Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78929 , 6 pages
10.12677/ACM.2024.141044

外泌体miRNA-126对缺血性脑卒中合并代谢相关脂肪性肝病患者的相关性研究

韩雪1,侯鹏飞2,纪文静1*

1新疆医科大学第二附属医院消化科,新疆 乌鲁木齐

2新疆医科大学第二附属医院医学影像中心,新疆 乌鲁木齐

收稿日期:2023年12月8日;录用日期:2024年1月2日;发布日期:2024年1月10日

摘要

脑卒中(cerebral stroke)又称为“中风”、“脑血管意外”,是全球第二大死亡原因及第三大致残原因。根据临床表现和病因分为:缺血性卒中和出血性卒中,前者约占全球所有卒中的71%。代谢相关脂肪性肝病(metabolic related fatty liver disease, MAFLD)曾用名为非酒精性脂肪性肝病(NAFLD),已经取代病毒性肝炎,成为我国慢性肝病的第一大病因。MAFLD作为多系统代谢功能紊乱疾病,可通过代谢相关的多种机制增加2型糖尿病(T2DM)、缺血性脑卒中和心血管疾病的风险。近年来的研究以外泌体的物质构成、运输、细胞间通讯多个功能为出发点,为临床疾病诊断及预后、治疗靶点提供了新手段。外泌体天然存在于各类型体液中,也可被所有类型细胞分泌,目前对外泌体的探究趋势已经从集中于肿瘤源性转变至对自身免疫性疾病、代谢疾病和缺血性疾病等非肿瘤性疾病的研究。外泌体的高度特异性和敏感性,使其可以作为一种疾病早期非侵入性新型诊断指标,本文就外泌体miRNA-126与缺血性脑卒中合并MAFLD患者的相关性作一综述。

关键词

缺血性脑卒中,代谢相关脂肪性肝病,外泌体,miRNA-126

Correlation Study of Exosome miRNA-126 in Patients with Metabolic Related Fatty Liver Disease after Ischemic Stroke

Xue Han1, Pengfei Hou2, Wenjing Ji1*

1Department of Gastroenterology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

2Medical Imaging Center, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Dec. 8th, 2023; accepted: Jan. 2nd, 2024; published: Jan. 10th, 2024

ABSTRACT

Cerebral Stroke, also known as “Stroke” and “Cerebrovascular Accident”, is the second leading cause of death and the third leading cause of disability in the world. According to clinical manifestations and etiology, cerebral stroke is divided into ischemic stroke and hemorrhagic stroke, the former is more common, accounting for about 71% of all strokes worldwide. Metabolic related fatty liver disease (MAFLD) was once known as non-alcoholic fatty liver disease (NAFLD). The prevalence has replaced the viral hepatitis, and become the first big cause of chronic liver disease. MAFLD is a multisystem metabolic disorder that increases the risk of type 2 diabetes mellitus (T2DM), ischemic stroke, and cardiovascular disease through multiple metabolism-related mechanisms. In recent years, the study of exosome material composition, transport, and cellular communication functions has provided a new means for clinical disease diagnosis, prognosis, and therapeutic targets. Exosomes naturally exist in all types of body fluids and can be secreted by all types of cells. Currently, the research trend of exosomes has shifted from focusing on tumor-derived diseases to non-neoplastic diseases such as autoimmune diseases, metabolic diseases and ischemic diseases. Because of their high specificity and sensitivity, exosomes can be used as a new non-invasive diagnostic indicator for early disease. This article reviews the correlation between exosomes miRNA-126 and patients with ischemic stroke complicated with MAFLD.

Keywords:Ischemic Stroke, Metabolic Related Fatty Liver Disease, Exosomes, miRNA-126

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 缺血性脑卒中流行病学

缺血性脑卒中(ischemic stroke IS)是脑供血不足或脑供血动脉狭窄、闭塞导致的脑组织坏死总称,是一种高致残率、高死亡率疾病 [1] 。缺血性脑卒中的发病率和患病率根据时间及人口生活方式而变化,据统计,每年全球有960万IS发生,相比高收入国家,低收入和中等收入国家发病率增加比较显著 [2] 。大多数IS是由栓子引起的动脉栓塞所致,常见栓子来源之一是脑血管系统,包括主动脉弓、颈部或颅内血管中的溃疡性和典型的动脉粥样硬化斑块 [3] 。MAFLD是IS患者常见并发症之一,MAFLD可引起颈内或颅内中小动脉粥样硬化,导致脑血流动力学异常,继而加重IS发生,造成不良预后。这就意味着早期发现可逆性致病危险因素及合并症,对改善IS预后起着不可或缺的作用。

2. 代谢相关脂肪性肝病在缺血性脑卒中的发病

代谢相关脂肪性肝病(MAFLD)近年来发病率逐渐升高,已成为慢性肝病的最常见原因。2020年初,为了更好地反映代谢相关发病机制和疾病的异质性,国际专家组共识建议将NAFLD更名为“代谢相关脂肪性肝病(MAFLD) [4] ,其诊断标准为基于肝脂肪变性,及伴有以下三个标准之一:超重/肥胖、T2DM和(或)代谢失调 [5] 。

大脑含有多种脂质类别,其中多不饱和脂肪酸(PUFA)被认为是维持体内平衡的必需脂肪酸,脑中PUFA水平取决于血液循环和磷脂酶2 (PLA2)的表达水平,经PLA2催化,花生四烯酸等代谢产物对脑细胞及慢性血管炎症性疾病有多种作用,包括血管扩张、收缩、调节血小板活化。脑血流的减少会使PUFAs、AA、DHA和二十碳五烯酸(EPA)堆积 [6] ,无法释放至循环中,导致代谢功能紊乱,代谢疾病发生。而且有研究表明,NAFLD是IS的独立危险因素 [7] 。在NAFLD患者中,IS的发生率为6.05%,且发现丙氨酸氨基转移酶(ALT)水平升高是影响中风发生的显著因素 [8] 。因此可以对其他特异性血清生物标志物作为IS合并MAFLD患者早期预测指标进行研究。

3. TCD评估缺血性脑卒中合并MAFLD患者的脑血流动力学变化

大脑是机体代谢率最高的器官,因此要保证脑血流量稳定,但血管狭窄或闭塞都会降低脑灌注,影响脑血流量(CBF),脑血流自身调节是维持CBF平稳的重要因素之一。脑血流自动调节(CA)功能是指,脑灌注压发生急剧变化时维持充足血流的能力 [9] 。缺血性脑卒中患者通常双侧大脑的CA会失衡,有研究表明,患有NAFLD的受试者经颅多普勒参数的异常变化,主要表现在双侧大脑中动脉的搏动指数(PI)。MAFLD患者出现脑血流动力学紊乱的机制源自心血管损伤机制,如内皮功能障碍、动脉壁硬度增加、颈内动脉内膜中层指数(CIMT)升高、左室舒张障碍 [10] 。目前的发现说明,MAFLD通过血流阻力影响脑血流动力学。

经颅多普勒超声(TCD)是测量CBF最常用的无创技术,作为一种准确、无创的床旁测量,其从根本上测的不是CBF,而是脑血流速度(CBFV) [11] ,包括远端血管血流阻力(搏动指数) [12] 。有研究用TCD对NAFLD患者颈动脉及椎动脉的最大收缩速度(MSV)、阻力指数(RI)、搏动指数进行评估,结果证明颈内动脉搏动指数差异尤其显著 [10] 。NAFLD的脂肪变性程度可以影响CIMT和中风的进展,严重脂肪变性导致事件的发生几率增高 [8] 。TCD虽然作为一项非侵入性、安全性高的CBF检查,可以为脑血管疾病急性期和早期诊断及检测提供重要信息 [12] ,但与电子计算机断层扫描(CT)、CT血管造影和核磁共振成像(MRI)相比缺少了特异性及灵敏度,使其应用更局限。所以我们需要进一步探索准确且具有高度特异性及灵敏度的标志物。

4. 外泌体及其携带miRNA

4.1. 外泌体概述

外泌体作为科学家们越来越关注的生物标志物,在临床应用中发挥着不可替代的作用。外泌体是EVs中的一类范围为30~150 nm的双层泡状纳米颗粒 [13] ,几乎被所有类型细胞分泌,其起源是参与内吞途径的囊泡 [14] ,携带着蛋白质和核酸、脂质等对受体细胞发挥生物学活性。外泌体主要作用机制是通过配体–受体相互作用,具体发挥生物学效应的方式有两种,一是表面的蛋白分子或脂质配体直接激活靶细胞表面的受体,启动信号级联反应;二是与靶细胞膜融合进入细胞内,将自身携带的活性分子带入胞内发挥作用。有最新研究表明外泌体胞内和胞外分泌途径及机制是特定的,可被调节的 [15] ,并且外泌体的供体细胞来源不同,可能包含特定的靶向分子,使受体组织有一定的特异性 [16] 。

4.2. miRNA概述

miRNA属于调控性非编码RNA,其含量随外界应激条件和细胞成熟度、代谢活跃度、健康状态而发生改变,随后在基因表达中发挥调控作用。miRNA对基因表达的调控作用表现在转录后水平上,其机制的选择主要取决于miRNA与靶基因mRNA序列的互补程度。相较于血清miRNAs而言,血清外泌体miRNA受到囊泡结构的保护,具有更高的稳定性且可以保护生物分子不被降解,被输送到靶细胞中调节特定基因的表达 [17] 。且其携带的miRNA差异性表达和在受体细胞中的重要作用已在许多研究中被证实 [14] ,并成为医学研究领域中的热点。

4.3. 外泌体miRNA研究现状

由于外泌体miRNA对组织或细胞类型的高特异性 [18] ,故所包含的miRNA亚群是不同的。虽然近些年肿瘤细胞相关的外泌体miRNA仍是研究热点,如:最新研究表明,肝脏特异性外泌体miR-122在结直肠癌患者中表达显著升高,肝转移患者中表现尤为显著,可作为结直肠癌患者的独立预测血清学标志物 [19] 。在乳腺癌患者中,肿瘤外泌体来源的miR-9和miR-181a可作为高IL-6乳腺癌的治疗靶点,它们分别通过靶向SOCS3和PIAS3刺激JAK/STAT信号通路,继而促进早期髓系衍生抑制细胞(eMDSCs)的扩增 [20] 。但最新研究趋势不再局限于肿瘤外泌体来源的miRNA,分别对自身免疫系统疾病、中枢神经系统疾病、代谢相关疾病等非肿瘤性疾病相关外泌体miRNA展开研究,为非肿瘤性疾病的潜在诊断和预后提供更有价值和特异性的新型生物学标志物。

5. 外泌体miRNA-126与缺血性脑卒中合并MAFLD患者的相关性

5.1. 外泌体miRNA-126与缺血性脑卒中

既往有研究发现外泌体miRNA是诊断IS和评估缺血严重程度的重要生物标志物,如:外泌体miRNA-9和miRNA-124、miRNA-223在IS中上调,miRNA-15a和miR-424、miR-126则是下调的。此外,也有些外泌体miRNA可用作区分急性期和亚急性期IS,代表外泌体miRNA有miR-422a、miR-125b-2-3p [21] 。外泌体miRNA-126作为IS早期诊断的生物学标志物 [22] ,现在仍被持续研究,最新相关研究则是干细胞来源外泌体miR-126对IS治疗的研究。例如:Bihl等人从内皮祖细胞(EPCs)获得的外泌体促进了糖尿病缺血性中风小鼠的血管生成和神经发生,而miR-126的富集显示EPC衍生外泌体的治疗效果增强 [23] 。Geng等人在研究中表明脂肪源干细胞来源的外泌体介导miRNA-126的转移,达到抑制IS诱导的小胶质细胞活化和炎症反应、促进IS发生后的功能恢复和血管生成 [24] 。

5.2. 外泌体miRNA-126与MAFLD

MAFLD作为多系统代谢功能紊乱疾病,其组织病理学特征包括肝脏炎症、坏死和脂肪堆积 [25] 。肝脏作为机体最大代谢器官,分泌大量的蛋白质、EV、非编码RNA,影响肝脏和外周组织的代谢 [26] 。而肝细胞中脂质堆积,内质网应激等因素促使肝脏分泌外泌体,是MAFLD疾病发展的关键机制之一 [17] 。在各类研究中,脂肪组织来源的外泌体被认为在肥胖诱导的胰岛素抵抗、脂质代谢疾病、免疫调节、肿瘤的发生发展和血管生成方面有着重要作用 [27] 。与NAFLD相关的外泌体miRNA分别有:具有肝细胞特异性的miR-122;被脂肪细胞来源的外泌体环状脱泛素(circ-DB)抑制的miR-34a [28] ;及与转氨酶和尿酸呈正相关的miR-146b-3p、miR-155-5p等 [17] 。miR-126作为内皮细胞特异性miRNA,与肝纤维化的关联机制主要通过上调NF-kB从而激活NF-kB通路下游的基因TGF-β1和I型胶原纤维的表达,调控肝纤维化的发展过程 [29] 。

5.3. 外泌体miRNA-126对缺血性脑卒中合并MAFLD患者的影响

miRNA具有确定其sEV分泌或细胞滞留的排序序列,从而定义不同细胞类型的sEV miRNA谱 [30] 。miRNA-126是一种具有内皮细胞特异性的miRNA,在维持血管完整性和促进血管生成、内皮细胞(EC)功能方面起着至关重要的作用 [31] ,也可以通过调控黏附因子表达或通过磷脂腺肌醇-3-激酶(PI3K)/蛋白激酶(Akt)/核因子(NF)-kB信号通路发挥血管炎性作用 [32] 。故在心脑血管疾病的发病机制与靶向治疗中有着重要意义,但目前对于外泌体miR-126在MAFLD患者中的表达尚未得到证实,可以通过炎性级联反应和血管生成方面进一步展开实验。

6. 讨论

随着最新指南指出将高血压诊断标准下调至130/80 mmHg,缺血性脑卒中的患病率继续呈增长趋势。代谢相关脂肪性肝病作为IS独立危险因素之一,会增加IS患病率。为评估MAFLD或IS患者的脑血流动力学,常用TCD测量。诊断MAFLD患者通常使用瞬时弹性成像技术或肝脏超声作为无创检查方法,天冬氨酸氨基转移酶、丙氨酸氨基转移酶等血清肝酶也可作为辅助检查对MAFLD进行诊断,但以上检查方法均缺乏敏感性和特异性。肝活检作为MAFLD的金标准检查,其缺点在于有创和增加感染风险。所以外泌体miRNA作为疾病早期诊断和预后指标的可研究性是毋庸置疑的。从国内外现有研究看,已有许多研究证实了血清miRNA-126在缺血性脑卒中或MAFLD中的表达下调,外泌体miRNA治疗IS的研究也得到证实,但外泌体miR-126与缺血性脑卒中合并代谢相关疾病的相关性研究尚未出现,本研究欲从发病机制和信号通路出发,设立了严格的纳入排除标准,进一步探索MAFLD在缺血性脑卒中发病率是否存在差异;研究外泌体miRNA-126与缺血性脑卒中合并MAFLD患者的相关性,是否有助于缺血性脑卒中合并MAFLD患者的早期预测、改善缺血性脑卒中患者的不良预后。

基金项目

新疆神经系统疾病研究重点实验室基金资助项目(XJDX1711-2242)。

文章引用

韩 雪,侯鹏飞,纪文静. 外泌体miRNA-126对缺血性脑卒中合并代谢相关脂肪性肝病患者的相关性研究
Correlation Study of Exosome miRNA-126 in Patients with Metabolic Related Fatty Liver Disease after Ischemic Stroke[J]. 临床医学进展, 2024, 14(01): 301-306. https://doi.org/10.12677/ACM.2024.141044

参考文献

  1. 1. Feigin, V.L., Nguyen, G., Cercy, K., et al. (2018) Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. The New England Journal of Medicine, 379, 2429-2437. https://doi.org/10.1056/NEJMoa1804492

  2. 2. GBD 2016 Neurology Collaborators (2019) Global, Regional, and National Burden of Neurological Disorders, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, 459-480.

  3. 3. Campbell, B.C.V., De Silva, D.A., Macleod, M.R., et al. (2019) Is-chaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70. https://doi.org/10.1038/s41572-019-0118-8

  4. 4. Zeng, J., Li, Q., Qian, J., et al. (2022) Prevalence and Characteris-tics of MAFLD in Chinese Adults Aged 40 Years or Older: A Community-Based Study. Hepatobiliary & Pancreatic Diseases International, 21, 154-161. https://doi.org/10.1016/j.hbpd.2022.01.006

  5. 5. Eslam, M., Newsome, P.N., Sarin, S.K., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039

  6. 6. Nakamura, A., Kento, O. and Takashi, S. (2020) Lipid Mediators and Sterile Inflammation in Ischemic Stroke. International Immunology, 32, 719-725. https://doi.org/10.1093/intimm/dxaa027

  7. 7. Hu, J., Xu, Y., He, Z., et al. (2018) Increased Risk of Cerebrovascular Accident Related to Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. Oncotarget, 9, 2752-2760. https://doi.org/10.18632/oncotarget.22755

  8. 8. Tang, A.S.P., Chan, K.E., Quek, J., et al. (2022) Non-Alcoholic Fatty Liver Disease Increases Risk of Carotid Atherosclerosis and Ischemic Stroke: An Updated Meta-Analysis with 135,602 Individuals. Clinical and Molecular Hepatology, 28, 483-496. https://doi.org/10.3350/cmh.2021.0406

  9. 9. Claassen, J., Thijssen, D.H.J., Panerai, R.B. and Faraci, F.M. (2021) Regulation of Cerebral Blood Flow in Humans: Physiology and Clinical Implications of Autoregulation. Physiological Reviews, 101, 1487-1559. https://doi.org/10.1152/physrev.00022.2020

  10. 10. Vidal-Gonzalez, D., Lopez-Sanchez, G.N., Concha-Rebollar, L.A., et al. (2020) Cerebral Hemodynamics in the Non-Alcoholic Fatty Liver. Annals of Hepatology, 19, 668-673. https://doi.org/10.1016/j.aohep.2020.06.006

  11. 11. 刘嘉欣, 蔺慕会, 郭蓉, 等. 经颅多普勒超声评估急性缺血性卒中患者的动态脑血流自动调节[J]. 国际脑血管病杂志, 2022, 30(4): 297-302.

  12. 12. Robba, C., Goffi, A., Geera-erts, T., et al. (2019) Brain Ultrasonography: Methodology, Basic and Advanced Principles and Clinical Applications. A Narrative Review. Intensive Care Medicine, 45, 913-927. https://doi.org/10.1007/s00134-019-05610-4

  13. 13. Doyle, L.M. and Wang, M.Z. (2019) Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8, Article 727. https://doi.org/10.3390/cells8070727

  14. 14. Rezaie, J., Feghhi, M. and Etemadi, T. (2022) A Review on Exosomes Application in Clinical Trials: Perspective, Questions, and Challenges. Cell Communication and Signaling, 20, Article No. 145. https://doi.org/10.1186/s12964-022-00959-4

  15. 15. Gurunathan, S., Kang, M.H. and Kim, J.H. (2021) A Compre-hensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Inter-national Journal of Nanomedicine, 16, 1281-1312. https://doi.org/10.2147/IJN.S291956

  16. 16. Murphy, D.E., de Jong, O.G., Brouwer, M., et al. (2019) Extracellular Vesicle-Based Therapeutics: Natural versus Engineered Targeting and Trafficking. Experimental & Molecular Medicine, 51, 1-12. https://doi.org/10.1038/s12276-019-0223-5

  17. 17. Mahmoudi, A., Butler, A.E., Jamialahmadi, T., et al. (2022) The Role of Exosomal miRNA in Nonalcoholic Fatty Liver Disease. Journal of Cellular Physiology, 237, 2078-2094. https://doi.org/10.1002/jcp.30699

  18. 18. Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167. https://doi.org/10.3390/ijms23137167

  19. 19. Sun, L., Liu, X., Pan, B., et al. (2020) Serum Exosomal miR-122 as a Potential Diagnostic and Prognostic Biomarker of Colorectal Cancer with Liver Metastasis. Journal of Cancer, 11, 630-637. https://doi.org/10.7150/jca.33022

  20. 20. Jiang, M., Zhang, W., Zhang, R., et al. (2020) Cancer Exo-some-Derived miR-9 and miR-181a Promote the Development of Early-Stage MDSCs via Interfering with SOCS3 and PIAS3 Respectively in Breast Cancer. Oncogene, 39, 4681-4694. https://doi.org/10.1038/s41388-020-1322-4

  21. 21. Jiang, L., Chen, W., Ye, J., et al. (2022) Potential Role of Exo-somes in Ischemic Stroke Treatment. Biomolecules, 12, Article 115. https://doi.org/10.3390/biom12010115

  22. 22. Cui, J., Liu, N., Chang, Z., et al. (2020) Exosomal MicroRNA-126 from RIPC Serum Is Involved in Hypoxia Tolerance in SH-SY5Y Cells by Downregulating DNMT3B. Molecular Therapy—Nucleic Acids, 20, 649-660. https://doi.org/10.1016/j.omtn.2020.04.008

  23. 23. Wang, J., Chen, S., Zhang, W., et al. (2020) Exosomes from miRNA-126-Modified Endothelial Progenitor Cells Alleviate Brain Injury and Promote Functional Recovery after Stroke. CNS Neuroscience & Therapeutics, 26, 1255-1265. https://doi.org/10.1111/cns.13455

  24. 24. Geng, W., Tang, H., Luo, S., et al. (2019) Exosomes from miR-NA-126-Modified ADSCs Promotes Functional Recovery after Stroke in Rats by Improving Neurogenesis and Sup-pressing Microglia Activation. American Journal of Translational Research, 11, 780-792.

  25. 25. Pierantonelli, I. and Svegliati-Baroni, G. (2019) Nonalcoholic Fatty Liver Disease: Basic Pathogenetic Mechanisms in the Progression from NAFLD to NASH. Transplantation, 103, e1-e13. https://doi.org/10.1097/TP.0000000000002480

  26. 26. Watt, M.J., Miotto, P.M., De Nardo, W. and Montgomery, M.K. (2019) The Liver as an Endocrine Organ-Linking NAFLD and In-sulin Resistance. Endocrine Reviews, 40, 1367-1393. https://doi.org/10.1210/er.2019-00034

  27. 27. Crewe, C. and Scherer, P.E. (2022) Intercellular and Interorgan Crosstalk through Adipocyte Extracellular Vesicles. Reviews in Endo-crine and Metabolic Disorders, 23, 61-69. https://doi.org/10.1007/s11154-020-09625-x

  28. 28. Zhang, H., Deng, T., Ge, S., et al. (2019) Exosome circRNA Secreted from Adipocytes Promotes the Growth of Hepatocellular Carcinoma by Targeting Deubiquitination-Related USP7. Oncogene, 38, 2844-2859. https://doi.org/10.1038/s41388-018-0619-z

  29. 29. Feng, X., Tan, W., Cheng, S., et al. (2015) Upregulation of mi-croRNA-126 in Hepatic Stellate Cells May Affect Pathogenesis of Liver Fibrosis through the NF-κB Pathway. DNA and Cell Biology, 34, 470-480. https://doi.org/10.1089/dna.2014.2760

  30. 30. Garcia-Martin, R., Wang, G., Brandao, B.B., et al. (2022) MicroRNA Sequence Codes for Small Extracellular Vesicle Release and Cellular Retention. Nature, 601, 446-451. https://doi.org/10.1038/s41586-021-04234-3

  31. 31. Zhang, L., Ouyang, P., He, G., et al. (2021) Exosomes from mi-croRNA-126 Overexpressing Mesenchymal Stem Cells Promote Angiogenesis by Targeting the PIK3R2-Mediated PI3K/Akt Signalling Pathway. Journal of Cellular and Molecular Medicine, 25, 2148-2162. https://doi.org/10.1111/jcmm.16192

  32. 32. 任佳君, 刘路路, 惠岗, 等. 循环miRNA-126在冠心病发生发展中的作用[J]. 中国老年学杂志, 2017, 37(10): 2580-2582.

  33. NOTES

    *通讯作者。

期刊菜单