设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2021,10(11),3618-3622
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011382
˜
a
“
ê
ã
Cayley
5
LLL
§§§
ÙÙÙ
‡‡‡
∗
B
²
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
B
²
B
Â
v
F
Ï
µ
2021
c
10
2
F
¶
¹
^
F
Ï
µ
2021
c
10
23
F
¶
u
Ù
F
Ï
µ
2021
c
11
4
F
Á
‡
R
´
˜
‡
k
•
‚
"
©
Ä
u
“
ê
ã
Ø
Ä
¯¢
§
ï
Ä
˜
a
-
‡
ã
x
Cayley
5
Ÿ
§
E
“
ê
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
˜
‡
Ã
•
fx
§
Ù
¥
z
‡
ã
Ñ
´
Cayley
ã
§
3
d
Ä
:
þ
?
˜
Ú
•
Ä
ù
a
“
ê
ã
•
Œ
"
'
…
c
Cayley
ã
§
Hamilton
ã
§
2
Â
¡
N
+
CayleyPropertiesofaClassof
AlgebraicGraphs
FuyuanYang,ChaoZhang
∗
SchoolofMathematicsandStatistics,GuizhouUniversity,GuiyangGuizhou
Received:Oct.2
nd
,2021;accepted:Oct.23
rd
,2021;published:Nov.4
th
,2021
Abstract
Let
R
beafinitering.Basedonthebasicfactsofalgebraicgraphtheory,thispaper
studiestheCayleypropertiesofanimportantfamilyofgraphs,andconstructsan
∗
Ï
Õ
Š
ö
Email:zhangc@amss.ac.cn
©
Ù
Ú
^
:
L
,
Ù
‡
.
˜
a
“
ê
ã
Cayley
5
[J].
A^
ê
Æ
?
Ð
,2021,10(11):3618-3622.
DOI:10.12677/aam.2021.1011382
L
§
Ù
‡
infinitesubfamilyofalgebraicgraphs
B
Γ
n
(
R
;
f
2
,...,f
n
)
,inwhicheachgraphisCayley
graph.Onthisbasis,themaximalcycleofthiskindofalgebraicgraphisfurther
considered.
Keywords
CayleyGraph,HamiltonianGraph,GeneralizedDihedralGroup
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
¥
§
¤
k
ã
Ñ
´
{
ü
Ã
loop
Ã
•
ã
"
•
§
|
½
Â
ã
•
@
´
d
Lazebnik
J
Ñ
˜
a
ã
§
•
Ð
^
5
)û
4
Š
ã
Ø
¥
¯
K
[1]
§
Lazebnik
Ú
Woldar
ï
á
ù
a
ã
˜
-
‡
5
Ÿ
[2]
§
•
)
K
5
Ú
V
K
5
"
2002
c
§
©
Ù
[3]
?
Ø
˜
X
Œ
é
¡
•
§
|
½
Â
ã
¿
½
§
‚
´
Ä
ë
Ï
§
ù
˜
X
ã
Ø
´
Cayley
ã
¿
…
¼
ê
Ø
´
é
¡
"
d
§
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
•
õ
5
Ÿ
Ú
¯
K
Œ
±
3
Lazebnik
©
Ù
[4]
¥
é
"
3
A^
•
¡
§
Ustimenko
Ú
¦
Ü
Š
ö
ò
•
§
|
½
Â
ã
A^u
?
è
n
Ø
Ú
—
è
Æ
[5]
"
Cayley
ã
Cay(
G,S
)
´
±
+
G
¥
ƒ
•
º:
§
±
f
8
S
½
Â
>
˜
a
ã
§
§
†
Hamilton
ã
2
•
ï
Ä
[6]
"
Lazebnik
3
©
Ù
[2]
5.2
!
¥
‰
Ñ
ã
˜
ú
m
¯
K
§
©
Ì
‡
ï
Ä
Ù
¥
˜
‡
-
‡
ú
m
¯
K
§
=
•
§
|
½
Â
ã
=
¼
ê
(
½
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
´
Cayley
ã
½
ö
´
Hamilton
ã
§
ù
´
˜
‡
k
…
k
¿Â
¯
K
§
©
E
˜
X
•
§
|
½
Â
Cayley
ã
§
¿
…
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
•
Œ
"
2.
ý
•
£
Γ
´
˜
‡
ã
§
·
‚
o
´
^
V
(Γ)
L
«
º:
8
§
^
E
(Γ)
L
«
>
8
§
x
∼
y
L
«
º:
x
Ú
y
ƒ
"
½
Â
1[2]
R
´
k
•
‚
§
¼
ê
f
i
:
R
2
i
−
2
→
R
´
?
¿
‰
½
¼
ê
"
·
‚
½
Â
©
ã
B
Γ
n
=
B
Γ
n
(
R
;
f
2
,...,f
n
)
"
§
ü
‡
Ü
8
´
©
O
u
R
n
P
n
Ú
L
n
§
P
n
Ú
L
n
¥
ƒ
©
O
¡
•
:
(
p
)=
(
p
1
,...,p
n
)
Ú
‚
[
l
] = [
l
1
,...,l
n
]
"
·
‚
½
Â
º:
(
p
)
Ú
[
l
]
…
=
e
¡
n
−
1
‡
^
‡
¤
á
µ
p
2
+
l
2
=
f
2
(
p
1
,l
1
)
,
p
3
+
l
3
=
f
3
(
p
1
,l
1
,p
2
,l
2
)
,
......
p
n
+
l
n
=
f
n
(
p
1
,l
1
,p
2
,l
2
,...,p
n
−
1
,l
n
−
1
)
.
DOI:10.12677/aam.2021.10113823619
A^
ê
Æ
?
Ð
L
§
Ù
‡
w
,
§
X
J
R
´
r
§
@
o
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
º:
ê´
2
r
n
…
´
r
−
K
§
Ï
•
é
u
?
Û
º:
a
∈
V
(
B
Γ
n
)
Ú
x
∈
R
§
•
3
•
˜
º:
b
∈
V
(
B
Γ
n
)
§
¦
b
†
a
ƒ
§
¿
…
b
1
˜
‡
‹
I
´
x
"
½
Â
2[7]
G
´
+
§
S
´
G
f
8
"
k
•
ã
Γ=Cay(
G,S
)
´
Cayley
ã
§
X
J
Cay(
G,S
)
º
:
8
•
G
…
ü
‡
º:
x,y
∈
G
ƒ
§
…
=
yx
−
1
∈
S
"
X
J
S
−
1
=
S
§
K
T
'
X
´
é
¡
§
d
ž
Cayley
ã
Cay(
G,S
)
d
˜
‡
Ã
•
ã
"
½
Â
3
Γ
´
˜
‡
ã
§
H
´
g
Ó
+
Aut(Γ)
˜
‡
f
+
"
X
J
H
3
V
(Γ)
´
D
4
…
é
u
?
¿
v
∈
V
(Γ)
Ú
σ
∈
H
§
¦
σ
(
v
) =
v
§
@
o
σ
´
ð
g
Ó
§
K
¡
H
3
V
(Γ)
þ
´
K
"
Ú
n
1[7]
ã
Γ
´
+
G
Cayley
ã
…
=
Aut(Γ)
•
¹
†
G
Ó
f
+
3
V
(Γ)
þ
´
K
"
½
Â
4
+
G
´
2
Â
¡
N
+
§
X
J
§
k
˜
‡
•
ê
•
2
†
f
+
A
Ú
˜
‡
•
2
ƒ
π
∈
G
\
A
§
é
?
¿
g
∈
A
§
¦
πgπ
=
g
−
1
"
3ù
«
œ
¹
e
§
·
‚
P
Š
G
=
h
π,A
i
"
½
Â
5[8]
•
¹
ã
Γ
z
‡
º:
´
»
¡
•
Γ
Hamilton
´
»
¶
a
q
/
§
Γ
Hamilton
´
•
¹
Γ
z
‡
º:
"
e
ã
Γ
•
¹
Hamilton
§
K
¡
ã
Γ
´
Hamilton
ã
½
ö
´
hamiltonian
"
Ú
n
2[6]
G
´
k
•
+
§
S
´
G
f
8
"
d
÷
v
§
(1)
S
´
G
)
¤
8
§
(2)
A
´
G
5
p
−
f
+
é
,
ƒ
ê
p
§
…
(3)
st
−
1
∈
A
é
¤
k
s,t
∈
S
§
@
o
Cay(
G,S
)
k
˜
‡
Hamliton
"
3.
Ì
‡
(
J
e
¡
E
˜
X
•
§
|
½
Â
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
Ñ
´
Cayley
ã
"
½
n
1
e
{
f
i
|
i
= 2
,...,n
}
÷
v
±
e
œ
¹
§
K
ã
B
Γ
n
(
R
;
f
2
,...,f
n
)
´
Cayley
ã
"
(1)
f
i
=
i
−
1
P
s
=1
a
s
(
p
s
+
l
s
)
b
s
+
c
§
Ù
¥
a
s
,c
∈
R
´
~
ê
…
b
s
´
ê
¶
(2)
n
= 2
…
f
2
=
cp
1
l
1
é
~
ê
c
∈
R
§
Ù
¥
R
´
†‚
…
2
−
1
∈
R
¶
(3)
f
n
=
n
−
1
P
s
=1
b
s
(
p
s
l
s
)+
n
−
1
P
s
=1
c
s
(
p
s
+
l
s
)
d
s
+
n
−
1
P
s
=1
e
s
(
p
s
l
s
)
mp
+
c
Ú
f
i
=
i
−
1
P
s
=1
a
i,s
(
p
s
+
l
s
)
b
i,s
+
d
i
é
i
=2
,
···
,n
−
1
§
Ù
¥
R
´
A
p
…
2
−
1
∈
R
†‚
§
mp
´
Û
ê
§
a
i,s
,b
s
,c
s
,e
s
,c,d
i
∈
R
§
b
i,s
,d
s
´
ê
¶
(4)
f
m
=
p
m
−
1
l
m
−
1
§
f
i
=
p
1
+
l
1
é
2
≤
i<m
Ú
f
i
=
p
m
−
1
+
l
m
−
1
é
m<i
≤
n
§
Ù
¥
R
´
†
‚
…
2
−
1
∈
R
"
y
²
µ
é
u
1
≤
k<i
≤
n
Ú
x
∈
R
§
·
‚
e
¡
N
φ,σ
i,x
:
R
n
→
R
n
§
φ
: (
p
1
,...,p
n
)
7→
[
p
1
,...,p
n
]
,
[
l
1
,...,l
n
]
7→
(
l
1
,...,l
n
)
.
σ
k,x
: (
p
)
7→
(
p
1
,...,p
k
+
x,p
k
+1
+
b
k
+1
,k
,...,p
i
+
b
i,k
,...,p
n
+
b
n,k
)
[
l
]
7→
[
l
1
,...,l
k
−
x,l
k
+1
+
y
k
+1
,k
,...,l
i
+
y
i,k
,...,l
n
+
y
n,k
]
.
DOI:10.12677/aam.2021.10113823620
A^
ê
Æ
?
Ð
L
§
Ù
‡
é
u
(1)
§
½
Â
b
i,k
= 0
§
y
i,k
= 0
"
é
u
(2)
§
-
b
2
,
1
=
c
(
−
p
1
x
−
1
2
x
2
)
§
y
2
,
1
=
c
(
l
1
x
−
1
2
x
2
)
"
é
u
(3)
§
b
i,k
=
y
i,k
= 0
é
u
k<i<n
§
…
b
n,k
=
n
−
1
X
s
=1
b
s
(
−
p
s
x
−
1
2
x
2
)+
n
−
1
X
s
=1
e
s
(
−
(
p
s
x
)
mp
−
1
2
x
2
mp
)
,
y
n,k
=
n
−
1
X
s
=1
b
s
(
l
s
x
−
1
2
x
2
)+
n
−
1
X
s
=1
e
s
((
l
s
x
)
mp
−
1
2
x
2
mp
)
.
é
u
(4)
§
-
b
i,k
=
−
p
1
x
−
1
2
x
2
,y
i,k
=
l
1
x
−
1
2
x
2
é
1
≤
k<m<i
≤
n
§
b
i,k
=
y
i,k
= 0
é
u
Ù
¦
œ
¹
"
é
u
?
¿
x,y
∈
R
·
‚
Ø
J
y
N
φ,σ
i,x
´
ã
B
Γ
n
g
Ó
…
e
¡
†
5
¤
á
µ
σ
k,x
σ
j,y
=
σ
j,y
σ
k,x
,φσ
k,x
φ
=
σ
k,
−
x
=
σ
−
1
k,x
.
A
=
h
σ
k,x
|
k
= 1
,...,n
;
x
∈
R
i
Ú
G
=
h
φ,A
i
"
Ø
J
y
A
´
˜
‡
†
+
"
d
§
|
φ
|
=2
§
é
1
≤
k
≤
n
§
8
Ü
{
σ
k,x
|
x
∈
R
}
k
r
‡
ƒ
"
du
σ
k,x
σ
k,y
=
σ
k,x
+
y
§
K
†
+
A
k
r
n
‡
g
Ó
§
Ï
d
G
=
h
φ,A
i≤
Aut(
B
Γ
n
)
´
2
Â
¡
N
+
…
k
2
r
n
‡
ƒ
"
·
‚
Œ
±
y
G
3
V
(
B
Γ
n
)
þ
´
K
"
d
Ú
n
1
§
Œ
•
B
Γ
n
´
2
Â
¡
N
+þ
Cayley
ã
"
y
3
©
•
Ä
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
Ú
ã
B
Γ
2
(
F
q
;
p
1
+
l
1
)
•
Œ
§
©
Ù
[3]
¥
½
n
%
¹
B
Γ
2
(
F
q
;
p
1
l
1
)
´
ë
Ï
§
e
¡
í
Ø
Œ
•
B
Γ
2
(
F
q
;
p
1
l
1
)
k
˜
‡
Hamilton
"
í
Ø
1
F
q
´
˜
‡
k
•
•
§
Ù
¥
q
=
p
k
…
p
´
Û
ƒ
ê
§
K
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
´
Hamilton
ã
§
ã
B
Γ
2
(
F
q
;
p
1
+
l
1
)
k
˜
‡
•
Ý
•
2
q
"
y
²
µ
d
½
n
1
Œ
•
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
Ú
B
Γ
2
(
F
q
;
p
1
+
l
1
)
´
2
Â
¡
N
+þ
Cayley
ã
Cay(
G,S
)
"
é
u
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
§
Ä
k
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
´
ë
Ï
§
d
Ú
n
1
¥
Ï
é
)
¤
8
h
S
i
§
Œ
•
φσ
2
,
x
2
2
σ
1
,x
∈
h
S
i
du
(0)
∼
[
x,
0]
é
?
¿
x
∈
F
q
"
-
x
= 0
§
u
´
φ
∈h
S
i
§
σ
2
,x
2
,σ
2
,
−
x
2
∈h
S
i
§
·
‚
k
σ
2
,
−
x
2
2
∈h
S
i
Ú
σ
1
,x
∈h
S
i
§
x
2
+
y
2
=
z
k
)
(
x,y
)
é
?
¿
z
∈
F
q
§
u
´
σ
2
,z
∈h
S
i
§
Œ
•
ã
B
Γ(
F
q
;
p
1
l
1
)
ë
Ï
"
Œ
±
y
Cay(
G,S
)
÷
v
Ú
n
2
^
‡
§
u
´
ã
B
Γ
2
(
F
q
;
p
1
l
1
)
k
˜
‡
Hamliton
"
é
u
ã
B
Γ
2
(
F
q
;
p
1
+
l
1
)
Ó
Cay(
G
0
,S
0
)
§
du
(0)
∼
[
x,x
]
§
Ù
ë
8
S
0
)
¤
8
Ü
h
S
0
i
•
h
φσ
1
,x
σ
2
,x
i
§
d
½
n
1
¥
†
5
Œ
•
h
φσ
1
,x
σ
2
,x
i
=
h
φ,σ
1
,x
σ
2
,x
i
´
2
q
§
ã
B
Γ
2
(
F
q
;
p
1
+
l
1
)
k
˜
‡
•
Ý
•
2
q
"
Ä
7
‘
8
©
d
B
²
Ž
‰
E
e
‘
8
(
1
O
Ò
µ
`
‰
Ü
Ä
:
[2020]1Y405)
]
Ï
"
ë
•
©
z
[1]Lazebnik,F. andUstimenko,V.A.(1993)New Examplesof Graphswithout SmallCyclesand
ofLargeSize.
EuropeanJournalofCombinatorics
,
14
,445-460.
DOI:10.12677/aam.2021.10113823621
A^
ê
Æ
?
Ð
L
§
Ù
‡
https://doi.org/10.1006/eujc.1993.1048
[2]Lazebnik,F.andWoldar,A.J.(2001)GeneralPropertiesofSomeFamiliesofGraphsDefined
bySystemsofEquations.
JournalofGraphTheory
,
38
,65-86.
https://doi.org/10.1002/jgt.1024
[3]Lazebnik,F.andViglione,R.(2002)AnInfiniteSeriesofRegularEdge
)
ButNotVertex-
TransitiveGraphs.
JournalofGraphTheory
,
41
,249-258.https://doi.org/10.1002/jgt.10064
[4]Lazebnik,F.,Sun,S.andWang,Y.(2017)SomeFamiliesofGraphs,HypergraphsandDi-
graphsDefinedbySystemsofEquations:ASurvey.
LectureNotesofSeminarioInterdisci-
plinarediMatematica
,
14
,105-142.
[5]Klisowski,M.andUstimenko,V.(2012)OntheComparisonofCryptographicalProperties
ofTwoDifferentFamiliesofGraphswithLargeCycleIndicator.
MathematicsinComputer
Science
,
6
,181-198.
[6]Morris,D.W.(2012)2-GeneratedCayleyDigraphsonNilpotentGroupsHaveHamiltonian
Paths.
ContributionstoDiscreteMathematics
,
7
,41-47.
https://doi.org/10.11575/cdm.v7i1.62051
[7]Biggs,N.(1992)AlgebraicGraphTheory.CambridgeUniversityPress,NewYork.
[8]Bondy,J.A.andMurty,U.S.R.(1976)GraphTheorywithApplications.Macmillan,London.
DOI:10.12677/aam.2021.10113823622
A^
ê
Æ
?
Ð