A., Nassrallah, H., et al. (2020) Protective Poten-tial Effects of Fucoidan in Hepatic Cold Ischemia-Rerfusion Injury in Rats. International Journal of Biological Macro-molecules, 155, 498-507. https://doi.org/10.1016/j.ijbiomac.2020.03.245

  12. 12. Ayissi Owona, B., Angie Abia, W. and Fewou Moundipa, P. (2020) Natural Compounds Flavonoids as Modulators of Inflammasomes in Chronic Diseases. International Im-munopharmacology, 84, Article ID: 106498. https://doi.org/10.1016/j.intimp.2020.106498

  13. 13. 万思琦, 刘立亚, 刘梦思, 等. 荭草苷的药理作用机制研究[J]. 医学研究杂志, 2018, 47(6): 183-186.

  14. 14. Laddha, A.P. and Kulkarni, Y.A. (2019) Tannins and Vascular Com-plications of Diabetes: An Update. Phytomedicine, 56, 229-245. https://doi.org/10.1016/j.phymed.2018.10.026

  15. 15. Cornelius, V.A., Yacoub, A., Kelaini, S. and Margariti, A. (2021) Diabetic Endotheliopathy: RNA-Binding Proteins as New Therapeutic Targets. The International Journal of Bio-chemistry & Cell Biology, 131, Article ID: 105907. https://doi.org/10.1016/j.biocel.2020.105907

  16. 16. Poznyak, A., Grechko, A.V., Poggio, P., et al. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article No. 1835. https://doi.org/10.3390/ijms21051835

  17. 17. Yu, Z.W., Zhang, J., Li, X., et al. (2020) A New Research Hot Spot: The Role of NLRP3 Inflammasome Activation, a Key Step in Pyroptosis, in Diabetes and Diabetic Complications. Life Sciences, 240, Article ID: 117138. https://doi.org/10.1016/j.lfs.2019.117138

  18. 18. Ding, S., Xu, S., Ma, Y., et al. (2019) Modulatory echanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules, 9, Article No. 850. https://doi.org/10.3390/biom9120850

  19. 19. Shi, Y. and Vanhoutte, P.M. (2017) Macro- and Microvascular Endo-thelial Dysfunction in Diabetes. Journal of Diabetes, 9, 434-449. https://doi.org/10.1111/1753-0407.12521

  20. 20. Rhee, S.Y. and Kim, Y.S. (2018) The Role of Advanced Glycation end Products in Diabetic Vascular Complications. Diabetes & Metabolism Journal, 42, 188-195. https://doi.org/10.4093/dmj.2017.0105

  21. 21. Zeng, C., Li, Y., Ma, J., et al. (2019) Clinical /Translational Aspects of Advanced Glycation End-Products. Trends in Endocrinology and Metabolism, 30, 959-973. https://doi.org/10.1016/j.tem.2019.08.005

  22. 22. Wu, N., Shen, H., Liu, H., et al. (2016) Acute Blood Glucose Fluc-tuation Enhances Rat Aorta Endothelial Cell Apoptosis, Oxidative Stress and Proinflammatory Cytokine Expression in Vivo. Cardiovascular Diabetology, 15, Article No. 109. https://doi.org/10.1186/s12933-016-0427-0

期刊菜单