设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2021,10(11),3699-3711
PublishedOnlineNovemb er2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1011393
Dirichlet
˜
m
þ
H-Toeplitz
Ž
f
†
5
ooo
ŠŠŠ
YYY
ú
ô
“
‰
Œ
Æ
ê
Æ
†
O
Ž
Å
‰
ÆÆ
§
ú
ô
7
u
Â
v
F
Ï
µ
2021
c
10
8
F
¶
¹
^
F
Ï
µ
2021
c
10
29
F
¶
u
Ù
F
Ï
µ
2021
c
11
9
F
Á
‡
©
Ä
u
Bergman
˜
m
þ
H-Toeplitz
Ž
f
ï
Ä
§
3ù
Ÿ
©
Ù
¥Ì
‡
ï
Ä
Dirichlet
˜
m
þ
H-
Toeplitz
Ž
f
†
5
"
'
…
c
H-Toeplitz
Ž
f
§
Dirichlet
˜
m
§
†
5
CommutantsofH-ToeplitzOperators
onDirichletSpace
MengkeLi
InstituteofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Oct.8
th
,2021;accepted:Oct.29
th
,2021;published:Nov.9
th
,2021
Abstract
BasedontheresearchofH-ToeplitzoperatorsonBergmanspace,thisarticlemainly
studiesthecommutantsofH-ToeplitzoperatorsonDirichletspace.
©
Ù
Ú
^
:
o
Š
Y
.Dirichlet
˜
m
þ
H-Toeplitz
Ž
f
†
5
[J].
A^
ê
Æ
?
Ð
,2021,10(11):3699-3711.
DOI:10.12677/aam.2021.1011393
o
Š
Y
Keywords
H-ToeplitzOperators,DirichletSpace,Commutant
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
0
-
D
L
«
E
²
¡
C
þ
ü
,
=
D
=
{
z
∈
C
||
z
|
<
1
}
,
Dirichlet
˜
m
D
´
d
¤
k
3
ü
þ
)
Û
¼
ê
f
|
¤
,
Ù
¥
f
‡
÷
v
D
(
f
)
<
∞
,
D
(
f
)=:
R
D
|
f
0
(
w
)
|
2
dA
(
w
)
´
Dirichlet
È
©
,
Ù
¥
dA
(
w
)
L
K
z
V
‚
¡
È
ÿ
Ý
.
é
u
?
¿
f
(
z
) =
P
∞
k
=1
=
a
k
z
k
,g
(
z
) =
P
∞
j
=1
a
j
z
j
∈D
,
˜
m
¥
S
È
÷
v
:
h
f,g
i
=
Z
D
f
0
(
w
)
g
0
(
w
)
dA
(
w
)
,
…
Dirichlet
˜
m
D
´
÷
v
±
e
‰
ê
k
f
k
2
=
D
(
f
) =
∞
X
k
=1
k
|
a
k
|
2
)
Û
¼
ê
Hilbert
˜
m
.
d
,
D
•
´
˜
‡
2
)
Ø
Hilbert
˜
m
,
Ù
Ø
•
K
z
(
w
) = log
1
1
−
zw
,w,z
∈
D
,
=
f
(
z
) =
h
f,K
z
i
,f
∈D
.
Dirichlet
˜
m
D
´
Sobolev
˜
m
L
2
,
1
(
D
)
4
f
˜
m
,
é
∀
f
∈
L
2
,
1
(
D
)
,
k
f
k
2
=
|
Z
fdA
|
2
+
Z
D
|
∂f
∂w
|
2
dA
+
Z
D
|
∂f
∂w
|
2
dA<
∞
,
DOI:10.12677/aam.2021.10113933700
A^
ê
Æ
?
Ð
o
Š
Y
Ù
¥
¦
´
3
©
Ù
¿Â
e
.
…
,
L
2
,
1
(
D
)
÷
v
S
È
h
f,g
i
=
Z
D
fdA
+
Z
D
gdA
+
∂f
∂w
,
∂g
∂w
2
+
∂f
∂w
,
∂g
∂w
2
,
Ù
¥
h
f,g
i
=
R
D
fgdA.
3
Ž
f
n
Ø
ï
Ä
¥
,
ê
Æ
[
‚
ï
Ä
õ
«
Ž
f
,
X
Toeplitz
Ž
f
!
Hankel
Ž
f
,
,
Ž
f
3
Ø
Ó
˜
m
¥
•
k
ˆ
«
ˆ
Ø
Ó
5
Ÿ
,
ï
Ä
•
õ
•
´
•
•
2
•
=
Hardy
˜
m
þ
Ž
f
Ä
5
Ÿ
,
ù
•
´ê
Æ
[
‚
•
m
©
¤
ï
Ä
¯
K
.
X
´
3
d
Ä
:
þ
?
1ò
,
'
X
Bergman
˜
m
,Dirichlet
˜
m
,
ù
•
´
ï
Ä
•
õ
˜
m
.
,
Ž
f
5
Ÿ
•
k
é
õ
,
'
X
Toeplitz
Ž
f
Ú
Hankel
Ž
f
3
Bergman
˜
m
¥
;
5
([1][2]),
d
\
Dirichlet
˜
m
¥
Toeplitz
Ž
f
;
5
•
k
ï
Ä
([3]),
„
kk
.
5
,
ù
ü
«
5
Ÿ
´
ï
Ä
•
2
•
,
‘
,
•
k
ê
Æ
[
ï
Ä
Ž
f
†
5
,S.Axler
<
,ZhaoLiankuo
©
O
3
2000
c
[4],2008
c
[5]
ï
Ä
Bergman
˜
m
¥
)
Û
Toeplitz
Ž
f
†
5
±
9
N
Ú
Dirichlet
˜
m
¥
Toeplitz
Ž
f
†
5
,
•
õ
ï
Ä(
J
•
Œ
ë
©
z
[6][7][8].
d
Toeplitz
Ž
f
Ú
Hankel
Ž
f
5
Ÿ
Œ
±
ï
Ä
H-Toeplitz
Ž
f
˜
ƒ
q
5
Ÿ
,
S.C.Arora
<
3
[9]
¥
•
ï
Ä
H-Toeplitz
Ž
f
˜
Ü
©
S
N
.
é
?
¿
ê
n
,
-
e
n
(
z
)=
1
√
n
z
n
,z
∈
D
,
K
{
e
n
(
z
)
}
n>
0
´
Dirichlet
˜
m
¥
I
O
Ä
.
-
P
:
L
2
,
1
(
D
)
→D
L
«
L
2
,
1
(
D
)
D
þ
Ý
K
.
˜
m
L
∞
(
D
)
L
«
ü
þ
¤
k
Ÿ
k
.
V
‚
Œ
ÿ
¼
ê
f
Banach
˜
m
,
…
‰
ê
÷
v
k
f
k
∞
=
esssup
{|
f
(
z
)
|
:
z
∈
D
}
.
L
∞
,
1
(
D
)
L
«
{
f
∈
L
∞
,
1
(
D
)
|
f,
∂f
∂z
,
∂f
∂z
∈
L
∞
(
D
)
}
.
-
D
harm
L
«
N
Ú
Dirichlet
˜
m
,
K
P
harm
:
L
2
,
1
(
D
)
→D
harm
L
«
L
2
,
1
(
D
)
D
harm
þ
Ý
K
.
-
C
(
D
)
L
«
D
þ
¤
k
ë
Y
¼
ê
,
C
1
(
D
) =
{
f
:
f,
∂f
∂w
,
∂f
∂w
∈
C
(
D
)
}
é
?
¿
φ
∈
C
1
(
D
)
,
½
Â
Dirichlet
˜
m
D
þ
Toeplitz
Ž
f
T
φ
•
T
φ
(
f
) =
P
(
φf
)(
z
) =
Z
D
∂
(
φf
)
∂w
∂K
z
∂w
dA
(
w
)
,f
∈D
,
w
,
T
φ
´
k
.
.
é
u
φ
∈
C
1
(
D
)
,
Hankel
Ž
f
H
φ
½
Â
•
H
φ
(
f
) =
PM
φ
J
(
f
)
,f
∈D
,
Ù
¥
Ž
f
J
:
D→D
½
Â
•
J
(
e
n
(
z
)) =
e
n
+1
(
z
),
n
•
?
¿
ê
.
Hankel
Ž
f
h
φ
(
f
) =
P
(
φJf
)
,f
∈D
.
DOI:10.12677/aam.2021.10113933701
A^
ê
Æ
?
Ð
o
Š
Y
3ù
Ÿ
©
Ù
¥
,
·
‚
Ì
‡
ï
Ä
Dirichlet
˜
m
D
þ
H-Toeplitz
Ž
f
,
3
©
Ù
m
©
·
‚
•
é
H-
Toeplitz
Ž
f
'
u
D
¥
I
O
Ä
Ý
,
ù
•
†
Toeplitz
Ž
f
Ú
Hankel
Ž
f
Ý
k
X
—
ƒ
'
é
.
3
2019
c
,A.Gupta
<
3
[10]
¥
0
SlantH-Toeplitz
Ž
f
Î
Ò
,
¿
…
ï
Ä
H-Toeplitz
Ž
f
3
Hardy
˜
m
¥
˜
5
Ÿ
,
•
)
•
2
•
;
5
Ú
†
5
.
Ä
u
ù
ï
Ä
,
·
‚
3ù
Ÿ
©
Ù
¥
B
5
ï
Ä
Dirichlet
˜
m
¥
H-Toeplitz
Ž
f
†
5
,
Ù
Î
Ò
´
L
∞
,
1
(
D
)
¥
N
Ú¼
ê
.
2.Dirichlet
˜
m
¥
H-Toeplitz
Ž
f
3
m
©
ƒ
c
§
·
‚
I
‡
‰
Ñ
˜
Ú
n
•
¡
(
J
‰O
.
Ú
n
2.1
3
N
Ú
Dirichlet
˜
m
¥
,
é
u
?
¿
š
K
ê
m
Ú
n
,
e
ª
f
¤
á
:
P
harm
(
z
m
z
n
) =
z
n
−
m
n>m
z
m
−
n
n<m
1
n
+1
m
=
n
y
²
é
n>m
,
k
P
harm
(
z
m
z
n
)
,z
k
=
z
m
z
n
)
,z
k
=
Z
D
z
m
z
n
dA
(
z
)
Z
z
k
dA
(
z
)+
Z
D
nkz
m
z
n
−
1
z
k
−
1
dA
(
z
)
=
h
z
n
,z
m
i
2
+
nk
Z
D
z
n
−
1
z
m
+
k
−
1
dA
(
z
)
=
nk
Z
D
z
n
−
1
z
m
+
k
−
1
dA
(
z
)
=
nk
1
π
Z
2
π
0
Z
1
0
r
m
+
k
+
n
−
1
e
i
(
n
−
m
−
k
)
θ
drdθ
=
n
−
mk
=
n
−
m
0
Ù
§
=
n
−
m
k
<z
k
,z
k
>k
=
n
−
m
0
Ù
§
=
z
n
−
m
,z
k
DOI:10.12677/aam.2021.10113933702
A^
ê
Æ
?
Ð
o
Š
Y
,
˜
•
¡
,
é
n<m
,
k
P
harm
(
z
m
z
n
)
,z
k
=
z
m
z
n
)
,z
k
=
Z
D
z
m
z
n
dA
(
z
)
Z
z
k
dA
(
z
)+
Z
D
mkz
m
−
1
z
n
z
k
−
1
dA
(
z
)
=
h
z
n
,z
m
i
2
+
mk
Z
D
z
n
+
k
−
1
z
m
−
1
dA
(
z
)
=
mk
1
π
Z
2
π
0
Z
1
0
r
m
+
k
+
n
−
1
e
i
(
n
+
k
−
m
)
θ
drdθ
=
m
−
nk
=
m
−
n
0
Ù
§
=
m
−
n
k
z
k
,z
k
k
=
m
−
n
0
Ù
§
=
z
m
−
n
,z
k
Ø
d
ƒ
,
m
=
n
ž
,
P
harm
(
z
m
z
n
)
,z
k
+
z
k
=
1
n
+1
n
þ
,
Œ
±
P
harm
(
z
m
z
n
) =
z
n
−
m
n>m
z
m
−
n
n<m
1
n
+1
m
=
n
@
o
é
u
Dirichlet
˜
m
,
d
Ú
n
2.1
Œ
±
†
.
Ú
n
2.2
3
Dirichlet
˜
m
¥
,
é
u
?
¿
ê
m
Ú
n
,
e
ª
f
¤
á
(
a
)
h
z
m
,z
n
i
=
mm
=
n
0
Ù
§
(
b
)
P
(
z
n
z
m
) =
z
m
−
n
m>n
0
m<n
1
m
+1
m
=
n
e
¡
·
‚
é
Dirichlet
˜
m
¥
Toeplitz
Ž
f
T
φ
Ú
Hankel
Ž
f
H
φ
Ý
,
Ù
¥
φ
´
N
Ú¼
ê
.
3
ù
p
·
‚
•
Ä
N
Ú
Î
Ò
φ
(
z
)=
P
∞
i
=1
a
i
z
i
+
P
∞
j
=1
b
j
z
j
∈
L
∞
,
1
(
D
),
K
T
φ
'
u
Ä
{
e
n
}
n>
0
Ý
DOI:10.12677/aam.2021.10113933703
A^
ê
Æ
?
Ð
o
Š
Y
(
m,n
)
g
‘
•
h
T
φ
e
n
,e
m
i
=
h
P
(
φe
n
)
,e
m
i
=
h
φe
n
,e
m
i
=
1
√
mn
h
φz
n
,z
m
i
=
1
√
mn
*
(
∞
X
i
=1
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)
z
n
,z
m
+
(1)
m
≥
n
ž
,
h
T
φ
e
n
,e
m
i
=
1
√
mn
∞
X
i
=1
a
i
z
i
+
n
,z
m
=
r
m
n
a
m
−
n
.
(2)
m<n
ž
,
h
T
φ
e
n
,e
m
i
=
1
√
mn
*
∞
X
j
=1
b
j
z
j
z
n
,z
m
+
=
∞
X
j
=1
b
j
nm
z
j
z
n
−
1
,z
m
−
1
2
=
r
m
n
b
n
−
m
.
Ï
d
,
h
T
φ
e
n
,e
m
i
=
p
m
n
a
m
−
n
m
≥
n
p
m
n
b
n
−
m
m<n
Ù
¥
m
Ú
n
Ñ
´
ê
.
¤
±
T
φ
Ý
Œ
±
d
±
e
‰
Ñ
T
φ
=
a
0
q
1
2
b
1
q
1
3
b
2
q
1
4
b
3
···
√
2
a
1
a
0
q
2
3
b
1
q
1
2
b
2
···
√
3
a
2
q
3
2
a
1
a
0
q
3
4
b
1
···
.
.
.
.
.
.
.
.
.
.
.
.
e
5
·
‚
‡
é
k
N
Ú
Î
Ò
Hankel
Ž
f
Ý
,
-
φ
(
z
) =
P
∞
i
=1
a
i
z
i
+
P
∞
j
=1
b
j
z
j
∈
L
∞
,
1
(
D
)
,
K
H
φ
'
u
D
¥
I
O
Ä
{
e
n
}
n>
0
Ý
(
m,n
)
g
‘
•
h
H
φ
e
n
,e
m
i
=
h
PM
φ
Je
n
,e
m
i
=
h
PM
φ
e
n
+1
,e
m
i
=
h
M
φ
e
n
+1
,e
m
i
=
1
p
m
(
n
+1)
*
(
∞
X
i
=1
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)
z
n
+1
,z
m
+
=
1
p
m
(
n
+1)
(
∞
X
i
=1
a
i
z
i
z
n
+1
,z
m
+
∞
X
j
=1
b
j
z
n
+
j
+1
,z
m
)
=
1
p
m
(
n
+1)
∞
X
i
=1
a
i
im
z
i
−
1
,z
m
+
n
2
=
m
p
m
(
n
+1)
a
m
+
n
+1
,
Ù
¥
m
Ú
n
Ñ
•
ê
.
DOI:10.12677/aam.2021.10113933704
A^
ê
Æ
?
Ð
o
Š
Y
K
H
φ
'
u
D
¥
I
O
Ä
{
e
n
}
n>
0
Ý
•
H
φ
=
1
√
2
a
3
1
√
3
a
4
1
√
4
a
5
···
a
4
2
√
6
a
5
1
√
2
a
6
···
3
√
6
a
5
a
6
3
2
√
3
a
7
···
√
2
a
6
3
√
3
a
7
a
8
···
.
.
.
.
.
.
.
.
.
•
é
H-Toeplitz
Ž
f
B
φ
½
Â
,
·
‚
Ä
k
•
Ä
Ž
f
K
:
D→D
h
,
½
Â
X
e
:
K
(
e
2
n
(
z
)) =
e
n
(
z
) =
1
√
n
z
n
,K
(
e
2
n
+1
(
z
)) =
e
n
+1
(
z
) =
1
√
n
+1
z
n
+1
,n>
0
,z
∈
D
.
Ž
f
K
3
D
¥
´
k
.
‚
5
,
…
k
K
k
= 1,
Ó
,
Ž
f
K
∗
½
Â
•
K
∗
(
e
n
(
z
)) =
e
2
n
(
z
)
,K
∗
(
e
n
+1
(
z
)) =
e
2
n
+1
(
z
)
,n>
0
.
e
¡
·
‚
ò
|
^
Ž
f
K
½
Â
5
½
Â
Dirichlet
˜
m
D
¥
H-Toeplitz
Ž
f
.
½
Â
é
φ
∈
C
1
(
D
)
,
H-Toeplitz
Ž
f
½
Â
X
e
:
B
φ
:
D→D
,
…
k
B
φ
(
f
) =
PM
φ
K
(
f
)
,
∀
f
∈D
.
X
·
‚
é
H-Toeplitz
Ž
f
B
φ
3
Dirichlet
˜
m
D
¥
3
I
O
Ä
e
Ý
,
Ù
¥
φ
•
N
Ú¼
ê
.
·
‚
φ
∈
L
∞
,
1
(
D
),
|
^
Ú
n
2.2,
é
z
‡
ê
n
,
k
B
φ
(
e
2
n
) =
PM
φ
K
(
e
2
n
) =
PM
φ
e
n
=
T
φ
(
e
n
)
B
φ
(
e
2
n
+1
) =
PM
φ
K
(
e
2
n
+1
) =
PM
φ
e
n
+1
=
PM
φ
Je
n
=
h
φ
(
e
n
)
.
Ï
d
,
h
B
φ
e
2
n
,e
m
i
=
h
T
φ
e
n
,e
m
i
=
p
m
n
a
m
−
n
,m
≥
n
p
m
n
b
n
−
m
,m<n
,
Ù
¥
m,n
Ñ
´
ê
.
h
B
φ
e
2
n
+1
,e
m
i
=
h
H
φ
e
n
,e
m
i
=
m
p
m
(
n
+1)
a
m
+
n
+1
,m>
0
,n>
0
,
K
B
φ
'
u
D
¥
I
O
Ä
{
e
n
}
n>
0
Ý
•
B
φ
=
a
2
a
0
1
√
2
a
3
1
√
2
b
1
1
√
3
a
4
√
3
b
2
1
√
4
a
5
···
√
2
a
3
1
√
2
a
1
a
4
a
0
2
√
6
a
5
q
3
2
b
1
1
√
2
a
6
···
√
3
a
4
√
3
a
2
3
√
6
a
5
q
3
2
a
1
a
6
a
0
3
2
√
3
a
7
···
2
a
5
2
a
3
√
2
a
6
√
2
a
2
2
√
3
a
7
q
4
3
a
1
a
8
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
DOI:10.12677/aam.2021.10113933705
A^
ê
Æ
?
Ð
o
Š
Y
B
φ
Š
‘
Ý
•
B
∗
φ
=
a
2
√
2
a
3
√
3
a
4
2
a
5
···
a
0
1
√
2
a
1
√
3
a
2
2
a
3
···
1
√
2
a
3
a
4
3
√
6
a
5
√
2
a
6
···
1
√
2
b
1
a
0
q
3
2
a
1
√
2
a
2
···
1
√
3
a
4
2
√
6
a
5
a
6
2
√
3
a
7
···
√
3
b
2
q
3
2
b
1
a
0
q
4
3
a
1
···
.
.
.
.
.
.
.
.
.
.
.
.
d
B
φ
Ý
Œ
B
φ
Ý
L
ˆ
ª
¥
2
n
+1(
n
=1
,
2
,...
)
TT
•
Hankel
Ž
f
Ý
L
ˆ
ª
,
ó
ê
•
Toeplitz
Ž
f
Ý
L
ˆ
ª
.
e
5
·
‚
ò
‰
Ñ
ä
N
DirichletH-Toeplitz
Ý
:
½
Â
é
u
φ
(
z
) =
P
∞
i
=1
a
i
z
i
+
P
∞
j
=1
b
j
z
j
∈
L
∞
(
D
)
,
e
˜
‡
Ý
(
C
m,n
)
(
m,n
)
g
‘
÷
v
e
'
X
:
C
m,n
=
q
m
j
a
m
−
j
n
= 2
jm
≥
j
q
j
m
b
j
−
m
n
= 2
j,m<j
m
+
j
+1
√
m
(
j
+1)
a
m
+
j
+1
n
+2
j
+1
Ù
¥
m,n,j
Ñ
´
ê
,
K
Œ
ò
Ã
•
Ý
(
C
m,n
)
½
Â
•
˜
‡
DirichletH-Toeplitz
Ý
.
qd
(
C
m,n
)
Ý
Œ
(
C
m,n
)
÷
v
C
1
,
2
=
C
j,
2
j
,j
≥
1
.
^
B
(
D
)
L
«
D
¥
k
.
‚
5
Ž
f
8
Ü
,
e
¡
·
‚
y
²
é
uN
γ
:
G→B
(
D
),
e
½
Â
•
‡
o
´
{
φ
∈
L
∞
(
D
) :
φ
´
N
Ú
}
‡
o
´
{
φ
∈
C
1
(
D
) :
φ
´
N
Ú
}
,
K
γ
´
˜˜
.
·
K
2.5
½
Â
•
γ
(
φ
) =
B
φ
¼
ê
γ
:
G→B
(
D
)
o
´
˜˜
,
Ù
¥
G
‡
o
´
˜
m
{
φ
∈
L
∞
(
D
) :
φ
´
N
Ú
}
‡
o
´
˜
m
{
φ
∈
C
1
(
D
) :
φ
´
N
Ú
}
y
²
œ
¹
1
-
G
=
{
φ
∈
L
∞
(
D
):
φ
´
N
Ú
}
,
…
φ,ψ
∈
L
∞
(
D
)
´
D
þ
N
Ú¼
ê
§
½
Â
•
φ
(
z
)=
P
∞
i
=1
a
i
z
i
+
P
∞
j
=1
b
j
z
j
,ψ
(
z
) =
P
∞
j
=1
a
0
i
z
i
+
P
∞
j
=1
b
0
j
z
j
,
e
B
φ
=
B
ψ
,
K
k
(
B
φ
−
B
ψ
)(
e
n
) =
0
,n>
0
,
A
O
/
,(
B
φ
−
B
ψ
)(1) =
B
φ
−
ψ
(1) = 0
,
|
^
½
Â
,
B
φ
−
ψ
(1) =
PM
φ
−
ψ
K
(1) =
p
(
∞
X
i
=1
(
a
i
−
a
0
i
)
z
i
+
∞
X
j
=1
(
b
j
−
b
0
j
)
z
j
) =
∞
X
i
=1
(
a
i
−
a
0
i
)
z
i
= 0
Ï
d
Œ
a
i
−
a
0
i
= 0
,i
≥
1
,
=
a
i
=
a
0
i
,i
≥
1
DOI:10.12677/aam.2021.10113933706
A^
ê
Æ
?
Ð
o
Š
Y
…
B
φ
−
ψ
(
e
2
) = 0
.
K
B
φ
−
ψ
(
e
2
) =
PM
φ
−
ψ
K
(
e
2
) =
PM
φ
−
ψ
e
1
=
PM
φ
−
ψ
z
=
P
(
∞
X
i
=1
(
a
i
−
a
0
i
)
z
i
+
∞
X
j
=1
(
b
j
−
b
0
j
)
z
j
)
z
=
P
∞
X
i
=1
(
a
i
−
a
0
i
)
z
i
+1
+
∞
X
j
=1
(
b
j
−
b
0
j
)
z
j
z
)
=
1
2
(
b
1
−
b
0
1
) = 0
K
k
b
1
−
b
0
1
= 0
,
b
1
=
b
0
1
.
X
,
B
φ
−
ψ
(
e
4
) = 0
,
K
B
φ
−
ψ
(
e
4
) =
PM
φ
−
ψ
K
(
e
4
) =
PM
φ
−
ψ
e
2
=
PM
φ
−
ψ
1
√
2
z
2
=
P
1
√
2
(
∞
X
i
=1
(
a
i
−
a
0
i
)
z
i
+2
+
∞
X
j
=1
(
b
j
−
b
0
j
)
z
j
)
z
2
=
P
1
√
2
∞
X
j
=1
(
b
j
−
b
0
j
)
z
j
z
2
) =
1
√
2
(
b
2
−
b
0
2
)
P
(
z
2
z
2
)
= 0
¤
±
7
k
b
2
−
b
0
2
= 0
,
=
b
2
=
b
0
2
.
•
g
^
a
q
•{
ò
B
φ
Š
^
e
6
,e
8
,
···
þ
,
Œ
b
j
=
b
0
j
,j
≥
1
.
Ï
d
φ
=
ψ,
¤
±
γ
´
˜˜
.
œ
¹
2
-
G
=
{
φ
∈
C
1
(
D
):
φ
´
N
Ú
}
,
b
½
γ
(
φ
)=0
,
=
B
φ
=0
,φ
∈
C
1
(
D
)
,
K
é
?
¿
ê
m,n,
k
0 =
B
φ
z
2
m
,z
n
=
√
2
mn
h
PM
φ
e
m
,e
n
i
=
√
2
h
T
φ
z
m
,z
n
i
=
√
2
n
h
φz
m
,z
n
i
H
2
Ï
d
h
φz
m
,z
n
i
H
2
=0
,
¤
±
φ
3
>
.
þ
•
0,
=
φ
|
∂
D
=0
.
∵
φ
´
N
Ú
,
∴
Œ
d
Ñ
t
È
©
ú
ª
φ
(
z
)=
1
2
π
R
2
π
0
(
R
2
−
r
2
)
φ
(
Re
iθ
)
R
2
−
2
Rr
cos(
θ
−
ϕ
)+
r
2
dθ,z
∈
D
.
φ
(
Re
iθ
)=0
ž
,
K
φ
(
z
)=0
,z
∈
D
,
=
φ
3
D
S
ð
•
0.
γ
´
˜
˜
.
3.H-To eplitz
Ž
f
†
5
3ù
˜
Ü
©
·
‚
ï
Ä
H-Toeplitz
Ž
f
†
5
,
Ù
¥
H-Toeplitz
Ž
f
Î
Ò
•
)
Û
Ú
Ý
)
Û
,
˜
„
/
,
ü
‡
Î
Ò
Ñ
•
)
Û
…
Î
Ò
g
ê
Ø
Ó
H-Toeplitz
Ž
f
´
Ø
Œ
±
†
,
e
¡
~
f
Œ
±
ƒ
±
y
²
.
~
f
3.1
-
φ
(
z
)=
z,ψ
(
z
)=
z
3
,
K
B
z
(
e
4
(
z
))=
PM
z
K
(
e
4
(
z
))=
PM
z
e
2
(
z
)=
PM
z
1
√
2
z
2
=
DOI:10.12677/aam.2021.10113933707
A^
ê
Æ
?
Ð
o
Š
Y
1
√
2
z
3
,B
z
3
(
e
4
(
z
)) =
PM
z
3
K
(
e
4
(
z
)) =
PM
z
3
e
2
(
z
) =
PM
z
3
1
√
2
z
2
=
1
√
2
z
5
,
Ï
d
,
B
z
B
z
3
(
e
4
(
z
)) =
B
z
(
1
√
2
z
5
) =
1
√
2
PM
z
K
(
z
5
) =
1
√
2
PM
z
√
5
e
3
= 0
,
B
z
3
B
z
(
e
4
(
z
)) =
B
z
3
(
1
√
2
z
3
) =
1
√
2
PM
z
3
K
(
z
3
) =
√
2
√
3
PM
z
3
e
2
=
√
3
2
P
(
z
3
z
2
) =
√
3
2
z.
¤
±
B
z
B
z
3
6
=
B
z
3
B
z
.
ü
‡
H-Toeplitz
Ž
f
Î
Ò
©
O
•
)
Û
Ú
Ý
)
Û
ž
,
~
X
-
φ
(
z
)=
z,ψ
(
z
)=
z,
K
B
z
B
z
6
=
B
z
B
z
,
Ï
•
B
z
B
z
(
z
2
) =
B
z
PM
z
√
2
z
=
√
2
2
z,
B
z
B
z
(
z
2
) =
B
z
PM
z
√
2
z
=
PM
z
K
(
√
2
z
2
) = 1
.
Ï
L
þ
¡
~
f
,
·
‚
u
y
é
u
ü
‡
Ñ
´
)
Û
Î
Ò
…
Î
Ò
g
ê
Ø
Ó
H-Toeplitz
Ž
f
±
9
ü
‡
©
O
´
)
Û
Ú
Ý
)
Û
H-Toeplitz
Ž
f
˜
„
´
Ø
U
†
,
¤
±
e
¡
·
‚
^
˜
‡
½
n5
•
x
ü
‡
H-Toeplitz
Ž
f
3
Dirichlet
˜
m
¥
Œ
±
†
^
‡
.
½
n
3.2
-
φ
(
z
)=
P
∞
n
=1
a
n
z
n
Ú
ψ
(
z
)=
P
∞
m
=1
b
m
z
m
,
Ù
¥
a
n
,b
m
,n,m
≥
1
Ñ
´
š
K
~
ê
,
…
φ
(0) = 0
,ψ
(0) = 0
,
e
B
φ
†
B
ψ
Œ
†
…
=
φ
= 0
½
ψ
= 0
.
y
Ä
k
¿
©
5
´
w
,
,
e
φ
=0
½
ψ
=0
,
K
B
φ
B
ψ
=
B
ψ
B
φ
.
Ù
g
´
7
‡
5
,
e
B
φ
B
ψ
=
B
ψ
B
φ
,
K
˜
½
k
B
φ
B
ψ
(1) =
B
ψ
B
φ
(1)
,
|
^
½
Â
,
B
φ
B
ψ
(1) =
PM
φ
KPM
ψ
K
(1) =
PM
φ
KPM
ψ
(1) = 0
,
B
ψ
B
φ
(1) =
PM
ψ
KPM
φ
K
(1) =
PM
ψ
KPM
φ
(1)
=
PM
ψ
KP
(
∞
X
n
=1
a
n
z
n
) =
PM
ψ
(
∞
X
n
=1
a
n
√
nK
(
e
n
))
n
= 2
k
+1
ž
B
ψ
B
φ
(1) =
PM
ψ
(
∞
X
k
=1
a
2
k
+1
√
2
k
+1
K
(
e
2
k
+1
)) = 0
n
= 2
k
ž
B
ψ
B
φ
(1) =
PM
ψ
KPM
φ
K
(1) =
PM
ψ
KPM
φ
(1)
=
PM
ψ
(
∞
X
k
=1
a
2
k
√
2
kK
(
e
2
k
)) =
P
(
∞
X
m
=1
b
m
z
m
)(
√
2
∞
X
k
=1
a
2
k
z
k
)
=
1
2
a
1
b
1
+
∞
X
t
=1
√
2(
∞
X
j
=1
a
j
+
t
b
j
)
z
t
Ï
d
,
1
2
a
1
b
1
+
P
∞
t
=1
√
2(
P
∞
j
=1
a
j
+
t
b
j
)
z
t
=0
,
du
a
n
,b
m
,n,m
≥
1
Ñ
´
š
K
,
K
a
1
b
1
=
0
,a
j
+
t
b
j
= 0
,j
≥
1
,t
≥
1.
Ï
d
b
j
= 0
,j
≥
1
,
½
a
i
+
t
= 0
,i,t
≥
1,
=
b
j
= 0
,j
≥
1
,
½
a
i
= 0
,i
≥
1
,
ù
DOI:10.12677/aam.2021.10113933708
A^
ê
Æ
?
Ð
o
Š
Y
L
²
φ
= 0
½
ψ
= 0
.
|
^
T
½
n
·
‚
•
Œ
±
ï
Ä
ü
‡
H-Toeplitz
Ž
f
Î
Ò
Ñ
´
N
Ú
ž
ÿ
†
5
.
½
n
3.3
-
φ
(
z
)=
P
∞
i
=1
a
i
z
i
+
P
∞
j
=1
b
j
z
j
,
…
ψ
(
z
)=
P
∞
m
=1
c
m
z
m
+
P
∞
n
=1
d
n
z
n
´
L
∞
,
1
(
D
)
¥
ü
‡
N
Ú¼
ê
,
…
k
φ
(0)=0=
ψ
(0)
,
Ù
¥
a
i
,b
j
,c
m
,d
n
,i,j,m,n
≥
1
Ñ
´
š
"
I
þ
,
…
b
½
a
i
c
k
−
2
i
≥
c
i
a
k
−
2
i
,a
i
c
2
i
−
j
≥
c
i
c
2
i
−
j
±
9
a
l
d
l
≥
c
l
b
l
,b
j
c
2
j
+
h
≥
d
j
a
2
j
+
h
,
Ù
¥
k,j,h
þ
•
ó
ê
,
l
≥
1
.
K
e
^
‡
d
:
(1)
B
φ
B
ψ
=
B
ψ
B
φ
,
(2)
φ
†
ψ
´
‚
5
ƒ
'
.
y
e
φ
†
ψ
‚
5
ƒ
'
,
w
,
B
φ
†
B
ψ
Œ
†
.
e
B
φ
†
B
ψ
Œ
†
,
K
˜
½
k
B
φ
B
ψ
(
z
4
) =
B
ψ
B
φ
(
z
4
)
,
B
φ
B
ψ
(
z
4
) =
PM
φ
KPM
ψ
K
(
z
4
) =
PM
φ
KPM
ψ
(2
e
2
)
=
PM
φ
KPM
ψ
√
2
z
2
=
√
2
PM
φ
KP
[(
∞
X
m
=1
c
m
z
m
+
∞
X
n
=1
d
n
z
n
)
z
2
]
=
√
2
PM
φ
KP
(
∞
X
m
=1
c
m
z
m
+2
+
∞
X
n
=1
d
n
z
n
z
2
)
=
√
2
PM
φ
K
(
∞
X
m
=1
c
m
z
m
+2
+
d
1
z
+
1
3
d
2
)
=
√
2
PM
φ
(
∞
X
m
=1
c
m
√
2
z
m
+2
2
+
∞
X
m
=1
c
m
r
2(
m
+2)
m
+3
z
m
+3
2
+
d
1
z
+
1
3
d
2
)
=
√
2
P
(
∞
X
i
=1
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)(
∞
X
m
=1
c
m
√
2
z
m
+2
2
+
∞
X
m
=1
c
m
r
2(
m
+2)
m
+3
z
m
+3
2
+
d
1
z
+
1
3
d
2
)
=
√
2(
∞
X
i
=1
a
i
∞
X
m
=1
c
m
√
2
z
m
+2
i
+2
2
+
∞
X
i
=1
a
i
∞
X
m
=1
c
m
r
2(
m
+2)
m
+3
z
2
i
−
m
−
3
2
+
1
2
a
1
d
1
+
∞
X
i
=2
a
i
d
1
z
i
−
1
+
1
3
d
2
∞
X
i
=1
a
i
z
i
+
∞
X
j
=1
b
j
∞
X
m
=1
c
m
√
2
z
m
−
2
j
+2
2
)
B
ψ
B
φ
(
z
4
) =
PM
ψ
KPM
φ
K
(
z
4
) =
PM
ψ
KPM
φ
(2
e
2
)
=
PM
ψ
KPM
φ
√
2
z
2
=
√
2
PM
ψ
KP
[(
∞
X
i
=1
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)
z
2
]
=
√
2
PM
ψ
KP
(
∞
X
i
=1
a
i
z
i
+2
+
∞
X
j
=1
b
j
z
j
z
2
)
=
√
2
PM
ψ
K
(
∞
X
i
=1
a
i
z
i
+2
+
b
1
z
+
1
3
b
2
)
=
√
2
PM
ψ
(
∞
X
i
=1
a
i
√
i
+2
K
(
e
i
+2
)+
b
1
z
+
1
3
b
2
)
=
√
2
PM
ψ
(
∞
X
i
=1
a
i
√
i
+2
e
i
+2
2
+
∞
X
i
=1
a
i
√
i
+2
e
i
+3
2
+
b
1
z
+
1
3
b
2
)
DOI:10.12677/aam.2021.10113933709
A^
ê
Æ
?
Ð
o
Š
Y
=
√
2
P
(
∞
X
m
=1
c
m
z
m
+
∞
X
n
=1
d
n
z
n
)(
∞
X
i
=1
a
i
√
2
z
i
+2
2
+
∞
X
i
=1
a
i
r
2(
i
+2)
i
+3
z
i
+3
2
+
b
1
z
+
1
3
b
2
)
=
√
2(
∞
X
m
=1
c
m
∞
X
i
=1
a
i
√
2
z
2
m
+
i
+2
2
+
∞
X
m
=1
c
m
∞
X
i
=1
a
i
r
2(
i
+2)
i
+3
z
2
m
−
i
−
3
2
+
1
2
c
1
b
1
+
∞
X
m
=2
c
m
b
1
z
m
−
1
+
1
3
b
2
∞
X
m
=1
c
m
z
m
+
∞
X
n
=1
d
n
∞
X
i
=1
a
i
√
2
z
i
−
2
n
+2
2
)
'
ª
ü
>
z
‘
X
ê
,
Œ
√
2(
∞
X
i
=1
a
i
c
2
i
−
5
r
2
i
−
3
i
−
1
+
1
2
a
1
d
1
+
a
2
d
1
+
1
3
a
1
d
2
+
√
2
∞
X
j
=1
b
j
c
2
j
)
=
√
2(
∞
X
i
=1
c
m
a
2
m
−
5
r
2
m
−
3
m
−
1
+
1
2
c
1
b
1
+
c
2
b
1
+
1
3
b
2
c
1
+
√
2
∞
X
n
=1
d
n
c
2
n
)
.
½
ö
d
u
a
2
m
−
5
c
2
m
−
5
=
a
m
c
m
,m
≥
1
,
b
1
d
1
=
a
1
c
1
=
a
2
c
2
=
b
2
d
2
…
a
2
n
c
2
n
=
b
n
d
n
,n
≥
1
,
?
a
i
c
i
=
a
i
+1
c
i
+1
,i
=
1
,
2
,
3
,
b
1
d
1
=
b
2
d
2
.
'
ª
ü
>
z
2
‘
X
ê
,
Œ
√
2(
∞
X
i
=1
a
i
c
2
i
−
7
r
2
i
−
5
i
−
1
+
1
2
a
1
d
1
+
a
3
d
1
+
1
3
d
2
a
2
+
√
2
∞
X
j
=1
b
j
c
2
j
+2
)
=
√
2(
∞
X
m
=1
c
m
a
2
m
−
7
r
2
m
−
5
m
−
2
+
1
2
c
1
b
1
+
c
3
b
1
+
1
3
b
2
c
2
+
√
2
∞
X
n
=1
d
n
c
2
n
+2
)
½
ö
d
u
a
2
m
−
7
c
2
m
−
7
=
a
m
c
m
,m
≥
1
,
b
1
d
1
=
a
1
c
1
=
a
3
c
3
…
a
2
n
+2
c
2
n
+2
=
b
n
d
n
,n
≥
1
,
?
a
i
c
i
=
a
i
+1
c
i
+1
,i
=
1
,
2
,
3
,
4
,
5
,
b
j
+1
d
j
+1
=
b
j
d
j
,j
= 1
,
2
.
'
ª
ü
>
z
3
‘
X
ê
,
Œ
√
2(
√
2
∞
X
i
=1
a
i
c
4
−
2
i
+
∞
X
i
=1
a
i
c
2
i
−
9
r
2
i
−
7
i
−
3
+
1
2
a
1
d
1
+
a
4
d
1
+
1
3
d
2
a
3
+
√
2
∞
X
j
=1
b
j
c
2
j
+4
)
=
√
2(
∞
X
m
=1
c
m
a
4
−
2
m
√
2+
∞
X
m
=1
c
m
a
2
m
−
9
r
2
m
−
7
m
−
3
+
1
2
c
1
b
1
+
c
4
b
1
+
1
3
b
2
c
3
+
√
2
∞
X
n
=1
d
n
c
2
n
+4
)
½
ö
d
u
a
2
m
−
9
c
2
m
−
9
=
a
m
c
m
=
a
4
−
2
m
c
4
−
2
m
,m
≥
1
,
b
1
d
1
=
a
1
c
1
=
a
4
c
4
…
a
2
n
+4
c
2
n
+4
=
b
n
d
n
,n
≥
1
,
?
a
i
c
i
=
a
i
+1
c
i
+1
,i
=
1
,
2
,
3
,
4
,
5
,
6
,
b
j
+1
d
j
+1
=
b
j
d
j
,j
= 1
,
2
,
3
.
X
•
g
'
e
,
·
‚
Œ
±
a
k
c
k
=
a
k
+1
c
k
+1
,k
≥
1
,
b
j
+1
d
j
+1
=
b
j
d
j
,j
≥
1
,
du
b
1
d
1
=
a
1
c
1
=
a
2
c
2
=
b
2
d
2
,
¤
±
Œ
a
t
c
t
=
b
t
d
t
=
λ,
Ù
¥
λ
=
b
1
d
1
,
•
L
²
φ
=
λψ.
DOI:10.12677/aam.2021.10113933710
A^
ê
Æ
?
Ð
o
Š
Y
ë
•
©
z
[1]Lee,Y.J.(2009)FiniteSumsofToeplitzProductsontheDirichletSpace.
JournalofMathe-
maticalAnalysisandApplications
,
357
,504-515.https://doi.org/10.1016/j.jmaa.2009.04.035
[2]Chen, Y.and Dieu,N.Q.(2010)ToeplitzandHankelOperators with
L
∞
,
1
SymbolsonDirichlet
Space.
JournalofMathematicalAnalysisandApplications
,
369
,368-376.
[3]Zhao,L.(2008)CommutativityofToeplitzOperatorsontheHarmonicDirichletSpace.
Journal
ofMathematicalAnalysisandApplications
,
339
,1148-1160.
https://doi.org/10.1016/j.jmaa.2007.07.030
[4]Lu,Y.,Hu,Y.andLiu,L.(2015)CompactToeplitzOperatorsontheWeightedDirichlet
Space.
ActaMathematicaSinica
,
31
,35-43.https://doi.org/10.1007/s10114-015-3380-z
[5]Yu,T.(2010)ToeplitzOperatorsontheDirichletSpace.
IntegralEquationsandOperator
Theory
,
67
,163-170.https://doi.org/10.1007/s00020-010-1754-2
[6]Stroethoff,K.(1990)CompactHankelOperatorsontheBergmanSpace.
IllinoisJournalof
Mathematics
,
34
,159-174.https://doi.org/10.1215/ijm/1255988500
[7]Axler,S.,Conway,J.B.andMcDonald,G.(1982)ToeplitzOperatorsonBergmanSpaces.
CanadianJournalofMathematics
,
34
,466-483.
https://doi.org/10.4153/CJM-1982-031-1
[8]Axler,S.,Cuckoric,andRao, N.V.(2000) Commutantsof AnalyticToeplitzOperatorson the
BergmanSpace.
ProceedingsoftheAmericanMathematicalSociety
,
128
,1951-1953.
https://doi.org/10.1090/S0002-9939-99-05436-2
[9]Gupta,A.andSingh,S.K.(2019)SlantH-ToeplitzOperatorsontheHardySpace.
Journalof
theKoreanMathematicalSociety
,
56
,703-721.
[10]Arora,S.C.andPaliwal,S.(2007)OnH-ToeplitzOperators.
BulletinofPureandApplied
Mathematics
,
1
,142-154.
DOI:10.12677/aam.2021.10113933711
A^
ê
Æ
?
Ð