设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2021,10(12),4489-4497
PublishedOnlineDecember2021inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2021.1012478
H-Toeplitz
Ž
f
“
ê
5
Ÿ
ùùù
777777
ú
ô
“
‰
Œ
Æ
,
ê
Æ
†
O
Ž
Å
‰
ÆÆ
,
ú
ô
7
u
Â
v
F
Ï
µ
2021
c
11
27
F
¶
¹
^
F
Ï
µ
2021
c
12
23
F
¶
u
Ù
F
Ï
µ
2021
c
12
30
F
Á
‡
©
Ì
‡
ï
Ä
Bergman
˜
m
þ
H-Toeplitz
Ž
f
“
ê
5
Ÿ
"
1
˜
Ù
0
ƒ
'
ï
Ä
µ
!
Ä
V
g
9
˜
Ì
‡
(
J
"
1
Ù
‰
Ñ
©
Ì
‡
(
J
y
²
§
y
²
[
à
g
Î
Ò
H-Toeplitz
Ž
f
E
é
¡
5
"
'
…
c
Bergman
˜
m
§
H-Toeplitz
Ž
f
§
E
é
¡
5
AlgebraicPropertiesofH-Toeplitz
Operator
JinjinLiang
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Nov.27
th
,2021;accepted:Dec.23
rd
,2021;published:Dec.30
th
,2021
Abstract
Inthispaper,wemainlystudythealgebraicpropertiesofH-toeplitzoperatorson
BergmanSpaces.InChapter1,weintroducetherelatedresearchbackground,basic
©
Ù
Ú
^
:
ù
77
.H-Toeplitz
Ž
f
“
ê
5
Ÿ
[J].
A^
ê
Æ
?
Ð
,2021,10(12):4489-4497.
DOI:10.12677/aam.2021.1012478
ù
77
conceptsandsomemainresults.InChapter2,theproofofthemainresultsofthis
paperisgiven,andthecomplexsymmetryofquasihomogeneoussignedH-toeplitz
operatorsisproved.
Keywords
BergmanSpace,H-ToeplitzOperator,ComplexSymmetry
Copyright
c
2021byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
0
P
D
•
E
²
¡
C
S
ü
m
dA
(
z
) =
1
π
rdrdθ
•
D
þ
5
‰
z
Lebesgue
¡
È
ÿ
Ý
.
P
H
(
D
)
•
D
þ
¤
k
)
Û
¼
ê
,
P
Bergman
˜
m
L
2
a
(
D
)
•
D
þ
¤
k
V
‚
²
•
Œ
È
)
Û
¼
ê
¤
¤
Hilbert
˜
m
,
Ù
S
È
½
Â
•
h
f,g
i
=
Z
D
f
(
z
)
g
(
z
)
dA
(
z
)
,f,g
∈
L
2
(
D
)
.
˜
m
L
2
a
(
D
)
´
Hilbert
˜
m
L
2
(
D,dA
)
4
f
˜
m
.
é
u
š
K
ê
n
,
e
n
(
z
)=
√
n
+1
z
n
.
é
¤
k
z
∈
D
.
8
Ü
{
e
n
}
n
≥
0
¤
L
2
(
D
)
˜
|
I
O
Ä
[1].
é
u
z,w
∈
D
,Bergman
˜
m
¥
2
)
Ø
¡
•
Bergman
Ø
,
½
Â
•
K
z
(
w
) =
K
(
z,w
) =
1
(1
−
zw
)
2
.
P
P
L
2
a
:
L
2
(
D,dA
)
−→
L
2
a
(
D
),
L
«
˜
m
L
2
(
D,dA
)
˜
m
L
2
a
(
D
)
Ý
K
,
¡
•
Bergman
Ý
K
.
é
¤
k
f
∈
L
2
(
D,dA
),
d
2
)
Ø
5
Ÿ
µ
P
L
2
a
(
f
)(
z
) =
h
P
L
2
a
f,K
z
i
=
h
f,K
z
i
=
Z
D
f
(
w
)
(1
−
zw
)
2
dA
(
w
)
.
„
[2].
é
φ
∈
L
∞
(
D
),
¦
{
Ž
f
M
φ
½
Â
•
M
φ
(
f
)=
φf
.
Î
Ò
•
φ
∈
L
∞
(
D
)
Toeplitz
Ž
f
T
φ
:
L
2
a
(
D
)
−→
L
2
a
(
D
)
d
e
ª
½
Â
T
φ
(
f
) =
P
L
2
a
(
φf
) =
Z
D
φ
(
z
)
f
(
w
)
(1
−
¯
zw
)
2
dA
(
w
)
,f
∈
L
2
(
D
)
.
DOI:10.12677/aam.2021.10124784490
A^
ê
Æ
?
Ð
ù
77
é
φ
∈
L
∞
(
D
),Hankel
Ž
f
H
φ
:
L
2
a
(
D
)
−→
L
2
a
(
D
)
½
Â
•
H
φ
(
f
) =
P
L
2
a
M
φ
J
(
f
)
,
∀
f
∈
L
2
a
(
D
)
,
Ù
¥
Ž
f
J
:
L
2
a
(
D
)
−→
L
2
a
(
D
)
d
J
(
e
n
(
z
))=
e
n
+1
(
z
)
‰
Ñ
,
Ù
¥
n
•
š
K
ê
.
T
φ
Ú
H
φ
´
L
2
a
(
D
)
þ
k
.
‚
5
Ž
f
.
Ú
n
1.1
3
Bergman
˜
m
L
2
a
(
D
)
¥
é
u
š
K
ê
s
Ú
t
,
±
e
¤
á
,
„
[3]:
h
z
s
,z
t
i
=
1
s
+1
,
s=t
;
0
,s
6
=
t.
P
L
2
a
(
z
t
z
s
) =
s
−
t
+1
s
+1
z
s
−
t
,s
≥
t
;
0
,s<t.
•
½
Â
L
2
a
(
D
)
þ
H-Toeplitz
Ž
f
V
g
,
Ä
k
½
Â
‚
5
Ž
f
K
:
L
2
a
(
D
)
−→
L
2
harm
(
D
)
,
K
(
e
2
n
) =
e
n
,K
(
e
2
n
+1
) =
e
n
+1
,n
= 0
,
1
,
2
,
···
.
´
„
Ž
f
K
3
L
2
a
(
D
)
þ
k
.
.
d
,
k
K
k
= 1.
Ž
f
K
Š
‘
d
e
ª
‰
Ñ
:
é
∀
n
≥
0,
K
∗
(
e
n
) =
e
2
n
,K
∗
(
e
n
+1
) =
e
2
n
+1
.
é
φ
∈
L
∞
(
D
),H-Toeplitz
Ž
f
½
Â
•
B
φ
:
L
2
a
(
D
)
−→
L
2
a
(
D
),
B
φ
(
f
) =
P
L
2
a
M
φ
K
(
f
)
,f
∈
L
2
a
(
D
)
,
é
u
z
‡
š
K
ê
n
,
·
‚
k
B
φ
(
e
2
n
) =
P
L
2
a
M
φ
K
(
e
2
n
) =
P
L
2
a
M
φ
(
e
n
) =
T
φ
(
e
n
)
Ú
B
φ
(
e
2
n
+1
) =
P
L
2
a
M
φ
K
(
e
2
n
+1
) =
P
L
2
a
M
φ
(
e
n
+1
) =
P
L
2
a
M
φ
J
(
e
n
) =
H
φ
(
e
n
)
.
H-Toeplitz
Ž
f
†
Toeplitz
Ž
f
†
Hankel
Ž
f
—
ƒ
ƒ
'
.
„
[4][5].
2.
Ì
‡
(
J
9
y
²
'
u
L
2
a
(
D
)
I
O
Ä
{
e
n
}
n
≥
0
,
T
φ
Ý
(
m,n
)
th
,
d
e
ª
‰
Ñ
:
DOI:10.12677/aam.2021.10124784491
A^
ê
Æ
?
Ð
ù
77
h
T
φ
(
e
n
)
,e
m
i
=
h
P
L
2
a
(
φe
n
,e
m
i
=
√
n
+1
√
m
+1
h
(
∞
X
i
=0
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)
z
n
,z
m
i
=
√
n
+1
√
m
+1(
∞
X
i
=0
a
i
h
z
i
+
n
,z
m
i
+
∞
X
j
=1
h
b
j
z
n
,z
m
+
j
i
)
.
©
±
e
ü
«
œ
/
:
œ
/
(1):
X
J
m
≥
n
,
·
‚
k
:
h
T
φ
(
e
n
)
,e
m
i
=
√
n
+1
√
m
+1
∞
X
i
=0
a
i
h
z
i
+
n
,z
m
i
=
√
n
+1
√
m
+1
1
m
+1
a
m
−
n
=
r
n
+1
m
+1
a
m
−
n
.
œ
/
(2):
X
J
m<n
,
·
‚
k
:
h
T
φ
(
e
n
)
,e
m
i
=
√
n
+1
√
m
+1
∞
X
j
=1
h
b
j
z
n
,z
m
+
j
i
=
√
n
+1
√
m
+1
1
n
+1
b
n
−
m
=
r
m
+1
n
+1
b
n
−
m
.
Ï
d
§
·
‚
Œ
±
:
h
T
φ
(
e
n
)
,e
m
i
=
q
n
+1
m
+1
a
m
−
n
,m
≥
n
;
q
m
+1
n
+1
b
n
−
m
,m
≤
n.
Ù
¥
m
Ú
n
´
š
K
ê
,
H
φ
Ý
(
m,n
)
th
ƒ
é
u
L
2
a
(
D
)
I
O
Ä
{
e
n
}
n
≥
0
d
e
ª
‰
Ñ
:
h
H
φ
(
e
n
)
,e
m
i
=
h
P
L
2
a
M
φ
J
(
e
n
)
,e
m
i
=
√
n
+2
√
m
+1
h
(
∞
X
i
=0
a
i
z
i
+
∞
X
j
=1
b
j
z
j
)
z
n
+1
,z
m
i
=
√
n
+2
√
m
+1(
∞
X
i
=0
a
i
h
z
i
,z
m
+
n
+1
i
+
∞
X
j
=1
b
j
h
z
j
,z
m
+
n
+1
i
)
=
√
m
+1
√
n
+2
m
+
n
+2
a
m
+
n
+1
.
DOI:10.12677/aam.2021.10124784492
A^
ê
Æ
?
Ð
ù
77
Ó
n
,
é
u
š
K
ê
m
Ú
n
,
k
h
B
φ
(
e
2
n
)
,e
m
i
=
h
T
φ
(
e
n
)
,e
m
i
q
n
+1
m
+1
a
m
−
n
,m
≥
n
;
q
m
+1
n
+1
b
n
−
m
,m
≤
n.
Ú
h
B
φ
(
e
2
n
+1
)
,e
m
i
=
h
H
φ
(
e
n
)
,e
m
i
=
√
m
+1
√
n
+2
m
+
n
+2
a
m
+
n
+1
,
Ù
¥
m
Ú
n
´
š
K
ê
,
Ï
d
,
B
φ
'
u
L
2
a
(
D
)
I
O
Ä
{
e
n
}
n
≥
0
Ý
L
«
d
e
ª
‰
Ñ
:
B
φ
=
a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
1
√
3
b
2
1
2
a
3
1
2
b
3
···
1
√
2
a
1
1
√
3
a
2
a
0
√
6
4
a
3
q
2
3
b
1
2
√
2
5
a
4
1
√
2
b
2
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
a
0
1
√
3
a
5
√
3
2
b
1
···
1
2
a
3
2
√
2
5
a
4
1
√
2
a
2
1
√
3
a
5
3
√
3
2
a
1
4
7
a
6
a
0
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
§
Š
‘
Ý
X
e
:
B
∗
φ
=
a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
]
1
√
3
a
2
√
6
4
a
3
3
5
a
4
1
√
3
a
5
···
1
√
3
b
2
√
3
2
b
1
a
0
√
3
2
a
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
3
a
5
4
7
a
6
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
˜
m
L
2
(
D,dA
)
þ
E
Ý
Ž
f
C
:
L
2
(
D
)
−→
L
2
(
D
),
é
u
f,g
∈
L
2
(
D,dA
)
,
÷
v
C
2
=
I
Ú
h
Cf,Cg
i
=
h
g,f
i
Ñ
¤
á
.[6]
y
²
L
2
(
D,dA
)
•
3
˜
‡
Ä
{
e
n
}
∞
n
=0
,
¦
Ce
i
=
e
i
,
i
= 0
,
1
,
···
.
e
L
2
(
D,dA
)
þ
˜
‡
k
.
‚
5
Ž
f
T
,
X
J
•
3
E
Ý
C
,
¦
CT
=
T
∗
C
,
K
¡
T
´
E
é
¡
.
„
[7].
½
n
2.1
-
φ
∈
L
∞
(
D
)
•
N
Ú
Î
Ò
.
@
o
H-Toeplitz
Ž
f
B
φ
3
L
2
(
D,dA
)
þ
'
u
C
•
E
é
¡
Ž
f
…
=
φ
= 0
.
y
²
.
φ
(
z
) =
P
∞
i
=0
a
i
z
i
+
P
∞
j
=0
b
j
z
j
∈
L
∞
(
D
)
•
D
þ
N
Ú¼
ê
,
¿
B
φ
´
E
é
¡
Ž
f
.
ù
DOI:10.12677/aam.2021.10124784493
A^
ê
Æ
?
Ð
ù
77
¿
›
X
CB
φ
C
=
B
∗
φ
.
é
u
z
‡
š
K
ê
n
,
Ï
L
Ú
n
1.1
·
‚
Œ
±
O
Ž
Ñ
:
h
CB
φ
Ce
2
n
,e
m
i
=
h
Ce
m
,B
φ
Ce
2
n
i
=
h
e
m
,B
φ
e
2
n
i
=
h
e
m
,P
L
2
a
M
φ
K
(
e
2
n
)
i
=
h
e
m
,P
L
2
a
M
φ
(
e
n
)
i
=
h
e
m
,M
φ
(
e
n
)
i
=
h
√
m
+1
z
m
,
(
∞
X
i
=0
a
i
z
i
+
∞
X
j
=0
b
j
z
j
)
√
n
+1
z
n
i
=
√
m
+1
√
n
+1
h
z
m
,
∞
X
i
=0
a
i
z
i
z
n
i
+
√
m
+1
√
n
+1
h
z
m
,
∞
X
j
=0
b
j
z
j
z
n
i
.
Ï
d
,
Ñ
y
±
e
ü
«
œ
/
:
œ
/
(1):
X
J
m
≥
n
,
@
o
h
CB
φ
Ce
2
n
,e
m
i
=
h
√
m
+1
√
n
+1
z
m
,
∞
X
i
=0
a
i
z
i
z
n
i
=
√
m
+1
√
n
+1
∞
X
i
=0
a
i
h
z
m
,z
i
+
n
i
=
√
m
+1
√
n
+1
1
m
+1
a
m
−
n
=
r
n
+1
m
+1
a
m
−
n
.
œ
/
(2):
X
J
m<n
,
@
o
h
CB
φ
Ce
2
n
,e
m
i
=
√
m
+1
√
n
+1
h
z
m
,
∞
X
j
=0
b
j
z
j
z
n
i
=
√
m
+1
√
n
+1
∞
X
j
=0
b
j
h
z
m
+
j
,z
n
i
=
√
m
+1
√
n
+1
1
n
+1
b
n
−
m
=
r
m
+1
n
+1
b
n
−
m
.
DOI:10.12677/aam.2021.10124784494
A^
ê
Æ
?
Ð
ù
77
h
CB
φ
Ce
2
n
+1
,e
m
i
=
h
Ce
m
,B
φ
Ce
2
n
+1
i
=
h
e
m
,B
φ
e
2
n
+1
i
=
h
e
m
,P
L
2
a
M
φ
K
(
e
2
n
+1
)
i
=
h
e
m
,P
L
2
a
M
φ
e
n
+1
i
=
h
e
m
,M
φ
e
n
+1
i
=
h
e
m
,φe
n
+1
i
=
h
√
m
+1
z
m
,
(
∞
X
i
=0
a
i
z
i
+
∞
X
j
=0
b
j
z
j
)
√
n
+2
z
n
+1
i
=
√
m
+1
√
n
+1
h
z
m
,
∞
X
i
=0
a
i
z
i
z
n
+1
i
+
h
z
m
,
∞
X
j
=0
b
j
z
j
¯
z
n
+1
i
=
√
m
+1
√
n
+1
∞
X
i
=0
a
i
h
z
m
,z
i
z
n
+1
i
=
√
m
+1
√
n
+2
n
+
m
+2
a
m
+
n
+1
.
Ù
¥
m
Ú
n
´
š
K
ê
.
Ï
d
,
Œ
CB
φ
C
Ý
/
ª
X
e
:
CB
φ
C
=
a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
1
√
3
b
2
1
2
a
3
1
2
b
3
···
1
√
2
a
1
2
3
a
2
a
0
√
6
4
a
3
1
√
2
b
1
2
√
2
√
5
a
4
1
√
2
b
2
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
a
0
1
√
3
a
5
√
3
2
b
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
2
a
2
1
√
3
a
5
√
3
2
a
1
4
7
a
6
a
0
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
B
∗
φ
=
a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
1
√
3
a
2
√
6
4
a
3
3
5
a
0
√
3
2
a
1
···
1
2
a
3
2
√
2
√
5
a
4
1
√
3
a
5
4
7
a
6
···
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
¤
±
,
X
J
CB
φ
C
=
B
∗
φ
,
@
o
a
0
1
√
2
a
1
1
√
2
b
1
1
√
3
a
2
···
1
√
2
a
1
2
3
a
2
a
0
√
6
4
a
3
···
1
√
3
a
2
√
6
4
a
3
q
2
3
a
1
3
5
a
4
···
1
2
¯
a
3
2
√
2
√
5
a
4
1
√
2
a
2
1
√
3
a
5
···
.
.
.
.
.
.
.
.
.
.
.
.
=
a
0
1
√
2
a
1
1
√
3
a
2
1
2
a
3
···
1
√
2
a
1
2
3
a
2
√
6
4
a
3
2
√
2
√
5
a
4
···
1
√
2
b
1
a
0
√
3
2
a
1
1
√
2
a
2
···
1
√
3
a
2
√
6
4
a
3
3
5
a
4
1
√
3
a
5
···
.
.
.
.
.
.
.
.
.
.
.
.
.
DOI:10.12677/aam.2021.10124784495
A^
ê
Æ
?
Ð
ù
77
n>m
ž
,
r
m
+1
n
+1
a
n
−
m
=
r
m
+1
n
+1
b
n
−
m
;
r
m
+1
n
+1
a
n
−
m
=
√
m
+1
√
m
+2
m
+
n
+2
a
m
+
n
+1
;
r
m
+1
n
+1
b
n
−
m
=
√
m
+1
√
n
+2
m
+
n
+2
a
m
+
n
+1
.
n
≤
m
ž
,
r
n
+1
m
+1
a
m
−
n
=
r
n
+1
m
+1
b
m
−
n
;
r
n
+1
m
+1
a
m
−
n
=
√
m
+1
√
n
+2
n
+
m
+2
a
m
+
n
+1
;
r
n
+1
m
+1
b
m
−
n
=
√
m
+1
√
n
+2
n
+
m
+2
a
m
+
n
+1
.
é
¤
k
š
K
ê
m
Ú
n
,
÷
v
a
1
=
a
2
=
a
3
=
···
=
a
n
−
m
=
a
m
+
n
+1
→∞
.
a
1
=
b
1
=
a
2
=
b
2
=
a
3
=
b
3
=
···
=
a
n
−
m
=
b
n
−
m
=
a
m
+
n
+1
→∞
,
m,n
→∞
.
Ý
¥
z
‡
ƒ
Ñ
•
¹
,
q
Ï
•
3
L
2
(
D
)
¥
Ý
÷
v
sup
P
∞
i
=0
|
a
i
|
2
<
∞
,
sup
P
∞
j
=0
|
b
j
|
2
<
∞
,
¤
±
m,n
→∞
,
lim
i
→∞
P
∞
i
=0
|
a
i
|
2
=0,lim
j
→∞
P
∞
j
=0
|
b
j
|
2
=0,
ù
¿
›
X
é
u
¤
k
i
Ú
j
,
a
i
=0
…
b
j
=0.
Ï
d
·
‚
Ï
"
(
J
φ
=0.
ë
•
©
z
[1]Ahern,P.and
ˇ
Cuˇckovi´e,
ˇ
Z.(2001)ATheoremofBrown-HalmosTypeforBergmanSpace
ToeplitzOperators.
JournalofFunctionalAnalysis
,
187
,200-210.
https://doi.org/10.1006/jfan.2001.3811
[2]Brown,A.andHalmos,P.R.(1964)AlgebraicPropertiesofToeplitzOperators.
Journalf¨ur
dieReineundAngewandteMathematik
,
213
,89-102. https://doi.org/10.1515/crll.1964.213.89
[3]Louhichi, I. and Zakariasy, L.(2005) On Toeplitz Operatorswith Quasihomogeneous Symbols.
ArchivderMathematik(Basel)
,
85
,248-257.https://doi.org/10.1007/s00013-005-1198-0
[4]Gupta,A.andSingh,S.K.(2021)H-ToeplitzOperatorsonBergmanSpace.
Bulletinofthe
KoreanMathematicalSociety
,
58
,327-347.
[5]Lu,Y.andZhang,B.(2011)CommutingHankelOperatorandToeplitzOperatoronthe
BergmanSpace.
ChineseAnnalsofMathematics,SeriesA
,
32
,519-530.
[6]Chen,Y.,Lee,Y.J.andZhao,Y.(2021)ComplexSymmetryofToeplitzOperators.Preprint.
DOI:10.12677/aam.2021.10124784496
A^
ê
Æ
?
Ð
ù
77
[7]Garcia,S.R.andPutinar,M.(2006)ComplexSymmetricOperatorsandApplications.
Trans-
actionsoftheAmericanMathematicalSociety
,
358
,1285-1315.
https://doi.org/10.1090/S0002-9947-05-03742-6
DOI:10.12677/aam.2021.10124784497
A^
ê
Æ
?
Ð