Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 76741 , 7 pages
10.12677/ACM.2023.13122650

维生素K对帕金森病的影响

张春莉1,李红燕2*

1新疆医科大学研究生院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院神经内科,新疆 乌鲁木齐

收稿日期:2023年11月7日;录用日期:2023年12月1日;发布日期:2023年12月8日

摘要

帕金森病(Parkinson’s disease, PD)是一种慢性神经系统疾病,主要影响患者的运动能力和协调自主能力。目前这些症状源于大脑中的黑质细胞变性死亡,导致神经递质多巴胺的减少。除此之外,铁沉积、氧化应激和脂质过氧化损伤在帕金森病中的致病作用也逐渐被认知。维生素K对苯二酚是维生素K的完全还原形式,可作为一种抗氧化剂,在防止细胞凋亡,氧化应激和小胶质细胞的激活、神经元细胞电子传递作用等方面都很有前途。但是对于维生素K对帕金森病的发病机制及治疗关系的研究非常有限,仍需通过大量临床实验及动物实验进一步研究。

关键词

帕金森病,氧化应激,铁死亡,维生素K,行为学,谷胱甘肽

Impact Factor of Vitamin K on Parkinson’s Disease

Chunli Zhang1, Hongyan Li2*

1Graduate School of Xinjiang Medical University, Urumqi Xinjiang

2Department of Neurology, Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi Xinjiang

Received: Nov. 7th, 2023; accepted: Dec. 1st, 2023; published: Dec. 8th, 2023

ABSTRACT

Parkinson’s disease (PD) is a chronic neurological disorder that primarily affects movement and coordination. The current symptoms stem from the degeneration and death of cells in the substantia nigra in the brain, resulting in a decrease in the neurotransmitter dopamine. In addition, iron overload, elevated oxidative stress and lipid peroxidation damage are further significant features of Parkinson’s pathophysiology. Vitamin K (vitamin K hydroquinone, VKH2) is a completely reduced form of vitamin K, which acts as an antioxidant and is promising in preventing apoptosis, oxidative stress and activation of microglia, and electron transfer in neuronal cells. However, the research on the pathogenesis and treatment relationship of vitamin K to Parkinson’s disease is very limited, and it still needs to be further studied through a large number of clinical experiments and animal experiments.

Keywords:Parkinson’s Disease, Oxidative Stress, Iron Death, Vitamin K, Behavioral Science, Glutathione

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

帕金森病(PD)是世界上第二大最常见的神经退行性疾病,美国约有104万人,全球约有610万人 [1] ,是一种年龄依赖性、以静止性震颤、肌强直、运动迟缓等运动症状 [2] 及精神障碍、自主神经功能障碍等非运动症状为主要表现的迟发性神经退行性疾病 [3] 。目前除了传统公认的多巴胺能神经元变性坏死所致的黑质–纹状体通路障碍 [4] 和神经元中错误折叠的α-突触核蛋白形成的路易小体 [5] 是其主要的病理特征外,铁沉积 [6] 、氧化应激 [7] 和脂质过氧化损伤 [8] 也是帕金森病病理生理学的进一步显著特征。然而,将这些病理特征与帕金森病联系起来的潜在机制仍不清楚。

维生素K最初是因其参与血液凝固而被建立起来的 [9] ,但现在有令人信服的证据表明它在神经系统中的作用。特别是维生素K2通过在电子传递中的作用防止神经元细胞凋亡、氧化应激和小胶质细胞激活,关于这些方面的研究结果非常有希望对抗多发性硬化症、阿尔茨海默病及帕金森病等退行性疾病 [10] ,尤其对帕金森病炎症、氧化应激和α-突触核蛋白的聚集有十分显著的抑制作用,但就直接关于维生素K与帕金森病关系的研究却非常有限 [11] ,因此,本文的主要目的是回顾目前维生素K补充剂在神经退行性疾病,特别是在帕金森病中的治疗方法,以及寻找维生素K与铁死亡相关机制及疗效的证据。

2. 帕金森病的发病机制

帕金森病伴有多巴胺能神经元的丧失和路易小体形成。随着时间的推移,神经递质水平逐渐降低。氧化应激,线粒体功能障碍和蛋白质稳态紊乱使帕金森病患者的病情恶化。氧化应激和脂质过氧化被认为是衰老和各种神经系统疾病的致病因素之一。其中,抗氧化物减少,氧化物及过氧化物产生过多,从而导致机体中氧化还原反应的失衡。抗氧化系统的缺乏导致氧化应激水平进一步升高 [12] 。线粒体在氧化磷酸化向细胞供应能量以及合成必需的生物分子方面发挥关键作用,其氧化还原反应、磷脂代谢和蛋白水解途径是活性氧产生的主要来源,通常无效的氧化磷酸化过程产生大量的活性氧,导致线粒体功能障碍 [13] 。稳态条件下,较低浓度的活性氧参与正常的细胞的信号传导,但过高浓度及过长时间的暴露则会诱导不同组织中线粒体呼吸链的破坏、蛋白酶体功能障碍和内质网应激,并改变蛋白质和脂质膜构象,干扰膜流动性,最终导致细胞坏死 [14] 。大脑化学功能的完整性保障了机体中枢神经系统的正常功能。大脑中脂质含量丰度极高,脂质生物反应过程中消耗大量的氧气,因此,大脑极易发生氧化应激反应。大量消耗氧的过程中活产生过量的性氧,加快氧化应激速度,进一步导致细胞死亡。其中,尤其是富含多不饱和脂肪酸的神经元膜对活性氧高度敏感。各种神经退行性疾病,如帕金森病、阿尔茨海默病、亨廷顿病和肌萎缩性侧索硬化症等,都与氧化应激有着潜在的联系 [15] 。

铁死亡于2012年被定义为一种基于脂质的活性氧物质积累导致的细胞死亡形式。主要以铁依赖性的脂质过氧化为特征,在生物化学、线粒体形态学机制上不同于其他细胞死亡形式。该死亡程序涉及三种主要代谢,包括蛋白质代谢失衡、脂质过氧化和铁沉积,最终导致细胞死亡 [16] ,被发现与帕金森病病理生理学共享一些特性。帕金森病患者的大脑中含有大量的铁、多巴胺的氧化增强,内源性抗氧化剂(谷胱甘肽和辅酶Q10)减少 [17] 。多巴胺的氧化代谢产生过氧化物,与亚铁结合,形成极其致命的羟基自由基,从而形成脂质过氧化物的致死量积累 [18] 。Dexter等人研究证实帕金森病中存在铁沉积 [19] ,脂质过氧化物水平升高 [20] [21] ,谷胱甘肽水平降低 [22] [23] 和CoQ10减少 [24] [25] 。这些公认的疾病特征强烈暗示这种受调控的细胞死亡途径–铁死亡参与帕金森病等神经退行性病变的发病及进展。Laura等人也提出铁死亡机制可能是解释帕金森病中突触核蛋白病变、铁沉积、氧化应激和多巴胺能神经元损伤之间恶性循环的拼图中缺失的一块 [26] 。因此确定铁死亡在神经退行性疾病中的意义,将进一步促进人们对产生基于抑制铁死亡疗法的兴趣,这些疗法可以延缓疾病发生发展。

3. 帕金森病与维生素K的潜在联系

维生素K是神经退行性疾病的可能机制和早期标志物,在多发性硬化症和阿尔茨海默病中已经得以证实 [27] 。2020年余艳霞等人通过一项关于帕金森病的病例对照研究也提出类似结论:其中涉及到了95名健康对照和93名帕金森患者。研究中发现了帕金森病患者血清维生素K2水平相较于健康对照组明显减低。当把帕金森病患者按病情轻重进展分层时,则观察到晚期较重患者的血清维生素K2水平进一步下降,且明显低于早期轻症患者血清维生素K2水平。另外还通过公共数据库证实了帕金森患者炎症反应和凝血级联的失调与维生素K2水平下降有关 [28] 。因此,维生素K2可能与帕金森病的发生、发展有关,并且可作为帕金森病诊断和预后的生物标志物。

近年来,Ciulla等人发现使用富含维生素和抗氧化剂的食物补充剂在治疗和预防帕金森病等神经退行性疾病中发挥着重要的作用。一些天然化合物、植物化学物质、维生素和矿物质 [29] ,可以预防、延缓或缓解帕金森病的临床症状,这与疾病发展的一些主要生理病理机制(如氧化应激、自由基形成和神经炎症)密切相关 [30] 。其中,维生素K是在20世纪30年代于鸡的胆固醇代谢实验中发现的。它是一种脂溶性维生素,它的提出有多个天然形式,在植物中天然发生的如叶绿醌(维生素K1)和由革兰氏阴性细菌在人体胃肠道如甲萘醌(维生素K2),故而维生素K1存在于植物性食物,而维生素K2存在于动物性和发酵食品 [31] 。Mishima等人在研究中通过铁死亡抑制蛋白1 (FSP1)将维生素K与脑神经元细胞铁死亡联系起来,铁死亡抑制蛋白1,原名线粒体凋亡诱导因子2,后被重命名为“铁死亡抑制蛋白1”,是一种NAD(P)H-泛素还原酶,是继谷胱甘肽过氧化物酶 [32] 之后控制铁死亡的第二主要成分,被发现能有效地将维生素K还原为维生素K对苯二酚,这是一种十分有效的自由基捕获抗氧化剂和脂质过氧化的抑制剂 [33] 。铁死亡抑制蛋白1依赖的非典型维生素K循环可以保护细胞免受脂质过氧化损害,抑制铁死亡的发生 [34] 。

维生素K作为一种能通过血脑屏障的抗炎抗氧化剂,最初因其参与血液凝结而被建立 [35] ,但现在有更令人信服的证据表明它在神经系统中的作用。尤其是完全还原形式的维维生素K对苯二酚可以作为一种抗氧化剂,通过其电子传递作用对防止细胞凋亡、氧化应激和小胶质细胞的激活起关键作用,有望成为对抗退行性病变的潜在药物 [36] 。Ebru等人通过对45名多发性硬化患者和29名健康对照的观察性研究表明,多发性硬化患者的血清中维生素K2浓度下降了三倍以上,并且在多发性硬化患者中,低水平的维生素K2对应多发性硬化的高发生率。证实了维生素K2与多发性硬化发病、预后及治疗相关,因此,维生素K也被建议用于多发性硬化患者的治疗,以降低疾病强度,延缓疾病的进展 [37] 。Booth等人也测量了325名参与者大脑中维生素K水平和相关代谢物的浓度,以及它们与死前认知功能测试和死后神经病理结果的关系,发现维生素K水平的高低与痴呆和认知衰退风险的特定变化有关 [38] 。总之,维生素K除了对认知功能的保护作用外,近年来发现对帕金森病的炎症和α-突触核蛋白聚集的抑制作用也非常显著。2021年Popescu等人综述了维生素K2与帕金森病在神经毒性、神经炎症及线粒体功能障碍等之间关系的研究,进一步表明了维生素K可以通过改善神经细胞功能抑制细胞死亡 [39] 。

越来越多的研究表明,炎症参与帕金森病的发病机制,维生素K2具有抗炎作用,通过动物模型实验及细胞学实验发现维生素K对于帕金森病动物模型及细胞模型有一定的治疗及预防作用。2012年,Vos等人在鱼藤酮处理的BV2小鼠小胶质细胞系中,维生素K2通过恢复线粒体膜电位、降低活性氧的生成,抑制核因子的表达进而抑制小胶质细胞的激活,缓解神经元细胞死亡 [40] 。此外,α-突触核蛋白作为一种突触前神经元蛋白,在遗传和神经病理学上都与帕金森病相关。并以介导铁代谢、脂质代谢功能等多种方式在帕金森病的发病机制中发挥作用,导致多巴胺神经元死亡 [41] [42] 。维生素K还可通过参与神经鞘脂的合成在脑健康中发挥作用,鞘脂作为一种复杂的脂类,在神经元的发育和存活中具有重要的生物学功能。鞘脂代谢的改变与神经退行性疾病有关,如阿尔茨海默病、帕金森病和亨廷顿舞蹈病 [43] [44] 。Ferland的研究中:维生素K2作为膜结合的电子载体被发现。在pink1和parkin突变的成年果蝇中,维生素K2不直接影响线粒体重组,但它有助于质子基序力,通过提高质子基序效率,帮助能量的生成,与泛素酮类似 [45] 。因此,维生素K2被认为是一种潜在可行的线粒体功能障碍的治疗方法,特别是在伴有基因缺乏症的帕金森病患者中 [46] 。Rocha等人也从不同角度探讨了帕金森病和维生素K之间的关系,研究发现了维生素K对α-突触核蛋白的影响 [47] ,并将维生素K与其他抗纤维原性化合物(包括醌类、多酚和亲脂性维生素)进行了比较。在亚化学计量剂量下,维生素K减缓了α-突触核蛋白的纤维化,这表明1,4-萘醌可以控制α-突触核蛋白的纤维化,这可能是开发新型单胺氧化酶抑制剂的框架,因此,维生素K2是一种有前途的化合物,可用于治疗线粒体病病理机制 [48] [49] ,为维生素K治疗帕金森病与中脑多巴胺神经元之间的联系提供了证据。

4. 总结与展望

尽管有许多药物治疗可用于控制帕金森病的运动症状和非运动症状,但是目前仍没有完全治愈的方法,因此帕金森病患者对新的疾病修饰疗法和新的治疗策略有很高的需求:关于氧化应激、铁死亡的新兴知识以及其生理病理条件的不同观点。事实上,几十年来,研究人员一直将帕金森病病理诸如脂质过氧化升高,谷胱甘肽耗损和线粒体病变、铁沉积和α-突触核蛋白聚集等几个方面定性为独立的组成部分,但现在看来可能与铁死亡易感性都紧密相关。基于这些信息,充分证明了帕金森病神经病理学和铁死亡细胞死亡途径方面的广泛相似性。因此,我们推测铁死亡是PD进展的关键因素,在突触核病变中具有更广泛的意义。而依赖于FSP1的非典型维生素K循环,可以将维生素K还原为抗氧化剂维生素K对苯二酚,该物质可以充分保护细胞免受氧化应激、脂质过氧化损伤,在一定程度上抑制铁死亡发生的可能。但目前相关研究还处于初级阶段,未来还需在靶向抑制铁死亡方面取得进一步进展。

文章引用

张春莉,李红燕. 维生素K对帕金森病的影响
Impact Factor of Vitamin K on Parkinson’s Disease[J]. 临床医学进展, 2023, 13(12): 18835-18841. https://doi.org/10.12677/ACM.2023.13122650

参考文献

  1. 1. Yang, W.Y., Hamilton, J.L., Kopil, C., Beck, J.C. and Tanner, C.M. (2020) Current and Projected Future Economic Burden of Parkinson’s Disease in the U.S. NPJ Parkinson’s Disease, 6, Article No. 15. https://doi.org/10.1038/s41531-020-0117-1

  2. 2. Tysnes, O.B. and Storstein, A. (2017) Epidemiology of Parkin-son’s Disease. Journal of Neural Transmission (Vienna), 124, 901-905. https://doi.org/10.1007/s00702-017-1686-y

  3. 3. Pajares, M., Rojo, A.I., et al. (2020) Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells, 9, Article No. 1687. https://doi.org/10.3390/cells9071687

  4. 4. Balestrino, R. and Schapira, A.H.V. (2019) Parkinson Disease. Europe-an Journal of Neurology, 27, 27-42. https://doi.org/10.1111/ene.14108

  5. 5. Trist, B.G., Hare, D.J. and Double, K.L. (2019) Oxidative Stress in the Aging Substantia Nigra and the Etiology of Parkinson’s Disease. Aging Cell, 18, e13031. https://doi.org/10.1111/acel.13031

  6. 6. Angelova, P.R., Choi, M.L., Choi, M.L., Berezhnov, A.V. and Berezhnov, A.V. (2020) Alpha Synuclein Aggregation Drives Ferroptosis: An Interplay of Iron, Calcium and Lipid Peroxidation. Cell Death and Differentiation, 27, 2781-2796. https://doi.org/10.1038/s41418-020-0542-z

  7. 7. Peña-Bautista, C., Vento, M., Baquero, M. and Cháfer-Pericás, C. (2019) Lipid Peroxidation in Neurodegeneration. Clinicachimica Acta, International Journal of Clinical Chemistry, 497, 178-188. https://doi.org/10.1016/j.cca.2019.07.037

  8. 8. Bjørklund, G., Peana, M., Maes, M., Dadar, M. and Severin, B. (2020) The Glutathione System in Parkinson’s Disease and Its Progression. Neuroscience & Biobehavioral Reviews, 120, 470-478. https://doi.org/10.1016/j.neubiorev.2020.10.004

  9. 9. Wu, Q.P., Wang, L.F. and Zhao, R.Q. (2022) Neglected Vitamin K Deficiency Causing Coagulation Dysfunction in an Older Patient with Pneumonia: A Case Report. BMC Ger-iatrics, 22, Article No. 628. https://doi.org/10.1186/s12877-022-03327-6

  10. 10. Luoqian, J.Y., Yang, W.Y., Ding, X.L., Tuo, Q.-Z. and Xiang, Z. (2022) Ferroptosis Promotes T-Cell Activation-Induced Neurodegeneration in Multiple Sclerosis. Cellular & Molecular Immunology, 19, 913-924. https://doi.org/10.1038/s41423-022-00883-0

  11. 11. Emekli-Alturfan, E. and Alturfan, A. (2022) The Emerging Rela-tionship between Vitamin K and Neurodegenerative Diseases: A Review of Current Evidence. Molecular Biology Reports, 50, 815-828. https://doi.org/10.1007/s11033-022-07925-w

  12. 12. Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I. and Conrad, M. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021

  13. 13. Ademowo, O.S., Dias, H.K.I., Burton, D.G.A. and Griffiths, H.R. (2017) Lipid (per) Oxidation in Mitochondria: An Emerging Target in the Ageing Process? Biogerontology, 18, 859-879. https://doi.org/10.1007/s10522-017-9710-z

  14. 14. Yan, H.-F., Zou, T., Tuo, Q.-Z. and Xu, S. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49. https://doi.org/10.1038/s41392-020-00428-9

  15. 15. Singh, A., Kukreti, R., Saso, L., et al. (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules (Basel, Switzerland), 24, Article No. 1583. https://doi.org/10.3390/molecules24081583

  16. 16. Forcina, G.C. and Dixon, S.J. (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 19, e1800311. https://doi.org/10.1002/pmic.201800311

  17. 17. Thapa, K., Khan, H., Kanojia, N., Singh, T.G. and Kaur, A. (2022) Therapeutic Insights on Ferroptosis in Parkinson’s Disease. European Journal of Pharmacology, 930, Article ID: 175133. https://doi.org/10.1016/j.ejphar.2022.175133

  18. 18. Mahoney-Sánchez, L., Bouchaoui, H., Ayton, S., Devos, D. and Duce, J.A. (2020) Ferroptosis and Its Potential Role in the Physiopathology of Parkinson’s Disease. Progress in Neurobiology, 196, Article ID: 101890. https://doi.org/10.1016/j.pneurobio.2020.101890

  19. 19. Dexter, D.T., Wells, F.R., Agid, F., Agid, Y. and Lees, A.J. (1987) Increased Nigral Iron Content in Postmortem Parkinsonian Brain. The Lancet (London, England), 2, 1219-1220. https://doi.org/10.1016/S0140-6736(87)91361-4

  20. 20. Hirsch, E.C., Brel, J.P., Galle, P., Javoy-Agid, F. and Agid, Y. (1991) Iron and Aluminum Increase in the Substantia Nigra of Patients with Parkinson’s Disease: An X-Ray Microa-nalysis. Journal of Neurochemistry, 56, 446-451. https://doi.org/10.1111/j.1471-4159.1991.tb08170.x

  21. 21. de Farias, C.C., Maes, M., Bonifácio, K.L., Bortolasci, C.C. and de Souza Nogueira, A. (2016) Highly Specific Changes in Antioxidant Levels and Lipid Peroxidation in Par-kinson’s Disease and Its Progression: Disease and Staging Biomarkers and New Drug Targets. Neuroscience Letters, 617, 66-71. https://doi.org/10.1016/j.neulet.2016.02.011

  22. 22. Sofic, E., Lange, K.W., Jellinger, K. and Riederer, P. (1992) Reduced and Oxidized Glutathione in the Substantia Nigra of Patients with Parkinson’s Disease. Neuroscience Letters, 142, 128-130. https://doi.org/10.1016/0304-3940(92)90355-B

  23. 23. Dionísio, P.A., Amaral, J.D. and Rodrigues, C.M.P. (2021) Oxidative Stress and Regulated Cell Death in Parkinson’s Disease. Ageing Research Reviews, 67, Article ID: 101263. https://doi.org/10.1016/j.arr.2021.101263

  24. 24. Battino, M., Littarru, G.P., Gorini, A. and Villa, R.F. (1996) Coen-zyme Q, Peroxidation and Cytochrome Oxidase Features after Parkinson’s-Like Disease by MPTP Toxicity in In-tra-Synaptic and Non-Synaptic Mitochondria from Macaca fascicularis Cerebral Cortex and Hippocampus: Action of Dihydroergocriptine. Neurochemical Research, 21, 1505-1514. https://doi.org/10.1007/BF02533098

  25. 25. Bersuker, K., Hendricks, J.M., Li, Z.P., Magtanong, L. and Ford, B. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2

  26. 26. Guiney, S.J., Adlard, P.A., Bush, A.I., et al. (2021) Ferroptosis and Cell Death Mechanisms in Parkinson’s Disease. Neurochemistry Interna-tional, 104, 34-48. https://doi.org/10.1016/j.neuint.2017.01.004

  27. 27. Ohsaki, Y., Shirakawa, H., Miura, A., Gi-riwono, P.E., Sato, S., et al. (2010) Vitamin K Suppresses the Lipopolysaccharide-Induced Expression of Inflammatory Cytokines in Cultured Macrophage-Like Cells via the Inhibition of the Activation of Nuclear Factor κB through the Re-pression of IKKα/β Phosphorylation. The Journal of Nutritional Biochemistry, 21, 1120-1126. https://doi.org/10.1016/j.jnutbio.2009.09.011

  28. 28. De Oliveira, L.G., Angelo, Y.D.S., Iglesias, A.H. and Peron, J.P.S. (2021) Association of Serum Vitamin K2 Levels with Parkinson’s Disease: From Basic Case-Control Study to Big Data Mining Analysis. Aging, 12, 16410-16419. https://doi.org/10.18632/aging.103691

  29. 29. Zhang, C., Liu, X.Y., Jin, S.D. and Chen, Y. (2022) Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Molecular Cancer, 21, Article No. 47. https://doi.org/10.1186/s12943-022-01530-y

  30. 30. Ciulla, M., Marinelli, L., Cacciatore, I. and Stefano, A. (2019) Role of Dietary Supplements in the Management of Parkinson’s Disease. Biomolecules, 9, Article No. 271. https://doi.org/10.3390/biom9070271

  31. 31. Merli, G.J. and Fink, J. (2008) Vitamin K and Thrombosis. Vitamins and Hormones, 78, 265-279. https://doi.org/10.1016/S0083-6729(07)00013-1

  32. 32. Sandeep, Sahu, M.R., Rani, L., Kharat, A.S. and Mondal, A.C. (2023) Could Vitamins Have a Positive Impact on the Treatment of Parkinson’s Disease? Brain Sciences, 13, Arti-cle No. 272. https://doi.org/10.3390/brainsci13020272

  33. 33. 郁晓丹, 虞燕霞, 沈明强. 帕金森病患者血清中维生素K2及其他相关炎症指标变化和危险因素分析[J]. 中国老年学杂志, 2023, 43(5): 1110-1113.

  34. 34. Mishima, E., Mishima, E., Ito, J., Wu, Z.J. and Nakamura, T. (2022) A Non-Canonical Vitamin K Cycle Is a Potent Ferroptosis Sup-pressor. Nature, 608, 778-783. https://doi.org/10.1038/s41586-022-05022-3

  35. 35. Dowd, P., Ham, S.W., Naga-nathan, S. and Hershline, R. (1995) The Mechanism of Action of Vitamin K. Annual Review of Nutrition, 15, 419-440. https://doi.org/10.1146/annurev.nu.15.070195.002223

  36. 36. Sandeep, et al. (2023) Could Vitamins Have a Positive Impact on the Treatment of Parkinson’s Disease? Brain Sciences, 13, Article No. 272. https://doi.org/10.3390/brainsci13020272

  37. 37. Lasemi, R., Kundi, M., Moghadam, N.B., Moghadam, N.B. and Moshammer, H. (2018) Vitamin K2 in Multiple Sclerosis Patients. Wiener Klinische Wochenschrift, 130, 307-313. https://doi.org/10.1007/s00508-018-1328-x

  38. 38. Booth, S.L., Shea, M.K., Barger, K. and Leurgans, S.E. (2022) Association of Vitamin K with Cognitive Decline and Neuropathology in Community-Dwelling Older Persons. Alz-heimer’s & Dementia (New York, N.Y.), 8, e12255. https://doi.org/10.1002/trc2.12255

  39. 39. Popescu, A. and German, M. (2021) Vitamin K2 Holds Promise for Alz-heimer’s Prevention and Treatment. Nutrients, 13, Article No. 2206. https://doi.org/10.3390/nu13072206

  40. 40. Vos, M., Esposito, G., Edirisinghe, J.N., Vilain, S. and Haddad, D.M. (2012) Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science (New York, N.Y.), 336, 1306-1310. https://doi.org/10.1126/science.1218632

  41. 41. Prasuhn, J., Kasten, M., Vos, M., et al. (2021) The Use of Vitamin K2 in Patients with Parkinson’s Disease and Mitochondrial Dysfunction (PD-K2): A Theranostic Pilot Study in a Place-bo-Controlled Parallel Group Design. Frontiers in Neurology, 11, Article ID: 592104. https://doi.org/10.3389/fneur.2020.592104

  42. 42. Yu, Y.-X., Yu, X.-D., Cheng, Q.-Z., Tang, L. and Shen, M.-Q. (2020) The Association of Serum Vitamin K2 Levels with Parkinson’s Disease: From Basic Case-Control Study to Big Data Mining Analysis. Aging, 12, 16410-16419. https://doi.org/10.18632/aging.103691

  43. 43. Piccinini, M., Scandroglio, F., Prioni, S., Buccinnà, B., Loberto, N., Aureli, M., Chigorno, V., Lupino, E., DeMarco, G., Lomartire, A., et al. (2010) Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Molecular Neurobiology, 41, 314-340. https://doi.org/10.1007/s12035-009-8096-6

  44. 44. Olsen, A.S.B. and Færgeman, N.J. (2017) Sphingolipids: Mem-brane Microdomains in Brain Development, Function and Neurological Diseases. Open Biology, 7, Article ID: 170069. https://doi.org/10.1098/rsob.170069

  45. 45. Cores, Á., Carmona-Zafra, N., Clerigué, J., Villacampa, M. and Menéndez, J.C. (2023) Quinones as Neuroprotective Agents. Antioxidants (Basel, Switzerland), 12, Article No. 1464. https://doi.org/10.3390/antiox12071464

  46. 46. Rocha, E.M., De Miranda, B. and Sanders, L.H. (2017) Al-pha-Synuclein: Pathology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257. https://doi.org/10.1016/j.nbd.2017.04.004

  47. 47. da Silva, F.L., Coelho Cerqueira, E., de Freitas, M.S., Gonçalves, D.L. and Costa, L.T. (2012) Vitamins K Interact with N-Terminus α-Synuclein and Modulate the Protein Fibrillization in Vitro. Exploring the Interaction between Quinones and α-Synuclein. Neurochemistry International, 62, 103-112. https://doi.org/10.1016/j.neuint.2012.10.001

  48. 48. Ferland, G. (2012) Vitamin K, an Emerging Nutrient in Brain Function. Biofactors, 38, 151-157. https://doi.org/10.1002/biof.1004

  49. 49. Gao, F., Chen, D., Hu, Q. and Wang, G. (2013) Rotenone Directly Induces BV2 Cell Activation via the p38 MAPK Pathway. PLOS ONE, 8, e72046. https://doi.org/10.1371/journal.pone.0072046

  50. NOTES

    *通讯作者。

期刊菜单