Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68523 , 8 pages
10.12677/ACM.2023.1371532

重组人类促红细胞生成素干预早产儿 缺氧缺血性脑损伤机制的研究进展

孙正达1,2,宋启君1,王立俊3*

1山东第一医科大学研究生院,山东 济南

2山东第一医科大学附属济南市妇幼保健院,山东 济南

3山东第一医科大学附属省立医院儿科,山东 济南

收稿日期:2023年6月11日;录用日期:2023年7月5日;发布日期:2023年7月12日

摘要

早产儿获得性脑损伤,特别是缺氧缺血性脑损伤(hypotic-ischemic brain damage, HIBD)的发生率和致残率呈上升趋势。脑白质损伤是HIBD中最常见的类型之一,可导致早产儿出现痉挛双瘫、视觉缺陷、认知障碍、脑瘫和行为缺陷等神经系统后遗症,其中最为常见的是脑室周围白质软化(Pvriventricular Leuko-malacia, PVL)。随着国内二胎三胎政策的放开,早产儿或极低出生体重儿占比率逐渐增多,而目前在新生儿重症监护病房只有有限的治疗方法可以改善HIBD的预后,比如亚低温疗法。目前研究发现在早产儿的治疗中给予重组人促红细胞生成素(recombinant human erythropoientin, rhEPO)干预可改善其神经发育结果,然而早产儿脑损伤后应用rhEPO的神经保护作用的潜在机制尚不完全清楚。本文章综述了通过目前大量细胞生物学和动物实验以及临床试验的研究结果,来判断rhEPO是否可以用于治疗早产儿脑损伤并评估其疗效以及应用rhEPO的安全性。

关键词

重组人促红素(rhEPO),早产儿,缺氧缺血性脑损伤,神经发育,神经保护

Research Progress on the Mechanism of Recombinant Human Erythropoietin Intervention in Hypoxic-Ischemic Brain Injury in Premature Infants

Zhengda Sun1,2, Qijun Song1, Lijun Wang3*

1Graduate School, Shandong First Medical University, Jinan Shandong

2Jinan Maternal and Child Health Hospital Affiliated to Shandong First Medical University, Jinan Shandong

3Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong

Received: Jun. 11th, 2023; accepted: Jul. 5th, 2023; published: Jul. 12th, 2023

ABSTRACT

The incidence and disability rate of acquired brain damage in premature infants, especially hypoxic-ischemic brain damage (HIBD), are on the rise. White matter injury is one of the most common types of HIBD, which can lead to neurological sequelae such as spastic diplegia, visual impairment, cognitive impairment, cerebral palsy, and behavioral impairment in premature infants. The most common type is periventricular leukomalacia (PVL). With the relaxation of the two-child and three-child policy in China, the proportion of premature or extremely low birth weight infants is gradually increasing. Currently, there are only limited treatment methods in the neonatal intensive care unit that can improve the prognosis of HIBD, such as mild hypothermia therapy. At present, research has found that intervention with recombinant human erythropoietin (rhEPO) in the treatment of premature infants can improve their neurodevelopmental outcomes. However, the potential mechanism of the neuroprotective effect of rhEPO after brain injury in premature infants is not fully understood. This article reviews the research results of a large number of cell biology, animal experiments, and clinical trials to determine whether rhEPO can be used to treat brain injury in premature infants, evaluate its efficacy, and evaluate the safety of using rhEPO.

Keywords:Recombinant Human Erythropoietin (rhEPO), Premature Infants, Hypoxic-Ischemic Brain Injury, Neural Development, Neuroprotection

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

随着新生儿重症医学医疗与护理技术的进步,早产儿存活率逐年升高,据最新研究报道,目前全球早产发生率仅约为10.6%,而我国的发生率为6.9%,处于世界前列水平 [1] [2] 。如早期未对早产儿实施积极有效的临床支持治疗及专业护理等措施干预,会显著影响其营养状况,使其生长发育水平远低于正常足月儿水平。而且早产会给卫生系统带来巨大的成本,早产新生儿的家庭往往会经历相当大的心理和经济困难。神经发育障碍的重要危险因素之一是早产,其相关的长期神经发育缺陷(脑瘫、认知障碍、癫痫等)是早产儿中常见的不可逆神经系统后遗症 [3] 。我国在提高早产儿的存活率方面取得了重大进展,但远期神经发育结果未得到显著改善,因此有针对性的早产儿神经保护策略是必要的 [4] 。目前在治疗新生儿脑损伤方面,亚低温疗法可降低早产儿伤残率并显示出临床疗效。近期一些动物实验 [5] [6] 和临床研究 [7] [8] [9] 表明rhEPO具有临床应用的前景,印证了rhEPO的神经保护作用,为其在早产儿脑病的防治及后遗症的预防上提供理论依据。这篇综述概述了支持rhEPO作为神经保护剂的相关机制及其应用的安全性。

2. rhEPO对HIE的神经保护作用相关机制

EPO是广泛用于克服贫血的主要红细胞生成刺激因子,如今也因其对非造血组织的细胞保护作用而为人所知 [10] 。EPO在肝脏中被合成主要发生在在8周左右的胚胎形成时期,而肾脏也可以参与合成EPO,这是刚出生后就能发生的。EPO也可以被星形胶质细胞和神经元等中枢神经系统的多种细胞产生 [11] [12] 。EPO生成细胞对低氧诱导因子(hypoxia-inducible factor, HIF)检测到的氧分压降低有反应,故EPO是由缺氧诱导通过HIF的转录生产 [13] [14] 。缺氧然后诱导神经元释放EPO,从而引发各种非增殖前体的分化 [15] 。神经元EPO以自/旁分泌方式通过血脑屏障,结合锥体神经元中的EPOR,同时在不同细胞中结合,发挥神经保护作用 [16] [17] 。基于天然EPO的氨基酸序列,通过应用基因重组技术可以合成出一种生物学活性与天然EPO相似的糖蛋白,即rhEPO。rhEPO也可以透过血脑屏障,并通过与rhEPO受体结合发挥神经保护作用。rhEPO对HIE神经保护作用机制十分复杂,目前基于国内外已有的研究发现主要包括以下机制。

2.1. 通过PI3K/Akt信号通路促进血管生成

HIBD常见于围生期有窒息缺氧的新生儿,尤其是早产儿或极低出生体重儿。由于早产儿发育落后,大脑内循环系统发育较足月儿差,因此脑室周围白质损伤常常发生在围生期有窒息缺氧的新生儿中。故改善脑供血是治疗的关键。有动物实验 [18] 发现用rhEPO治疗HIE模型的7日龄大鼠增强了其新生血管反应,还发现内源性EPO存在于大鼠脑HI区,并通过PI3K/Akt信号通路发挥新生血管的功能。目前发现rhEPO通过激活PI3K/Akt信号通路来促进神经前体细胞血管内皮生长因子 [19] [20] (VEGF)的分泌。经rhEPO处理的神经前体细胞可上调脑内皮细胞(ECs)中促进内皮血管生成的血管内皮生长因子受体2 (VEGFR2)的表达,即PI3K/Akt信号通路也参与其中 [21] 。在最近一项研究 [22] 中,发现用LPS (脂多糖)诱导脑损伤造成脑细胞凋亡,导致SOX5的表达显著降低。通过SOX5的过表达可修复通过LPS诱导凋亡的脑细胞。经证实原来是SOX5作为转录因子促进了VEGF的表达,从而激活了PI3K/AKT通路达到修复脑神经损伤和脑组织损伤的目的。研究 [23] 还发现VEGF可作为低氧诱导因子-1α (HIF-1α)重要的下游靶因子,在缺血低氧情况下对神经干细胞再生起重要作用,从而起到神经保护作用。

2.2. 减少细胞凋亡作用

HIBD后脑细胞的死亡既有程序性或非程序性坏死也有凋亡,其中细胞凋亡加剧了脑白质损伤的程度,并引发HIBD脑细胞迟发性死亡。神经元轴突、髓鞘、传导束在脑白质,与神经传导的作用有关,一旦受损会出现神经系统功能的障碍。细胞凋亡又称“固缩坏死”,是细胞接受某种信号调控后或受到某种因素刺激后衰老及异常细胞被程序性的清除掉,发生的一种细胞死亡,来维持组织、器官功能的作用。这一过程会被多种基因参与介导,其中需要来调控细胞凋亡的一组基因。Bcl-2作为一组凋亡抑制基因,其作用机制为减少线粒体细胞色素C、DL-ATP的释放,从而激活caspase-9,减轻由钙离子超载、膜过氧化、自由基损伤等因素引起的细胞程序性死亡 [24] 。因此,减少神经细胞的凋亡成为治疗HIBD的新研究方向。有研究 [25] 证实,Bcl-XL mRNA是抗细胞凋亡基因家族中的一员,可被rhEPO通过上调其表达同时因为促进表达相关的蛋白质,对细胞凋亡发挥抵抗作用,来防止海马CA1区域的神经元延迟死亡,而且Bcl-XL还可以促进神经元存活,发挥神经保护作用。

2.3. 抗炎抗氧化作用

导致早产儿脑损伤的机制中,炎性因子起着核心作用,炎性因子可通过血脑屏障,导致神经炎症反应,还可与缺血缺氧协同加重脑损伤,而早产最常见的原因就是宫内感染。研究 [26] 发现因宫内感染导致的HIBD早产儿,IL-6、IL-1、IL-8、TNF-α等炎性因子的浓度不仅在羊水中很高而且相应的在其脑脊液中也很高。脑组织中星型胶质细胞和小胶质细胞可生成具有免疫调节功能的IL-6。而IL-6可促进B、T淋巴细胞的成熟,参与急性期炎症反应。在宫内感染发生时,早期即可在绒毛膜、蜕膜中检测到IL-6。临床研究 [27] 发现宫内感染越严重,羊水中IL-6水平越高,更易诱导中性粒细胞生成更多的氧自由基及NO,发挥细胞毒性作用导致脑细胞凋亡和脑损伤。

采用线拴法阻塞大脑中动脉制备局灶性缺血再灌注脑损伤模型大鼠,给予rhEPO,所致炎性反应的保护机制的实验 [28] ,发现TNF-α、IL-1β等基因的表达可被EPO抑制,一些炎症反应程度被降低了,尤其是缺血再灌注引起的,减少对脑的损害,并对脑组织的结构和神经系统功能有所改善,提示rhEPO可能在宫内感染导致的早产儿脑损伤中发挥一定的抗炎作用。对原代大鼠少突胶质细胞培养物研究 [29] 发现合成NO的过程中,rhEPO可选择性减少合成过氧亚硝酸盐、自由基来发挥其抑制作用即其具有一定的抗氧化作用。因此rhEPO对脑损伤有抗炎抗氧化作用是有据可依的,其抗炎作用可以减弱及抑制神经炎症反应来保护神经元;其抗氧化作用可减少氧自由基的产生,抑制脂质的过氧化来减少脂质过氧化物的堆积,保护了血脑屏障,减少了对早产儿脑神经细胞的损伤。

2.4. 保护和营养神经的作用

在脑神经发育过程中,尤其是中枢神经系统少突胶质细胞的前体即少突胶质前体细胞 [30] (oligodendrocyte precursor cells, OPCs)在8周左右的胚胎形成时期以及新生儿期的发育过程中充当重要的角色。很多学者发现脱髓鞘现象极易发生在脑白质,脱髓鞘病灶也是PVL的典型病例标志之一。OPCs可以分化增殖为有髓少突胶质细胞,从而加速启动脱髓鞘病灶重新合成髓鞘,尤其是在脑白质损伤中。如果其增殖与分化减少,则髓鞘脱失现象会增加 [31] 。rhEPO受体在少突胶质细胞发育的所有阶段均有表达,而且这种内源性表达量跟缺氧刺激强度有关 [32] 。目前一项探讨EPO和EPO衍生物氨甲酰促红细胞生成素(CEPO)是否对缺氧–缺血或缺氧–缺血–炎症诱导的PVL模型具有保护作用的研究 [5] ,通过给PVL小鼠注射EPO或CEPO,发现EPO和CEPO均可通过一种新的小胶质细胞聚腺苷酸二磷酸核糖转移酶-1依赖机制来减少小胶质细胞的活化、少突胶质细胞的损伤和髓鞘的消耗,同时也发现PVL小鼠的神经功能测试也较前有所改善。近二三十年不断深入的研究发现,rhEPO具有保护和营养神经的作用,这不仅在动物试验中得到了证实,而且在临床试验 [33] 中也被证实。因此,EPO被认为是正常少突胶质细胞分化和发育的重要调节因子,是神经保护的重要组成部分,而且可以减轻脑组织的易损性 [34] 。

脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)被学者们广泛认为是最具有代表性的神经营养因子之一,尤为丰富的分布在脑组织海马区 [35] 。BDNF的神经保护作用主要通过与酪氨酸受体激酶B (TrkB)相结合实现 [36] 。实验 [37] 通过给海马注射鹅膏蕈氨酸后致小鼠脑损伤来建立模型,发现经EPO治疗后BDNF mRNA和TrkB mRNA以及相关的蛋白在脑组织海马区内的相对表达量能被显著上调,在病理学研究方面发现脑组织形态的改变程度比脑损伤时明显减轻了,小鼠的学习、记忆等认知能力也获得明显的提高,说明BDNF mRNA和TrkB mRNA的表达可通过给予EPO治疗脑损伤,也就是说可以从基因转录这个方面来调控其表达,使脑细胞的凋亡被得到抑制,组织器官的损伤程度得到明显减轻,并促进合成相关的蛋白,使受损神经元得到修复,改善脑功能。

3. rhEPO干预HIBD的有效性及其安全性

3.1. 有效性

目前相当多的动物实验和临床试验证实了rhEPO治疗HIE是有效的,而且早期大剂量应用rhEPO的治疗效果最佳 [38] [39] 。选择出生后第7天的小大鼠诱导建立HIBD模型,分别在模型成功后立即、1小时后、3小时后给予腹腔注射rhEPO (1000 U/kg),并进行实验评估(短期和长期神经病理学以及长期行为测试)。研究结果显示,在HIBD损伤诱导后立即给予rhEPO治疗结果最佳,延迟给予rhEPO治疗的疗效有所减弱 [38] 。并经在动物实验中证实 [40] [41] 静脉注射rhEPO 1000 IU/(kg·次)而且能产生最佳的神经保护作用,且该剂量可被大多数实验动物所耐受。这些数据对目前大量开展的rhEPO干预HIBD临床实验中具有重要的指导意义。而且目前许多药代动力学的研究发现,给予EPO的治疗剂量达到一个较高水平时,其才能发挥神经保护作用 [42] [43] [44] 。要使rhEPO通过血脑屏障并发挥其最佳神经保护作用,需要的剂量要比促进红细胞生成作用所使用的剂量更高 [45] 。在早产儿中,应用rhEPO疗法促进红细胞生成,一般每周给药3~5次,每周剂量在750~1500 U/kg间。新生儿脑脊液中促红细胞生成素浓度的神经保护范围为20~30 mU/mL之间,在ELBW的I/II期研究 [46] 中,1000~2500 U/kg的rhEPO剂量达到了足够的神经保护浓度,而且ELBW对早期高剂量的rhEPO耐受性良好,不会导致过多的发病率或死亡率。Neubauer等 [47] 在长达10多年追踪观察中,研究发现rhEPO治疗HIBD疗效显著,可改善HIBD患儿神经系统的远期预后。

3.2. 安全性

药代动力学及安全性研究还未发现给予早产儿和足月新生儿大剂量应用500~3000 U/kg的rhEPO有明显的副作用 [48] [49] [50] 。有研究 [51] 发现,一些严重的药物不良反应事件的发生率,如癫痫、中风、血栓甚至死亡等,在应用rhEPO的治疗组和应用安慰剂的对照组之间并无差异,各组间早产儿其它系统常见的并发症(如颅内出血、支气管肺发育不良、坏死性小肠结肠炎、早产儿视网膜病变、脓毒症等)也无统计学差异。还发现rhEPO对早产儿还具有重要脏器的潜在防护功能,比如说已有研究 [52] 表明,在肾脏损伤的早期,外源性EPO的早期腹腔内注射能减轻疾病后期的肾小管间质纤维化的范围与程度。

4. 结语

rhEPO的促进骨髓红细胞系统造血功能众所皆知,但近年来其非造血功能逐渐被关注,尤其是对大脑及神经的保护作用机制。目前综合国内外研究表明rhEPO的神经保护作用是具有剂量依赖性的,对HIBD越早期大剂量应用rhEPO治疗,疗效越佳。作为神经保护剂,静脉注射rhEPO 500~3000 U/(kg·次)的剂量是合理有效的,并能产生可达到最佳神经保护作用的血药浓度。然而rhEPO治疗脑损伤的使用剂量与给药时间、疗程等临床方法学问题尚待进一步研究和统一。但目前不少发达国家已开始组织参与开展给予rhEPO治疗早产儿严重脑损伤的安全性与疗效性的大规模研究,将为以rhEPO治疗HIE的最佳治疗方案奠定更广泛的医学基础。提供更多的临床依据。

基金项目

本文由山东省重点研发计划资助,项目名称:枸橼酸咖啡因联合rhEPO在早产未成熟脑缺血缺氧性损伤中的作用及机制探讨(项目编号:2018GSF118163)。

文章引用

孙正达,宋启君,王立俊. 重组人类促红细胞生成素干预早产儿缺氧缺血性脑损伤机制的研究进展
Research Progress on the Mechanism of Recombinant Human Erythropoietin Intervention in Hypoxic-Ischemic Brain Injury in Premature Infants[J]. 临床医学进展, 2023, 13(07): 10974-10981. https://doi.org/10.12677/ACM.2023.1371532

参考文献

  1. 1. Ren, Q., Zhang, X.F. and Yang, J.Y. (2016) Erythropoi-etin Reduces White Matter Damage in Two-Day-Old Rats Exposed to Hypoxic/Ischemia Injury. Neurological Research, 38, 1020-1026. https://doi.org/10.1080/01616412.2016.1242451

  2. 2. 张婷, 李燕, 张莉, 孙瑾, 程向登. 早产儿追赶生长对体格、神经心理发育及代谢影响的研究进展[J]. 中国妇幼健康研究, 2020, 31(12): 1731-1734.

  3. 3. Chawanpaiboon, S., Vogel, J.P., Moller, A.B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanakanokchai, S., Teng, D.N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W. and Gülmezoglu, A.M. (2019) Global, Regional, and Na-tional Estimates of Levels of Preterm Birth in 2014: A Systematic Review and Modelling Analysis. The Lancet Global Health, 7, e37-e46. https://doi.org/10.1016/S2214-109X(18)30451-0

  4. 4. Ramenghi, L.A. (2015) Late Preterm Babies and the Risk of Neurological Damage. Acta Bio-Medica: Atenei Parmensis, 86, 36-40.

  5. 5. Zhu, Z., Yuan, L., Wang, J., Li, Q., Yang, C., Gao, X., Chen, S., Han, S., Liu, J., Wu, H., Yue, S., Shi, J., Cheng, R., Cheng, X., Han, T., Jiang, H., Bao, L. and Chen, C. (2021) Mortality and Morbidity of Infants Born Extremely Preterm at Tertiary Medical Centers in China from 2010 to 2019. JAMA Network Open, 4, e219382. https://doi.org/10.1001/jamanetworkopen.2021.9382

  6. 6. Liu, W., Shen, Y., Plane, J.M., Pleasure, D.E. and Deng, W. (2011) Neuroprotective Potential of Erythropoietin and Its Derivative Carbamylated Erythropoietin in Periventricular Leukomalacia. Experimental Neurology, 230, 227-239. https://doi.org/10.1016/j.expneurol.2011.04.021

  7. 7. Juul, S.E., Comstock, B.A., Wadhawan, R., Mayock, D.E., Courtney, S.E., Robinson, T., Ahmad, K.A., Bendel-Stenzel, E., Baserga, M., LaGamma, E.F., Downey, L.C., Rao, R., Fahim, N., Lampland, A., Frantz Iii, I.D., Khan, J.Y., Weiss, M., Gilmore, M.M., Ohls, R.K., Srinivasan, N., Perez, J.E., McKay, V., Vu, P.T., Lowe, J., Kuban, K., O’Shea, T.M., Hartman, A.L. and Heagerty, P.J. (2020) A Randomized Trial of Erythropoietin for Neuroprotection in Preterm Infants. The New England Journal of Medicine, 382, 233-243. https://doi.org/10.1056/NEJMoa1907423

  8. 8. Malla, R.R., Asimi, R., Teli, M.A., Shaheen, F. and Bhat, M.A. (2017) Erythropoietin Monotherapy in Perinatal Asphyxia with Moderate to Severe Encephalopathy: A Randomized Pla-cebo-Controlled Trial. Journal of Perinatology: Official Journal of the California Perinatal Association, 37, 596-601. https://doi.org/10.1038/jp.2017.17

  9. 9. Xu, Y., Huang, L., Han, J. and Zhou, Y. (2022) Effects of EPO Combined with Mild Hypothermia on Oxidative Stress and Neuroprotection in Neonates with Hypoxic-Ischemic Encephalopathy. Cellular and Molecular Biology (Noisy-le-Grand, France), 68, 36-45. https://doi.org/10.14715/cmb/2022.68.4.5

  10. 10. 荆春平, 朱丽华. 促红细胞生成素干预早产儿脑损伤机制的研究进展[J]. 临床与病理杂志, 2017, 37(7): 1500-1506.

  11. 11. Jantzie, L.L., Miller, R.H. and Robinson, S. (2013) Eryth-ropoietin Signaling Promotes Oligodendrocyte Development Following Prenatal Systemic Hypoxic-Ischemic Brain Inju-ry. Pediatric Research, 74, 658-667. https://doi.org/10.1038/pr.2013.155

  12. 12. Vittori, D.C., Chamorro, M.E., Hernández, Y.V., Maltaneri, R.E. and Nesse, A.B. (2021) Erythropoietin and Derivatives: Potential Beneficial Effects on the Brain. Journal of Neurochemistry, 158, 1032-1057. https://doi.org/10.1111/jnc.15475

  13. 13. Larpthaveesarp, A., Georgevits, M., Ferriero, D.M. and Gonzalez, F.F. (2016) Delayed Erythropoietin Therapy Improves Histological and Behavioral Outcomes after Transient Neonatal Stroke. Neurobiology of Disease, 93, 57-63. https://doi.org/10.1016/j.nbd.2016.04.006

  14. 14. Strowitzki, M.J., Cummins, E.P. and Taylor, C.T. (2019) Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells, 8, Article No. 384. https://doi.org/10.3390/cells8050384

  15. 15. Niemann, T., Greiner, J.F.W., Kaltschmidt, C. and Kaltschmidt, B. (2023) EPO Regulates Neuronal Differentiation of Adult Human Neural-Crest Derived Stem Cells in a Sex-Specific Manner. BMC Neuroscience, 24, Article No. 19. https://doi.org/10.1186/s12868-023-00789-1

  16. 16. Hemani, S., Lane, O., Agarwal, S., Yu, S.P. and Woodbury, A. (2021) Systematic Review of Erythropoietin (EPO) for Neuroprotection in Human Studies. Neurochemical Research, 46, 732-739. https://doi.org/10.1007/s11064-021-03242-z

  17. 17. Wakhloo, D., Scharkowski, F., Curto, Y., Javed Butt, U., Bansal, V., Steixner-Kumar, A.A., Wüstefeld, L., Rajput, A., Arinrad, S., Zillmann, M.R., Seelbach, A., Hassouna, I., Schneider, K., Qadir Ibrahim, A., Werner, H.B., Martens, H., Miskowiak, K., Wojcik, S.M., Bonn, S., Nacher, J., Nave, K.A. and Ehrenreich, H. (2020) Functional Hypoxia Drives Neuroplasticity and Neurogenesis via Brain Erythropoietin. Nature Communications, 11, Article No. 1313. https://doi.org/10.1038/s41467-020-15041-1

  18. 18. 王建民, 薛梅, 杨青. 人重组促红细胞生成素在早产鼠脑室周围白质损伤模型鼠脑白质中的促血管新生作用及机制[J]. 临床和实验医学杂志, 2019, 18(16): 1710-1713.

  19. 19. Klepper, S., Jung, S., Dittmann, L., Geppert, C.I., Hartmann, A., Beier, N. and Trollmann, R. (2022) Further Evidence of Neuroprotective Effects of Recombinant Human Erythropoietin and Growth Hormone in Hypoxic Brain Injury in Neonatal Mice. International Journal of Molecular Sciences, 23, Article No. 8693. https://doi.org/10.3390/ijms23158693

  20. 20. Lugano, R., Ramachandran, M. and Dimberg, A. (2020) Tumor Angi-ogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences: CMLS, 77, 1745-1770. https://doi.org/10.1007/s00018-019-03351-7

  21. 21. Si, W., Wang, J., Li, M., Qu, H., Gu, R., Liu, R., Wang, L., Li, S. and Hu, X. (2019) Erythropoietin Protects Neurons from Apoptosis via Activating PI3K/AKT and Inhibiting Erk1/2 Signaling Pathway. 3 Biotech, 9, Article No. 131. https://doi.org/10.1007/s13205-019-1667-y

  22. 22. Zhang, W., Wu, Y., Chen, H., Yu, D., Zhao, J. and Chen, J. (2021) Neuroprotective Effects of SOX5 against Ischemic Stroke by Regulating VEGF/PI3K/AKT Pathway. Gene, 767, Article ID: 145148. https://doi.org/10.1016/j.gene.2020.145148

  23. 23. 刘盼月, 段淑荣, 曹国娟, 陈明. 脑梗死后HIF-1α及下游因子VEGF、SDF-1对神经干细胞作用的研究进展[J]. 脑与神经疾病杂志, 2018, 26(6): 393-396.

  24. 24. 沈印, 葛剑, 李喆, 姚乐. 人重组促红细胞生成素对大鼠创伤性颅脑损伤后神经细胞凋亡的影响及机制研究[J]. 创伤外科杂志, 2020, 22(8): 592-595.

  25. 25. Wen, T.C., Sadamoto, Y., Tanaka, J., Zhu, P.X., Nakata, K., Ma, Y.J., Hata, R. and Sa-kanaka, M. (2002) Erythropoietin Protects Neurons against Chemical Hypoxia and Cerebral Ischemic Injury by Up-Regulating Bcl-xL Expression. Journal of Neuroscience Research, 67, 795-803. https://doi.org/10.1002/jnr.10166

  26. 26. Razak, A. and Hussain, A. (2019) Erythropoietin in Perinatal Hypox-ic-Ischemic Encephalopathy: A Systematic Review and Meta-Analysis. Journal of Perinatal Medicine, 47, 478-489. https://doi.org/10.1515/jpm-2018-0360

  27. 27. 平莉莉, 张淑彦, 翟淑芬. 宫内感染早产儿脑损伤与血清炎症因子水平的相关性[J]. 儿科药学杂志, 2019, 25(8): 4-6.

  28. 28. 兰海涛, 张庆俊. 重组人促红细胞生成素对大鼠局灶性脑缺血再灌注炎症损伤的保护作用[J]. 中华神经外科杂志, 2006, 22(1): 51-54.

  29. 29. Genc, K., Genc, S., Baskin, H. and Semin, I. (2006) Erythropoietin Decreases Cytotoxicity and Nitric Oxide Formation Induced by Inflammatory Stimuli in Rat Oligodendrocytes. Physiological Research, 55, 33-38. https://doi.org/10.33549/physiolres.930749

  30. 30. 钟欣, 栾佐, 臧静, 管倩, 杨印祥, 王倩, 史源. 人少突胶质前体细胞移植对脑白质损伤大鼠的保护作用[J]. 中国当代儿科杂志, 2021, 23(4): 410-415.

  31. 31. Boulanger, J.J. and Messier, C. (2014) From Precursors to Myelinating Oligodendrocytes: Contribution of Intrinsic and Extrinsic Factors to White Matter Plasticity in the Adult Brain. Neuroscience, 269, 343-366. https://doi.org/10.1016/j.neuroscience.2014.03.063

  32. 32. 许恒正, 吴志猛, 程孝中. 促红细胞生成素对神经退行性疾病的作用[J]. 生物学杂志, 2020, 37(5): 94-98.

  33. 33. 朱萍, 李德亮, 张伟业. 重组人促红细胞生成素治疗新生儿缺氧缺血性脑病的效果分析[J]. 中国实用神经疾病杂志, 2020, 23(24): 2176-2180.

  34. 34. Bond, W.S. and Rex, T.S. (2014) Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, As-trocytes, and Microglia. Frontiers in Immunology, 5, Article No. 523. https://doi.org/10.3389/fimmu.2014.00523

  35. 35. Iughetti, L., Lucaccioni, L., Fugetto, F., Predieri, B., Berardi, A. and Ferrari, F. (2018) Brain-Derived Neurotrophic Factor and Epilepsy: A Systematic Review. Neuropeptides, 72, 23-29. https://doi.org/10.1016/j.npep.2018.09.005

  36. 36. Jin, T., Zhang, Y., Botchway, B.O.A., Zhang, J., Fan, R., Zhang, Y. and Liu, X. (2022) Curcumin Can Improve Parkinson’s Disease via Activating BDNF/PI3k/Akt Signaling Pathways. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Asso-ciation, 164, Article ID: 113091. https://doi.org/10.1016/j.fct.2022.113091

  37. 37. 金宝, 张育才, 崔云. 促红细胞生成素对发育期小鼠脑损伤后脑源性神经营养因子和酪氨酸受体激酶B表达的影响[J]. 上海交通大学学报(医学版), 2012, 32(1): 14-20.

  38. 38. Alexander, M.L., Hill, C.A., Rosenkrantz, T.S. and Fitch, R.H. (2012) Evaluation of the Therapeutic Benefit of Delayed Administration of Erythropoietin Following Early Hypoxic-Ischemic Injury in Rodents. Developmental Neu-roscience, 34, 515-524. https://doi.org/10.1159/000345645

  39. 39. McPherson, R.J. and Juul, S.E. (2010) Erythro-poietin for Infants with Hypoxic-Ischemic Encephalopathy. Current Opinion in Pediatrics, 22, 139-145. https://doi.org/10.1097/MOP.0b013e328336eb57

  40. 40. 陈清, 钱霜霜, 周丽, 娄冉. 出生后早期大剂量促红细胞生成素对早产儿脑发育的保护作用[J]. 中华全科医学, 2020, 18(1): 74-77.

  41. 41. 周匡果, 周向阳, 常立文. 重组人类促红细胞生成素治疗新生儿缺血缺氧性脑病疗效及安全性Meta分析[J]. 中国实用儿科杂志, 2011, 26(10): 770-776.

  42. 42. Huang, C.T., Chen, S.H., Lin, S.C., Chen, W.T., Lue, J.H. and Tsai, Y.J. (2018) Erythropoietin Reduces Nerve Demyelination, Neuropathic Pain Behavior and Microglial MAPKs Activation through Erythropoietin Receptors on Schwann Cells in a Rat Model of Peripheral Neuropathy. Glia, 66, 2299-2315. https://doi.org/10.1002/glia.23461

  43. 43. Ma, Y., Zhou, Z., Yang, G.Y., Ding, J. and Wang, X. (2022) The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Frontiers in Pharmacology, 13, Article ID: 743926. https://doi.org/10.3389/fphar.2022.743926

  44. 44. Macias-Velez, R.J., Fukushima-Díaz de León, L., Beas-Zárate, C. and Rivera-Cervantes, M.C. (2019) Intranasal Erythropoietin Protects CA1 Hippocampal Cells, Modulated by Specific Time Pattern Molecular Changes after Ischemic Damage in Rats. Journal of Molecular Neuroscience: MN, 68, 590-602. https://doi.org/10.1007/s12031-019-01308-w

  45. 45. Chiu, P.C., Liou, H.C., Ling, T.Y. and Shen, L.J. (2020) De-velopment of a Neuroprotective Erythropoietin Modified with a Novel Carrier for the Blood-Brain Barrier. Neurothera-peutics: The Journal of the American Society for Experimental NeuroTherapeutics, 17, 1184-1196. https://doi.org/10.1007/s13311-020-00845-2

  46. 46. Juul, S.E., McPherson, R.J., Bauer, L.A., Ledbetter, K.J., Gleason, C.A. and Mayock, D.E. (2008) A Phase I/II Trial of High-Dose Erythropoietin in Extremely Low Birth Weight Infants: Pharmacokinetics and Safety. Pediatrics, 122, 383-391. https://doi.org/10.1542/peds.2007-2711

  47. 47. Neubauer, A.P., Voss, W., Wachtendorf, M. and Jungmann, T. (2010) Erythropoietin Improves Neurodevelopmental Outcome of Extremely Preterm Infants. Annals of Neurology, 67, 657-666. https://doi.org/10.1002/ana.21977

  48. 48. Andropoulos, D.B., Brady, K., Easley, R.B., Dickerson, H.A., Voigt, R.G., Shekerdemian, L.S., Meador, M.R., Eisenman, C.A., Hunter, J.V., Turcich, M., Rivera, C., McKenzie, E.D., Heinle, J.S. and Fraser, C.D. (2013) Erythropoietin Neuroprotection in Neonatal Cardiac Surgery: A Phase I/II Safety and Efficacy Trial. The Journal of Thoracic and Cardiovascular Surgery, 146, 124-131. https://doi.org/10.1016/j.jtcvs.2012.09.046

  49. 49. Juul, S.E. and Pet, G.C. (2015) Erythropoietin and Neonatal Neu-roprotection. Clinics in Perinatology, 42, 469-481. https://doi.org/10.1016/j.clp.2015.04.004

  50. 50. Perrone, S., Lembo, C., Gironi, F., Petrolini, C., Catalucci, T., Corbo, G., Buonocore, G., Gitto, E. and Esposito, S.M.R. (2022) Erythropoietin as a Neuroprotective Drug for Newborn Infants: Ten Years after the First Use. Antioxidants (Basel, Switzerland), 11, Article No. 652. https://doi.org/10.3390/antiox11040652

  51. 51. Brown, M.S., Eichorst, D., Lala-Black, B. and Gonzalez, R. (2009) Higher Cumulative Doses of Erythropoietin and Developmental Outcomes in Preterm Infants. Pediatrics, 124, e681-e687. https://doi.org/10.1542/peds.2008-2701

  52. 52. 陈颖, 吴多江, 杨亦彬, 柯贵宝, 张富祥, 容松. 促红细胞生成素干预肾缺血再灌注损伤后肾小管间质的纤维化[J]. 中国组织工程研究, 2012, 16(40): 7514-7519.

  53. NOTES

    *通讯作者。

期刊菜单