Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62325 , 6 pages
10.12677/ACM.2023.133454

中性粒细胞在哮喘发生发展的作用

刘秋怡,符州

重庆医科大学附属儿童医院呼吸科/国家儿童健康与疾病临床医学研究中心/重庆儿童发育疾病研究教育部重点实验室/儿科学重庆市重点实验室,重庆

收稿日期:2023年2月8日;录用日期:2023年3月3日;发布日期:2023年3月10日

摘要

支气管哮喘是一种由多种细胞包括气道的炎性细胞和结构细胞及细胞组分参与的气道慢性炎症性疾病。尽管嗜酸性粒细胞局部浸润以及在疾病中的作用早已被认识,随着研究的发现,中性粒细胞气道中的浸润也在许多研究中得到了证实。虽然中性粒细胞对支气管哮喘发病机制的确切作用尚不清楚,但越来越多的实验证据支持中性粒细胞或中性粒细胞衍生物质,参与了哮喘的发生与发展。在这里,我们回归了中性粒细胞与哮喘相关知识,为中性粒细胞哮喘的进一步研究提供新的方向,为其诊断、治疗提供新的思路和策略。

关键词

哮喘,中性粒细胞,治疗

The Role of Neutrophils in the Occurrence and Development of Asthma

Qiuyi Liu, Zhou Fu

Department of Respiratory, Children’s Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing

Received: Feb. 8th, 2023; accepted: Mar. 3rd, 2023; published: Mar. 10th, 2023

ABSTRACT

Bronchial asthma is a chronic inflammatory disease of the airway, which involves a variety of cells, including inflammatory cells and structural cells and cell components of the airway. Although local eosinophil infiltration and its role in disease have long been recognized, infiltration in the neutrophil airways has been confirmed in many studies with the discovery of studies. Although the exact role of neutrophils in the pathogenesis of bronchial asthma is unclear, there is growing experimental evidence to support the involvement of neutrophils, or neutrophil-derived substances involve the occurrence and development of asthma. Here, we return to the knowledge of neutrophils and asthma, provide new directions for further research on neutrophil asthma, and provide new ideas and strategies for its diagnosis and treatment.

Keywords:Asthma, Neutrophil, Treatment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景介绍

支气管哮喘是以慢性气道炎症和气道高反应性为特征的异质性疾病,对人类的健康构成了巨大的威胁 [1] 。全球哮喘防治创议(Global Initiative for Asthma, GINA)出现20年多来,世界对哮喘发病机制的研究和有效控制哮喘的能力都取得了巨大进步。尽管如此,全球仍然有3亿哮喘患者 [1] ,显著加重家庭乃至社会的医疗和经济负担 [2] 。虽然现在对哮喘研究越发深入,但人们尚未完全清楚其发病机制。嗜酸性粒细胞局部浸润及其在疾病中的作用早已被认识,之前的研究主要集中于减少嗜酸性粒细胞浸润与Th2炎症的治疗方案 [3] 。吸入皮质醇激素治疗啊也成为哮喘治疗的基石。然而一些研究发现部分严重哮喘患者吸入皮质类固醇(Inhaled corticosteroids, ICS)治疗后,表现出气道中性粒细胞增多 [4] 现象。中性粒细胞在气道的浸润以及其可能发挥的作用,逐渐引起人们对其的重视与关注。

中性粒细胞由骨髓干细胞产生在骨髓发育,在外周血中完全成熟 [4] 。中性粒细胞是人体中最丰富的循环吞噬细胞,也是最早募集到炎症或感染病灶的细胞 [5] 。随着研究进展,越来越多的研究表明中性粒细胞的功能远不止于此,其除了发挥抗感染作用,还能分泌广泛的细胞因子、中性粒细胞胞外诱捕网等效应分子,参与先天和适应性免疫反应 [6] 。本文就中性粒细胞与哮喘相关机制、影响因素以及未来治疗方向进行讨论。

2. 中性粒细胞哮喘的定义

哮喘是一种常见的以慢性气道炎症为特征的异质性疾病。20世纪90年代美国学者将重症哮喘分为嗜酸粒细胞性哮喘和非嗜酸粒细胞性哮喘 [7] ,而非嗜酸粒细胞性哮喘中以中性粒细胞性哮喘多见。自从发现中性粒细胞气道炎症的哮喘表型以来 [8] ,已经多次尝试定义“中性粒细胞哮喘”。近年随着对哮喘发病机制的深入认识,早期有研究提出认为痰液中存在61%或更多的中性粒细胞则为中性粒细胞哮喘表型 [9] [10] 。另外有研究人员依据痰液中76%中性粒细胞为诊断参考依据 [11] 。中性粒细胞哮喘目前还尚未取得统一认识。

3. 病理生理

中性粒细胞粒细胞在呼吸道并不稳定的存在,它们是在哮喘发作时最先被招募到肺部的先天免疫细胞之一。在人体处于健康的情况下,中性粒细胞是在循环系统中随血液流动的,需要通过滚动、粘附、爬行、迁移的方式到身体损失部位。部分可溶性解质已被证实参与肺部中性粒细胞的募集。哮喘患者的痰液分泌物中检测到趋化因子IL-8水平的增加 [12] ,IL-8通过诱导中性粒细胞的迁移和活化,持续吸引中性粒细胞至炎症部位。尽管包括气道上皮细胞、T细胞和巨噬细胞在内的各种细胞类型都能分泌IL-8,但中性粒细胞本身能产生这种趋化因子,这提示中性粒细胞向气道募集的前馈形式 [13] 。值得我们注意的是,辅助性T淋巴细胞17 (T helper cell 17, Th17)主要分泌的效应因子IL-17,在中性粒细胞的动员、募集及活化中发挥重要的作用 [14] 。IL-17被证实可以作用于人类和小鼠气道平滑肌细胞,诱发气道高反应性、参与气道重塑 [15] [16] [17] ,还可诱导上皮细胞、内皮细胞和成纤维细胞等释放IL-6、IL-8、粒细胞–巨噬细胞集落刺激因子等炎性因子和趋化因子 [18] ,对中性粒细胞具有强大的募集和活化作用。此外,Th1细胞因子IFN-γ可能与中性粒细胞哮喘存在相关性并参与气道中性粒细胞的趋化。既往研究发现重度哮喘患者气道中Th1免疫应答IFN-γ水平增高 [19] ,IFN-γ通过上调中性粒细胞趋化因子受体CCR1和CCR3参与人类中性粒细胞的趋化作用 [20] 。

随着中性粒细胞迁移到气道,活化后的它们释放的基质金属蛋白酶(Matrix metalloproteinase, MMP-9)、弹性蛋白、和IL-8等介质造成气道持续损伤。MMP-9、弹性蛋白会对气道结构造成损害 [21] ,并进一步促进气道上皮释放IL-8,加重中性粒细胞持续性募集至气道形恶性循环 [11] 。中性粒细胞死亡与中性粒细胞胞外诱捕网(Neutrophil extracellular traps, NETs)的形成相关。NETs是由活化的中性粒细胞分泌,由DNA纤维、组蛋白和抗菌蛋白组成的网状结构,负责捕获和杀死细胞外病原体,在抗菌防御中发挥保护作用。中性粒细胞分泌NETs的过程被称为NETosis,是中性粒细胞的炎性细胞死亡方式。尽管NETs参与病原体清除,但NET功能的失调可能与哮喘发生相关。相较其他类型哮喘,在中性粒细胞性哮喘患者诱导痰中NETs及其组分(细胞外DNA和抗菌肽LL-37)以及CXC趋化因子配体8 (CXCL8)/IL-8的显著增加 [22] 。此外,NETs的相关成分可能诱导黏液高分泌和气道重塑,从而加重哮喘 [23] 。

4. 气道中性粒细胞增多的影响因素

中性粒细胞性炎症对特定亚型哮喘的特异性比较复杂,因为多种混杂因素可引起痰液内中性粒细胞增多包括应用吸入性糖皮质激素、呼吸道感染、胃食管疾病以及肥胖等。

糖皮质激素是激素类固醇家族的一部分。尽管大多数哮喘患者的症状通过糖皮质激素治疗得到了很好的控制,但是非Th2型/2型哮喘的中性粒细胞哮喘患者对吸入或口服糖皮质激素疗法表现出不敏感性 [24] 。有研究发现在重症哮喘患者支气管肺泡灌洗液中检测到的Th2/Th17细胞计数增加,可以抵抗地塞米松诱导的细胞死亡 [14] 。其机制可能与IL-17产生细胞的糖皮质激素抵抗可能是由丝裂原激活蛋白细胞外信号调节激酶1 (MEK1)的表达水平升高引起的,因为MEK-ERK1/2信号通路被证明会干扰糖皮质激素 [25] 。糖皮质激素抑制中性粒细胞凋亡过程不是绝对的。有研究指出Fas,FasL这些促中性粒细胞凋亡蛋白水平在激素作用下没有降低 [26] [27] ,而且糖皮质激素还可以通过MCL-1蛋白在线粒体水平调节细胞的凋亡 [28] 。对目前糖皮质激素作用于中性粒细胞凋亡的机制存在争议,还需要进一步研究。

呼吸道感染是哮喘急性发作最常见的诱因。婴儿期呼吸道病毒感染,尤其是呼吸道合胞病毒和人鼻病毒感染,是特应性哮喘的危险因素 [29] 。生命早期肺炎链球菌、卡他莫拉菌或流感嗜血杆菌的气道定植可能增加日后患哮喘的风险 [30] 。相比较于嗜酸性粒细胞哮喘,中性粒细胞性哮喘患者的气道微生物更为丰富 [31] 。气道中性粒细胞数量的增加与病毒、细菌感染有关,从而引发哮喘疾病的加重 [13] [31] 。然而,在没有感染的情况下,中性粒细胞与哮喘恶化之间也存在关联 [32] 。

胃食管反流在哮喘患者中常见,是重度或难治性哮喘的共存疾病。胃食管反流导致促炎介质(如T辅助型2细胞因子)的释放,从而增加气道阻力和气道炎症。诱导的气道炎症在组织学上表现为巨噬细胞、中性粒细胞、嗜酸性粒细胞和淋巴细胞的浸润 [33] 。在一个队列研究中,胃食管反流与痰中性粒细胞增多症相关 [34] 。人们最初的研究未能发现肥胖与哮喘中性粒细胞气道炎症之间的关联,忽略了性别因素 [13] 。Scott HA等人的研究第一次发现女性哮喘患者的痰中性粒细胞百分比与体重指数呈正相关 [35] ,这一观点之后也其他研究中认证 [36] 。多种因素与气道中性粒增多存在相关性,在临床治疗应该重视中性粒细胞性哮喘及其独特的病理过程。

5. 中性粒细胞哮喘潜在治疗方法

中性粒细胞性哮喘对高剂量的糖皮质激素往往无反应,针对于该方向的治疗还需进一步探索。Th17细胞和IL-17a细胞因子在中性粒细胞性气道炎症的发病机制中发挥重要作用。IL-17抗体可减轻小鼠哮喘模型中的气道炎症浸润和气道高反应性 [37] 。然而,靶向治疗抗IL-17受体抗体并不能缓解中重度哮喘患者队列中的疾病症状 [37] 。目前还不清楚IL-17在哮喘治疗中的作用还存在争议。大环内酯类抗生素兼备抗菌和抗炎作用。在小鼠哮喘模型中,克拉霉素协同地塞米松能更有效地下调气道阻力,减轻气道炎症细胞浸润,缓解哮喘症状 [38] 。在皮质类固醇难治性哮喘患者中,8周克拉霉素治疗可降低主要中性粒细胞炎症标志物IL-8水平 [13] 。但长期使用有可能导致出现耐大环内酯类的微生物 [39] 。目前没有足够的数据支持将大环内酯作为哮喘治疗的标准。是否可纳入中性粒细胞哮喘的常规治疗,及其用药指征和用量等还需要更多的临床证据支持。

6. 结论

中性粒细胞多与重症难治性哮喘相关。虽然中性粒细胞参与抗原的清除,但也可以释放多种的介质引起气道的炎症、气道重塑。Th17细胞能够分泌产生IL-17A、IL-17F、IL-6以及a肿瘤坏死因子,在中性粒细胞性气道炎症的发病机制中发挥重要作用。除了传统治疗,IL-17信号通路未来可能成为难治性哮喘的治疗重要靶点。此外,大环内酯抗生素的使用可以减轻气道炎症细胞浸润,缓解哮喘症状,但是仍不可忽视其耐药所致后果,还需要更多数据支撑其能否成为哮喘常规治疗药物。多种混杂因素会影响其存在和功能,包括糖皮质激素、感染、胃食管反流以及肥胖,仅依靠存在于痰液或支气管肺泡灌洗液的中性粒细胞难以精确性地作为独立生物标志物。希望将来可以有更多研究有关于中性粒细胞哮喘诊断标准、分子机制。为中性粒细胞哮喘的诊断与治疗提供新的思路和方法。

文章引用

刘秋怡,符 州. 中性粒细胞在哮喘发生发展的作用
The Role of Neutrophils in the Occurrence and Development of Asthma[J]. 临床医学进展, 2023, 13(03): 3194-3199. https://doi.org/10.12677/ACM.2023.133454

参考文献

  1. 1. Scott, H.A., Wood, L.G. and Gibson, P.G. (2017) Role of Obesity in Asthma: Mechanisms and Management Strategies. Current Allergy and Asthma Reports, 17, Article No. 53. https://doi.org/10.1007/s11882-017-0719-9

  2. 2. Liang, L., Hur, J., Kang, J.Y., et al. (2018) Effect of the Anti-IL-17 Antibody on Allergic Inflammation in an Obesity-Related Asthma Model. The Korean Journal of Internal Medicine, 33, 1210-1223. https://doi.org/10.3904/kjim.2017.207

  3. 3. An, T.J., Rhee, C.K., Kim, J.H., et al. (2018) Effects of Macrolide and Corticosteroid in Neutrophilic Asthma Mouse Model. Tuberculosis and Respiratory Diseases, 81, 80-87. https://doi.org/10.4046/trd.2017.0108

  4. 4. Huang, K., Yang, T., Xu, J., et al. (2019) Prevalence, Risk Factors, and Management of Asthma in China: A National Cross-Sectional Study. Lancet, 394, 407-418. https://doi.org/10.1016/S0140-6736(19)31147-X

  5. 5. Reddel, H.K., Bateman, E.D., Becker, A., et al. (2015) A Summary of the New GINA Strategy: A Roadmap to Asthma Control. Eu-ropean Respiratory Journal, 46, 622-639. https://doi.org/10.1183/13993003.00853-2015

  6. 6. Lambrecht, B. and Hammad, H. (2015) The Immunology of Asthma. Nature Immunology, 16, 45-56. https://doi.org/10.1038/ni.3049

  7. 7. Bateman, E.D., Hurd, S.S., Barnes, P.J., et al. (2008) Global Strategy for Asthma Management and Prevention: GINA Executive Summary. European Respiratory Journal, 31, 143-178. https://doi.org/10.1183/09031936.00138707

  8. 8. Berliner, N. and Coates, T.D. (2019) Introduction to a Review Series on Human Neutrophils. Blood, 133, 2111-2112. https://doi.org/10.1182/blood-2019-01-891770

  9. 9. Liew, P.X. and Kubes, P. (2019) The Neutrophil’s Role during Health and Disease. Physiological Reviews, 99, 1223-1248. https://doi.org/10.1152/physrev.00012.2018

  10. 10. Wenzel, S.E., Schwartz, L.B., Langmack, E.L., et al. (1999) Evidence That Severe Asthma Can Be Divided Pathologically into Two Inflammatory Subtypes with Distinct Physiologic and Clinical Characteristics. American Journal of Respiratory and Critical Care Medicine, 160, 1001-1008. https://doi.org/10.1164/ajrccm.160.3.9812110

  11. 11. Louis, R., Lau, L.C., Bron, A.O., et al. (2000) The Relationship between Airways Inflammation and Asthma Severity. American Journal of Respiratory and Critical Care Medicine, 161, 9-16. https://doi.org/10.1164/ajrccm.161.1.9802048

  12. 12. Green, R.H., Brightling, C.E., Woltmann, G., et al. (2002) Analysis of Induced Sputum in Adults with Asthma: Identification of Subgroup with Isolated Sputum Neutrophilia and Poor Response to Inhaled Corticosteroids. Thorax, 57, 875-879. https://doi.org/10.1136/thorax.57.10.875

  13. 13. Simpson, J.L., Scott, R., Boyle, M.J. and Gibson, P.G. (2006) In-flammatory Subtypes in Asthma: Assessment and Identification Using Induced Sputum. Respirology, 11, 54-61. https://doi.org/10.1111/j.1440-1843.2006.00784.x

  14. 14. Seys, S.F., Lokwani, R., Simpson, J.L. and Bullens, D. (2019) New Insights in Neutrophilic Asthma. Current Opinion in Pulmonary Medicine, 25, 113-120. https://doi.org/10.1097/MCP.0000000000000543

  15. 15. Dimitrova, D., Youroukova, V., Ivanova-Todorova, E., Tumangelova-Yuzeir, K. and Velikova, T. (2019) Serum Levels of IL-5, IL-6, IL-8, IL-13 and IL-17A in Pre-Defined Groups of Adult Patients with Moderate and Severe Bronchial Asthma. Respiratory Medicine, 154, 144-154. https://doi.org/10.1016/j.rmed.2019.06.024

  16. 16. Ray, A. and Kolls, J.K. (2017) Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends in Immunology, 38, 942-954. https://doi.org/10.1016/j.it.2017.07.003

  17. 17. Ramakrishnan, R.K., Al Heialy, S. and Hamid, Q. (2019) Role of IL-17 in Asthma Pathogenesis and Its Implications for the Clinic. Expert Review of Respiratory Medicine, 13, 1057-1068. https://doi.org/10.1080/17476348.2019.1666002

  18. 18. Xie, Y., Abel, P.W., Casale, T.B., et al. (2022) TH17 Cells and Corticosteroid Insensitivity in Severe Asthma. Journal of Allergy and Clinical Immunology, 149, 467-479. https://doi.org/10.1016/j.jaci.2021.12.769

  19. 19. Hynes, G.M. and Hinks, T.S.C. (2020) The Role of Interleu-kin-17 in Asthma: A Protective Response? ERJ Open Research, 6, Article ID: 00364-2019. https://doi.org/10.1183/23120541.00364-2019

  20. 20. Chesné, J., Braza, F., Mahay, G., et al. (2014) IL-17 in Severe Asthma. Where Do We Stand? American Journal of Respiratory and Critical Care Medicine, 190, 1094-1101. https://doi.org/10.1164/rccm.201405-0859PP

  21. 21. Halwani, R., Sultana, A., Vazquez-Tello, A., et al. (2017) Th-17 Regulatory Cytokines IL-21, IL-23, and IL-6 Enhance Neutrophil Production of IL-17 Cytokines during Asthma. Journal of Asthma, 54, 893-904. https://doi.org/10.1080/02770903.2017.1283696

  22. 22. Raundhal, M., Morse, C., Khare, A., et al. (2015) High IFN-γ and Low SLPI Mark Severe Asthma in Mice and Humans. Journal of Clinical Investigation, 125, 3037-3050. https://doi.org/10.1172/JCI80911

  23. 23. Bonecchi, R., Polentarutti, N., Luini, W., et al. (1999) Up-Regulation of CCR1 and CCR3 and Induction of Chemotaxis to CC Chemokines by IFN-γ in Human Neutrophils. The Journal of Immunology, 162, 474-479. https://doi.org/10.4049/jimmunol.162.1.474

  24. 24. Wang, H., Liu, Y., Shi, J. and Cheng, Z. (2019) ORMDL3 Knockdown in the Lungs Alleviates Airway Inflammation and Airway Remodeling in Asthmatic Mice via JNK1/2-MMP-9 Pathway. Biochemical and Biophysical Research Communications, 516, 739-746. https://doi.org/10.1016/j.bbrc.2019.06.122

  25. 25. Wright, T.K., Gibson, P.G., Simpson, J.L., et al. (2016) Neutrophil Extracellular Traps Are Associated with Inflammation in Chronic Airway Disease. Respirology, 21, 467-475. https://doi.org/10.1111/resp.12730

  26. 26. Liu, T., Wang, F.-P., Wang, G. and Mao, H. (2017) Role of Neutrophil Extracellular Traps in Asthma and Chronic Obstructive Pulmonary Disease. Chinese Medical Journal, 130, 730-736. https://doi.org/10.4103/0366-6999.201608

  27. 27. Nabe, T. (2020) Steroid-Resistant Asthma and Neutrophils. Bio-logical and Pharmaceutical Bulletin, 43, 31-35. https://doi.org/10.1248/bpb.b19-00095

  28. 28. Tsitoura, D.C. and Rothman, P.B. (2004) Enhancement of MEK/ERK Signaling Promotes Glucocorticoid Resistance in CD4+ T Cells. Journal of Clinical Investigation, 113, 619-627. https://doi.org/10.1172/JCI200418975

  29. 29. El Kebir, D., József, L. and Filep, J.G. (2008) Opposing Regulation of Neutrophil Apoptosis through the Formyl Peptide Receptor-Like 1/Lipoxin A4 Receptor: Implications for Resolution of Inflammation. Journal of Leukocyte Biology, 84, 600-606. https://doi.org/10.1189/jlb.1107765

  30. 30. Saffar, A.S., Dragon, S., Ezzati, P., Shan, L. and Gounni, A.S. (2008) Phosphatidylinositol 3-Kinase and p38 Mitogen-Activated Protein Kinase Regulate Induction of Mcl-1 and Survival in Glucocorticoid-Treated Human Neutrophils. Journal of Allergy and Clinical Immunology, 121, 492-498. https://doi.org/10.1016/j.jaci.2007.10.003

  31. 31. Sivertson, K.L., Seeds, M.C., Long, D.L., Peachman, K.K. and Bass, D.A. (2007) The Differential Effect of Dexamethasone on Granulocyte Apoptosis Involves Stabilization of Mcl-1L in Neutrophils but Not in Eosinophils. Cellular Immunology, 246, 34-45. https://doi.org/10.1016/j.cellimm.2007.05.003

  32. 32. Jartti, T., Bønnelykke, K., Elenius, V. and Feleszko, W. (2020) Role of Viruses in Asthma. Seminars in Immunopathology, 42, 61-74. https://doi.org/10.1007/s00281-020-00781-5

  33. 33. Lloyd, C.M. and Marsland, B.J. (2017) Lung Homeostasis: In-fluence of Age, Microbes, and the Immune System. Immunity, 46, 549-561. https://doi.org/10.1016/j.immuni.2017.04.005

  34. 34. Taylor, S.L., Leong, L.E.X., Choo, J.M., et al. (2018) In-flammatory Phenotypes in Patients with Severe Asthma Are Associated with Distinct Airway Microbiology. Journal of Allergy and Clinical Immunology, 141, 94-103. https://doi.org/10.1016/j.jaci.2017.03.044

  35. 35. Nembrini, C., Marsland, B.J. and Kopf, M. (2009) IL-17-Producing T Cells in Lung Immunity and Inflammation. Journal of Allergy and Clinical Immunology, 123, 986-994. https://doi.org/10.1016/j.jaci.2009.03.033

  36. 36. Naik, R.D. and Vaezi, M.F. (2015) Extra-Esophageal Gastroesophageal Reflux Disease and Asthma: Understanding This Interplay. Expert Review of Gastroenterology & Hepatology, 9, 969-982. https://doi.org/10.1586/17474124.2015.1042861

  37. 37. Simpson, J.L., Baines, K.J., Ryan, N. and Gibson, P.G. (2014) Neutrophilic Asthma Is Characterised by Increased Rhinosinusitis with Sleep Disturbance and GERD. Asian Pacific Journal of Allergy and Immunology, 32, 66-74. https://doi.org/10.12932/AP0322.32.1.2014

  38. 38. Chung, K.F., Wenzel, S.E., Brozek, J.L., et al. (2014) International ERS/ATS Guidelines on Definition, Evaluation and Treatment of Severe Asthma. European Respiratory Journal, 43, 343-373. https://doi.org/10.1183/09031936.00202013

  39. 39. Scott, H.A., Gibson, P.G., Garg, M.L. and Wood, L.G. (2011) Airway Inflammation Is Augmented by Obesity and Fatty Acids in Asthma. European Respiratory Journal, 38, 594-602. https://doi.org/10.1183/09031936.00139810

期刊菜单