Hans Journal of Biomedicine
Vol. 12  No. 04 ( 2022 ), Article ID: 56912 , 10 pages
10.12677/HJBM.2022.124035

社会孤立对阿尔茨海默病影响的研究进展

肖静颖1*,陈慧婷1,苏裕盛1,2#

1宁德师范学院医学院,福建 宁德

2宁德师范学院毒物与药物毒理学重点实验室,福建 宁德

收稿日期:2022年9月11日;录用日期:2022年10月11日;发布日期:2022年10月20日

摘要

阿尔茨海默病(Alzheimer disease, AD)是一种不可逆的神经退行性疾病。其病程长,目前没有药物能够有效治疗AD。目前有证据指出,孤独是AD和其他相关失智症发展的可变危险因素,与社会隔绝的人患失智症的风险往往比远离社会孤立的人患失智症风险高。感知到的社会孤立或孤独会促进并加剧大脑中的β-淀粉样蛋白斑块(amyloid-protein, Aβ)的沉积和tau蛋白过度磷酸化,而社会孤立和AD的不同阶段大脑区域都会受到影响表现出功能障碍,例如前额叶皮层、杏仁核或海马体。同时,社会孤立和感知孤独感会促进早期AD患者大脑中Aβ的产生和tau蛋白过度磷酸化,来自社会隔离和孤独的压力也会影响Aβ的积累和tau蛋白的过度磷酸化。此外,应激引起的糖皮质激素水平升高会导致Aβ和tau蛋白病变的加剧,从而加速神经纤维缠结的发展。社交孤立也可能通过增加氧化应激加重AD病理。感觉到被孤立和拥有孤独的经历都会对心理和身体健康产生不利影响。随着我国人口老龄化,再加上新型冠状病毒COVID-19的出现以及由此产生的隔离阻碍了社交,疫情隔离使人们减少了社交,会出现社会孤立这一现象,同时也会加剧AD病情发展。有研究指出,晚年远离社会隔离会降低患失智症风险4%,对此早期积极预防社会孤立尤其重要,远离社会孤立,应多出门走动与同伴交流,提高认知储备(Cognitive reserve, CR)水平及多认识新事物是积极预防AD的重要方法。

关键词

阿尔茨海默病,社会孤立,感知孤独,Aβ,认知储备

Research Progress on the Impact of Social Isolation on Alzheimer’s Disease

Jingying Xiao1*, Huiting Chen1, Yusheng Su1,2#

1School of Medicine, Ningde Normal University, Ningde Fujian

2Key Laboratory of Toxicology and Drug Toxicology, Ningde Normal University, Ningde Fujian

Received: Sep. 11th, 2022; accepted: Oct. 11th, 2022; published: Oct. 20th, 2022

ABSTRACT

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease. The course of disease is long, and no drugs can effectively treat AD. Evidence now points to loneliness as a modifiable risk factor for the development of AD and other related dementia. People who are socially isolated tend to have a higher risk of developing dementia than people who are socially isolated. Perceived social isolation or loneliness promotes and intensifies Aβ deposition and tau hyperphosphorylation in the brain. Both social isolation and different stages of AD affect brain regions that show dysfunction, such as the prefrontal cortex, amygdala, or hippocampus. At the same time, social isolation and perceived loneliness promote Aβ production and tau hyperphosphorylation in the brain of early AD patients. Stress from social isolation and loneliness also affects Aβ accumulation and tau hyperphosphorylation. The increase in glucocorticoid levels caused by stress leads to the exacerbation of Aβ and tau protein lesions, thereby accelerating the development of neurofibrillary tangles. Social isolation may also exacerbate AD pathology by increasing oxidative stress. Feeling isolated and having experiences of loneliness can both have adverse effects on mental and physical health. With the aging population in our country, the emergence of COVID-19 and the resulting isolation has hindered social interaction, which makes people reduce social interaction, resulting in social isolation and aggravating the development of Alzheimer’s disease. Studies have pointed out that staying away from social isolation in later life can reduce the risk of dementia by 4%. Therefore, it is particularly important to actively prevent social isolation in the early stage. To stay away from social isolation, we should go out and communicate with peers more, improve cognitive reserve (CR) level and learn more about new things are important ways to actively prevent AD.

Keywords:Alzheimer Disease, Social Isolation, Perceived Loneliness, Aβ, Cognitive Reserve

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

阿尔茨海默病(Alzheimer disease, AD)是最常见的老年性失智类型,约占所有失智症病例的50%至80%,其表现为大脑中β-淀粉样蛋白斑块(amyloid-protein, Aβ)的细胞外储存库和神经原纤维缠结(Neurofibrillary Tangles, NFT)的细胞内增生,导致记忆、智力、人格和其他障碍,最终导致创伤性脑损伤死亡 [1]。目前我国已步入人口老龄化阶段,而60岁及以上人口是最有可能患AD的,预计到本世纪中叶,我国60岁及以上人口比例将达到33% [2]。随着人口老龄化和人口增长的增长趋势预测,未来失智症患者的人数会持续上升。据估计,到2050年,全球失智症患者数量将从2019年的5740万例增加到15,280万例 [3]。阿尔茨海默病是一种不可逆的神经退行性疾病,影响人们日常生活活动和社会功能。AD病程长,需要长期的医疗和护理,这会给家庭和社会带来沉重的负担,但AD药物治疗效果不佳,对此前期干预AD尤其重要。而社会孤立对健康有不利的影响 [4],最近的一项系统性综述对16项前瞻性纵向研究进行了荟萃分析结果显示,孤独和社会孤立与冠心病(29%)和中风(32%)的风险增加有关 [5]。这一发现进一步证实了现有证据,有研究表明孤独和社会孤立是心血管疾病的一项危险因素 [6]。社会孤立已被确定为全因发病和死亡的风险因素 [7],其后果可与吸烟、肥胖、缺乏运动锻炼和高血压相当,同时它还与感染抵抗力下降、认知功能下降、失智症有关 [8]。本文对社会孤立和阿尔茨海默病之间的关系做一综述。

2. 社会孤立对阿尔茨海默病的影响

早期研究表明,社会环境,特别是社交关系,会影响一个人的行为和心理健康 [9]。实际上社会孤立,是包括拥有一个小的社交网络圈、很少与他人一起参加活动,以及感知到的社会孤立,即感到孤独。社会孤立,局限于自己的小圈子,这不仅会增加患失智症的风险,而且还使失智症患者记忆力衰退加剧和症状恶化。据研究结果表明,与社会隔离会使AD的病情恶化,同时加重海马体的不对称性 [10]。无论是性别、种族、民族、受教育程度或遗传因素风险如何,社会隔离或孤独会增加患失智症风险40% [11],尤其是老年人应得到重视,不能被忽视或置之不理。由于老年人生命周期阶段的变化,如退休或与年龄有关的损失例如伴侣或朋友的死亡,加上健康状况下降和行动不便日益严重,越来越多的老年人感到孤独和社会孤立 [12]。其他探索孤独对失智症发病影响的研究发现,感知到孤独的老年人患AD样失智综合征的可能性是不感到孤独的老年人的两倍多 [13]。此外,感知到孤独感是全因失智的重要风险因素,尤其是AD的显著危险因素;因此,重视老年人孤独的主观报告有助于预防这种情况,而缺乏与他人的社会互动也与失智症的风险有关 [14]。为此,普遍预防孤独和孤立对于实现整体认知健康至关重要。

2.1. 社会孤立会影响认知能力

由于失智症临床前表现出一个漫长的阶段,认知能力下降可以对感知孤独感和社会互动产生高度可变的影响。有一项研究,探究了中年时期个人孤独感的变化与18年后失智症和AD风险之间的关系,研究结果表明中年时持续的孤独感是失智症和AD的独立风险因素 [15]。如果人们长期与世隔绝或感知孤独,会提高患AD的风险。最近The Lancet失智症预防、干预和护理委员会估计,如果消除晚年生活风险因素的社会隔离,失智症患病风险将降低4% [16]。这种减少比在晚年时对抗身体缺乏活动的2%患病风险和在中年时对抗高血压的2%患病风险更多,这突出表明社会孤立是一个值得在预防失智症方面引起更多关注的重要问题。

有研究表明,缺乏社会从属关系像参与数量少且质量低的社会关系或社会孤立与认知功能的快速下降有关,并可能导致在晚年AD的发生 [17]。此外,从认知发展的角度对社会环境在促进健康中的作用进行的调查表明,增加积极的社会互动可以提高认知能力,并对压力源进行缓冲。例如,受到社会孤立的动物会出现认知障碍,通过增强某些在Aβ肽的产生和tau蛋白磷酸化中起重要作用的蛋白的活性,从而导致提前发病并加速AD的发展不断恶化。在人类社会中,与朋友和亲戚有社交关系的人相比,与社会隔绝的人患AD的风险增加,死亡风险增加了2~4倍 [18]。因此,终身高度的社会依恋代表着动态和复杂的社会系统,影响着健康结果,特别是实现对AD的环境保护。

2.2. 社交网络圈及健康状况对老年人群的影响

人到老年时,健康状态在逐渐减弱,如抵抗力下降、生理机能下降等。然而健康状况较差的人往往会感到更孤独。当人们上了年纪变老时,一般来说,他们的活动量会减少,并且活动空间也更有限,因此他们可能会比年轻人感到更孤独。此外,如果老年人与伴侣住在一起并且有更多孩子,他们往往会感到不那么孤独。此外,研究表明,较高的收入、与儿童、子女的接触以及非专业活动可以对社会满意度产生积极影响 [19]。同时受教育水平低和收入水平低的人更容易感到孤独。有研究发现,对社交网络的满意度与老年人群的孤独感和孤独感之间存在关联 [20]。通过贝叶斯信念网络(Bayesian belief network, BBN)建模模型表明,对自己的社交网络非常不满意的人有很高的几率感到非常孤独,相反,对自己的社交网络非常满意的人一般不会感到孤独 [21]。也有研究发现,与年轻人相比,老年人的社交互动更少,社交网络更小 [20]。感觉被孤立和孤独的经历会对心理和身体健康产生不利影响,而科学研究表明,这与出现严重健康问题的高风险有关。在有精神健康问题、听力和视力障碍、慢性健康问题的个体以及自闭症患者等神经分歧群体中,观察到高度孤独和社会隔离。

2.3. COVID-19大流行会影响AD

社会隔离对失智症风险的影响在2020~2022年尤为重要,许多人因COVID-19大流行而被迫封锁隔离。AD不仅会导致标志性的认知障碍,还会导致精神运动功能障碍 [22]。因此,它是全世界老年人残疾和依赖的主要原因之一。由于其认知和功能缺陷,AD患者在危机期间,特别是在COVID-19大流行期间容易受到伤害,并且封闭似乎会影响基线认知功能低的AD患者的神经精神症状 [23]。对于那些受影响的人及其护理人员和家人来说,这可能是难以承受的,直接和间接的医疗成本压力非常大 [24]。在目前的情况下,患有AD的人由于其复杂的认知和精神运动功能障碍而特别脆弱。记忆问题增加了他们理解正在发生的事情的困难 [24] [25]。由于新冠病毒的发病率和死亡率以及大流行对他们所依赖的卫生系统和支持网络的间接影响,这种大流行进一步加剧了他们的脆弱性 [26]。一些研究报告了封闭及其对AD有关的认知的影响和行为症状的改变与加重。已经检测到认知症状的恶化,特别是记忆和定向能力的恶化,改变的出现,如烦躁—攻击、冷漠和抑郁,这些是最实际的表现 [23]。此外,了解到老年人因年龄、共病和身体虚弱而更容易感染COVID-19,可能会增加这一年龄组的不确定性和对COVID-19大流行的恐惧 [27]。强制隔离和屏蔽措施也减少了运动锻炼的机会,缺乏身体运动会进一步增加失智症的风险 [26]。

3. 社会孤立作为AD的一项危险因素

3.1. AD病理学特征

AD病理学的特征是细胞外Aβ的积累和细胞内NFT的过度磷酸化tau蛋白的积累以及伴有炎症、神经变性和突触丢失 [28]。越来越多的证据表明,AD的病理生理学涉及由胶质细胞如小胶质细胞和星形胶质细胞介导的免疫机制 [29]。活性星形胶质细胞和小胶质细胞的增加以及广泛的胶质细胞增生被认为是AD的神经病理学特征 [28]。尽管病理性蛋白质积累会触发大脑内的先天免疫反应,但神经炎症也可以驱动病理。事实上,许多迟发性AD的风险基因主要在神经胶质细胞中表达,这表明炎症在AD中起着至关重要的作用 [30]。

社会孤立和AD的不同阶段大脑区域都会受到影响表现出功能障碍,例如前额叶皮层、杏仁核或海马体。从机制的角度来看,由于下丘脑–垂体–肾上腺(Hypothalamic-Pituitary-Adrenal, HPA)轴的变化,社会孤立与慢性压力或抑郁有关,这也可能发生在AD的早期临床前阶段 [31]。在孤独中启动HPA轴可能导致前额叶皮质中皮质酮水平的增加 [32]。此外,有研究指出,孤独会导致海马神经发生减少以及脑源性神经营养因子(brain derived neurotrophic factor, BDNF)或神经生长因子(nerve growth factor, NGF)减少 [32]。也有研究指出,在AD患者中这种成人海马神经发生减少 [33]。此外,据研究,在孤独的非失智老年人中存在AD标志物,如Aβ斑块 [32] 或tau蛋白病变病理 [34]。

突触缺失是AD患者认知能力下降的最强病理相关因素 [35]。在AD小鼠模型中,社会隔离被观察到会降低AMPA受体的表面表达 [36]。在另一种AD模型中,增加塌陷反应调节蛋白5 (Collapsin response mediator protein 5, CRMP5)的表达会减少社交互动,可能是通过改变GluA2的表面表达并触发AMPA受体的内吞作用 [37]。在AD小鼠模型中,抑制AMPA受体内吞可防止长期增强衰减和减少记忆丧失,这表明AMPA受体在病理性记忆丧失中发挥作用 [38],以及社会孤立导致AD认知症状的机制。社交孤立还会降低海马部位突触可塑性的突触蛋白的水平 [39]。被社会孤立的雌性啮齿类动物也发现在情境恐惧记忆方面有缺陷,这是一项依赖于海马体的任务,这表明社会孤立可能改变突触可塑性的机制,潜在地增加了AD中突触缺失的脆弱性。

研究发现,慢性社会隔离可能通过启动小胶质细胞增加啮齿动物的氧化应激 [40]。氧化应激标志物往往在AD疾病过程中的早期发现,因此氧化应激被认为是AD发病机制的重要因素,特别是通过增加淀粉样蛋白-β和tau蛋白的病理 [41]。活性氧的增加还与线粒体功能障碍、DNA损伤和突触损伤等相关 [42]。在社交孤立的APP/PS1小鼠中,慢性抗氧化治疗逆转了加速的淀粉样蛋白-β病理 [17],这表明社交孤立可能通过增加氧化应激加重AD病理。

3.2. Aβ沉积和tau蛋白过度磷酸化的机制

无论任何形式的互动,无论是人类还是动物,互动中的中断都会对正在经历孤独和焦虑的患者产生负面影响疾病 [43]。令人惊讶的是,感知到的社会孤立或孤独会促进并加剧大脑中的Aβ沉积和tau蛋白过度磷酸化。一项研究报告称,在感到孤独的老年患者的大脑中观察到Aβ积累,无论他们是否被诊断为失智症 [44]。此外,一些研究报告称,与标准住房相比,与社会隔离的淀粉样前体蛋白(amyloid precursor protein, APP)/早老蛋白-1(Presenilin-1, PS1)转基因小鼠的Aβ42和Aβ40的水平显著升高,这是由于γ-分泌酶活性的增加和脑啡肽酶表现的降低 [17] [45]。

类似地,一些使用大鼠模型的研究报告称,社会隔离增加了糖原合成酶激酶-3β (Glycogen synthase kinase-3β, GSK-3β)和tau蛋白过度磷酸化的水平,但降低了ser9磷酸化的GSK-3β的水平 [46]。这一证据表明,社会孤立和感知孤独感可促进早期AD患者大脑中Aβ的产生和tau蛋白过度磷酸化。此外,来自社会隔离和孤独的压力也会影响Aβ的积累和tau蛋白的过度磷酸化。应激引起的糖皮质激素水平升高会导致Aβ和tau蛋白病变的加剧 [47]。特别是,AD和轻度认知障碍患者的血浆和脑脊液常规检验(Cerebrospinal Fluid, CSF)皮质醇水平明显高于认知正常患者,还表现出HPA轴的失调 [48] [49]。3xTg小鼠应激诱导的糖皮质激素水平升高,通过增加生长树突tau蛋白的积累和通过增加APP和β-分泌酶水平提高神经元内Aβ水平,从而加速神经纤维缠结的发展 [47]。

3.3. 社会孤立使啮齿动物的AD恶化

在啮齿类动物中模拟社会隔离的所有方面和复杂性是不可能的,特别是感知到的社会隔离和孤独感。然而,在AD小鼠模型中,通过让小鼠远离笼子、同伴来唤起社会孤立,为补充人类发现提供了有用的信息。APP/PS1和Tg2576小鼠的社交隔离导致斑块形成增加和记忆恶化 [17] [45] 和诱导的Sprague-Dawley大鼠空间记忆缺陷、tau过度磷酸化和突触蛋白表达降低 [46] [50]。与非社交孤立的APP/PS1小鼠相比,AD的其他病理特征也有所恶化,包括海马萎缩加剧、突触丢失和神经胶质炎症改变 [18]。最近的一项研究发现,即使给社交孤立的5xFAD小鼠提供滚轮或丰富的环境,AD病理也会增加,这表明孤立压力的影响超过了缺乏锻炼或认知刺激造成的任何影响 [51]。

4. 社会孤立的预防与干预方法

认知储备(Cognitive reserve, CR)是一种假设性结构,可减轻与年龄相关的衰退和病理损伤的影响 [52]。认知储备可以降低失智症的风险。CR可能是一种机制,通过这种机制,即使在存在神经病理学的情况下,个体也可以免受临床上显著的认知能力下降 [53] [54]。它指的是大脑对萎缩和病变进行缓冲的结构和动态能力。特定大脑区域的组织或功能丧失可能会通过其他更努力工作的神经元来补偿,以尽可能保持相同的功能水平。这种补偿可能发生在“局部”层面,从某种意义上说,相邻的神经元弥补了区域性损伤失去的神经活动。被一些学者称为“大脑储备”,这种容量储备也被称为认知储备的被动或静态模型 [52]。这一概念基于社会行为代理的概念,例如教育,智力参与职业和各种其他活动,有助于建立更具弹性的神经元网络,保护认知功能,即使AD生物标志物指向进展中的神经病理学 [55]。体育活动可以通过增强海马神经发生、突触可塑性、神经营养因子水平和心血管健康来促进认知 [56]。体育活动还与海马体、前额叶皮层和基底神经节更大的体积、更大的白质完整性和增强的大脑功能连通性有关 [56]。在老龄化社会中,促进老年人的智力活动尤为重要,因为较少参与智力活动是认知能力下降的主要危险因素 [16]。参与智力活动已被发现可以增强突触传递和神经可塑性,并增加认知储备 [57]。有观察性研究报告表明,在未来生活中经常参与智力活动可以降低发生失智的风险,并维持或改善认知功能 [58]。CR有望调节神经病理学与认知表现之间的关系;在认知缺陷或临床损伤变得明显之前,CR较高的个体能够比CR水平较低的个体忍受更高水平的神经病理学 [54] [59]。也就是说,具有高CR的个体对AD相关神经病理学表现出更强的恢复力 [60]。

根据一些估计,只要将失智症的发病时间推迟5年,失智症的患病率就会下降50% [61]。因此,提高CR水平的干预措施可能会随着年龄的增长而延长寿命和生活质量。由于大多数CR指标反映的是可改变的体验,其可以在整个生命周期中得到增强,终身参与认知、社交和体育活动有利于提高CR水平,同时远离社会孤立,降低失智症的患病风险。社会关系会随着时间的推移而改变。例如在丧偶、迁徙或功能能力下降后,孤独感和社会孤立可能会增加 [62]。相反,例如在孙辈出生等之类的变化可增加以后在生活中与儿童接触的机会,研究表明,人们在年老时继续结交认识新的朋友及新事物或重新点燃已经减弱的联系可减少社会孤立 [63]。

有研究发现,提供满足感和感知到互惠感的社会互动可以作为15年以上失智症的保护因素 [64]。此外,一项12年的队列研究证实,有一个知己可以确保个人免于失智症状 [65]。由于COVID-19的出现,产生的隔离阻碍了人们的社交。有研究表明,可以通过使用视频通话来扩大参与者的社交圈或增加与现有熟人的联系频率以减少社交孤立 [66]。因此,扩大社交圈或增加与现有熟人接触的频率可能会解决社会孤立问题,从而有可能在保持身体距离的时期解决社会孤立问题。

5. 结论与展望

基于目前形势情况来看,我国人口老龄化加剧,加上人到老年时生命周期阶段的变化,健康状态在逐渐下降,同时周围相处环境的变化,社会孤立即感知孤独会对AD病情影响,甚至加重或恶化病情。减少社会孤立在AD早期尤其重要。在某种程度上,较高的CR可以预防疾病相关临床症状的发生或预防与年龄相关的认知衰退的发生,这为老年时期保持认知功能提供了一个重要的机制。总的来说,改善经济、社会和教育机会的举措可能会对随着年龄增长的认知和大脑健康产生深远的影响。例如,社区为老年人提供学习机会,如开设学习班、开展互动活动等,以及促进与社会联系,如增加绿地面积、公共运动设施等,有利于促进认知健康,同时也预防社会孤立现象。同时老年人的社交及心理问题应得到重视,有助于减少患AD的风险。此外,研究对社会孤立的早期干预是否能在长期内改变阿尔茨海默病的进程将是非常有益的。

基金项目

本文获宁德师范学院引进人才项目基金(2019Y20)及2021年福建省社科基金西部扶持项目(FJ2021X023)支持。

文章引用

肖静颖,陈慧婷,苏裕盛. 社会孤立对阿尔茨海默病影响的研究进展
Research Progress on the Impact of Social Isolation on Alzheimer’s Disease[J]. 生物医学, 2022, 12(04): 285-294. https://doi.org/10.12677/HJBM.2022.124035

参考文献

  1. 1. Chen, X.Q. and Mobley, W.C. (2019) Alzheimer Disease Pathogenesis: Insights from Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience, 13, Article No. 659. https://doi.org/10.3389/fnins.2019.00659

  2. 2. Keogh-Brown, M.R., Jensen, H.T., Arrighi, H.M. and Smith, R.D. (2016) The Impact of Alzheimer’s Disease on the Chinese Economy. eBioMedicine, 4, 184-190. https://doi.org/10.1016/j.ebiom.2015.12.019

  3. 3. GBD 2019 Dementia Forecasting Collaborators (2022) Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7, E105-E125. https://doi.org/10.1016/S2468-2667(21)00249-8

  4. 4. Nicholson, N.R. (2012) A Review of Social Isolation: An Important But Underassessed Condition in Older Adults. Journal of Prevention, 33, 137-152. https://doi.org/10.1007/s10935-012-0271-2

  5. 5. Valtorta, N.K., Kanaan, M., Gilbody, S., Ronzi, S. and Hanratty, B. (2016) Loneliness and Social Isolation as Risk Factors for Coronary Heart Disease and Stroke: Systematic Review and Meta-Analysis of Longitudinal Observational Studies. Heart, 102, 1009-1016. https://doi.org/10.1136/heartjnl-2015-308790

  6. 6. Holt-Lunstad, J. and Smith, T.B. (2016) Loneliness and Social Isolation as Risk Factors for CVD: Implications for Evidence-Based Patient Care and Scientific Inquiry. Heart, 102, 987-989. https://doi.org/10.1136/heartjnl-2015-309242

  7. 7. Tomaka, J., Thompson, S. and Palacios, R. (2006) The Relation of Social Isolation, Loneliness, and Social Support to Disease Outcomes among the Elderly. Journal of Aging and Health, 18, 359-384. https://doi.org/10.1177/0898264305280993

  8. 8. Cacioppo, J.T., Hawkley, L.C., Norman, G.J. and Berntson, G.G. (2011) Social Isolation. Annals of the New York Academy of Sciences, 1231, 17-22. https://doi.org/10.1111/j.1749-6632.2011.06028.x

  9. 9. Berkman, L.F., Glass, T., Brissette, I. and Seeman, T.E. (2000) From Social Integration to Health: Durkheim in the New Millennium. Social Science & Medicine, 51, 843-857. https://doi.org/10.1016/S0277-9536(00)00065-4

  10. 10. Muntsant, A. and Gimenez-Llort, L. (2020) Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Frontiers in Psychiatry, 11, Article ID: 572583.https://doi.org/10.3389/fpsyt.2020.572583

  11. 11. Sutin, A.R., Stephan, Y., Luchetti, M. and Terracciano, A. (2020) Loneliness and Risk of Dementia. Journal of Gerontology, Series B, Psychological Sciences and Social Sciences, 75, 1414-1422. https://doi.org/10.1093/geronb/gby112

  12. 12. Pino, L., Gonzalez-Velez, A.E., Prieto-Flores, M.E., Ayala, A., Fernandez-Mayoralas, G., Rojo-Perez, F., Martinez-Martin, P. and Forjaz, M.J. (2014) Self-Perceived Health and Quality of Life by Activity Status in Community-Dwelling Older Adults. Geriatrics & Gerontology International, 14, 464-473. https://doi.org/10.1111/ggi.12119

  13. 13. Wilson, R.S., Krueger, K.R., Arnold, S.E., Schneider, J.A., Kelly, J.F., Barnes, L.L., Tang, Y. and Bennett, D.A. (2007) Loneliness and Risk of Alzheimer Disease. Archives of General Psychiatry, 64, 234-240. https://doi.org/10.1001/archpsyc.64.2.234

  14. 14. Sundstrom, A., Adolfsson, A.N., Nordin, M. and Adolfsson, R. (2020) Loneliness Increases the Risk of All-Cause Dementia and Alzheimer’s Disease. Journal of Gerontology, Series B, Psychological Sciences and Social Sciences, 75, 919-926. https://doi.org/10.1093/geronb/gbz139

  15. 15. Akhter-Khan, S.C., Tao, Q., Ang, T., Itchapurapu, I.S., Alosco, M.L., Mez, J., Piers, R.J., Steffens, D.C., Au, R. and Qiu, W.Q. (2021) Associations of Loneliness with Risk of Alzheimer’s Disease Dementia in the Framingham Heart Study. Alzheimer’s & Dementia, 17, 1619-1627. https://doi.org/10.1002/alz.12327

  16. 16. Livingston, G., J Huntley., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S.G., Dias, A., Fox, N., Gitlin, L.N., Howard, R., Kales, H.C., Kivimaki, M., Larson, E.B., Ogunniyi, A., Orgeta, V., Ritchie, K., Rockwood, K., Sampson, E.L., Samus, Q., Schneider, L.S., Selbaek, G., Teri, L. and Mukadam, N. (2020) Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet, 396, 413-446. https://doi.org/10.1016/S0140-6736(20)30367-6

  17. 17. Hsiao, Y.H., Kuo, J.R., Chen, S.H. and Gean, P.W. (2012) Amelioration of Social Isolation-Triggered Onset of Early Alzheimer’s Disease-Related Cognitive Deficit by N-Acetylcysteine in a Transgenic Mouse Model. Neurobiology of Disease, 45, 1111-1120. https://doi.org/10.1016/j.nbd.2011.12.031

  18. 18. Huang, H., Wang, L., Cao, M., Marshall, C., Gao, J., Xiao, N., Hu, G. and Xiao, M. (2015) Isolation Housing Exacerbates Alzheimer’s Disease-Like Pathophysiology in Aged APP/PS1 Mice. International Journal of Neuropsychopharmacology, 18, Article No. u116. https://doi.org/10.1093/ijnp/pyu116

  19. 19. De Jong, G.J. and Van Tilburg, T. (2010) The De Jong Gierveld Short Scales for Emotional and Social Loneliness: Tested on, Data from 7 Countries in the UN Generations and Gender Surveys. European Journal of Ageing, 7, 121-130. https://doi.org/10.1007/s10433-010-0144-6

  20. 20. Minou Weijs-Perrée, P.V.D.B. (2015) Factors Influencing Social Satisfaction and Loneliness: A Path Analysis. Journal of Transport Geography, 45, 24-31. https://doi.org/10.1016/j.jtrangeo.2015.04.004

  21. 21. Kemperman, A., Van Den Berg, P., Weijs-Perree, M. and Uijtdewillegen, K. (2019) Loneliness of Older Adults: Social Network and the Living Environment. International Journal of Environmental Research and Public Health, 16, 406. https://doi.org/10.3390/ijerph16030406

  22. 22. O’Leary, T.P., Mantolino, H.M., Stover, K.R. and Brown, R.E. (2020) Age-Related Deterioration of Motor Function in Male and Female 5xFAD Mice from 3, to 16 Months of Age. Genes, Brain and Behavior, 19, e12538. https://doi.org/10.1111/gbb.12538

  23. 23. Boutoleau-Bretonniere, C., Pouclet-Courtemanche, H., Gillet, A., Bernard, A., Deruet, A.L., Gouraud, I., Mazoue, A., Lamy, E., Rocher, L. and El Kapogiannis, D., H.M. (2020) The Effects of Confinement on Neuropsychiatric Symptoms in Alzheimer’s Disease During the COVID-19 Crisis. Journal of Alzheimer’s Disease, 76, 41-47. https://doi.org/10.3233/JAD-200604

  24. 24. Wang, H., Li, T., Barbarino, P., Gauthier, S., Brodaty, H., Molinuevo, J.L., Xie, H., Sun, Y., Yu, E., Tang, Y., Weidner, W. and Yu, X. (2020) Dementia Care during COVID-19. Lancet, 395, 1190-1191. https://doi.org/10.1016/S0140-6736(20)30755-8

  25. 25. Lara, B., Carnes, A., Dakterzada, F., Benitez, I. and Pinol-Ripoll, G. (2020) Neuropsychiatric Symptoms and Quality of Life in Spanish Patients with Alzheimer’s Disease During the COVID-19 Lockdown. European Journal of Neurology, 27, 1744-1747. https://doi.org/10.1111/ene.14339

  26. 26. Brown, E.E., Kumar, S., Rajji, T.K., Pollock, B.G. and Mulsant, B.H. (2020) Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. American Journal of Geriatric Psychiatry, 28, 712-721. https://doi.org/10.1016/j.jagp.2020.04.010

  27. 27. Soares, W.B., Silvestre, I.T., Lima, A. and De Almondes, K.M. (2020) The Influence of Telemedicine Care on the Management of Behavioral and Psychological Symptoms in Dementia (BPSD) Risk Factors Induced or Exacerbated During the COVID-19 Pandemic. Frontiers in Psychiatry, 11, Article ID: 577629. https://doi.org/10.3389/fpsyt.2020.577629

  28. 28. Serrano-Pozo, A., Frosch, M.P., Masliah, E. and Hyman, B.T. (2011) Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 1, a6189. https://doi.org/10.1101/cshperspect.a006189

  29. 29. Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., Herrup, K., Frautschy, S.A., Finsen, B., Brown, G.C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., Petzold, G.C., Town, T., Morgan, D., Shinohara, M.L., Perry, V.H., Holmes, C., Bazan, N.G., Brooks, D.J., Hunot, S., Joseph, B., Deigendesch, N., Garaschuk, O., Boddeke, E., Dinarello, C.A., Breitner, J.C., Cole, G.M., Golenbock, D.T. and Kummer, M.P. (2015) Neuroinflammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5

  30. 30. Karch, C.M. and Goate, A.M. (2015) Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biological Psychiatry, 77, 43-51. https://doi.org/10.1016/j.biopsych.2014.05.006

  31. 31. Avila, J. and Perry, G. (2021) A Multilevel View of the Development of Alzheimer’s Disease. Neuroscience, 457, 283-293. https://doi.org/10.1016/j.neuroscience.2020.11.015

  32. 32. Cacioppo, S., Capitanio, J.P. and Cacioppo, J.T. (2014) Toward a Neurology of Loneliness. Psychological Bulletin, 140, 1464-1504. https://doi.org/10.1037/a0037618

  33. 33. Moreno-Jimenez, E.P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-Bazarra, N., Avila, J. and Llorens-Martin, M. (2019) Adult Hippocampal Neurogenesis Is Abundant in Neurologically Healthy Subjects and Drops Sharply in Patients with Alzheimer’s Disease. Nature Medicine, 25, 554-560. https://doi.org/10.1038/s41591-019-0375-9

  34. 34. D’Oleire, U.F., Jacobs, H., Biddle, K.D., Properzi, M., Hanseeuw, B., Schultz, A.P., Rentz, D.M., Johnson, K.A., Sperling, R.A. and Donovan, N.J. (2018) Regional Tau Pathology and Loneliness in Cognitively Normal Older Adults. Translational Psychiatry, 8, Article No. 282. https://doi.org/10.1038/s41398-018-0345-x

  35. 35. Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., Deteresa, R., Hill, R., Hansen, L.A. and Katzman, R. (1991) Physical Basis of Cognitive Alterations in Alzheimer’s Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment. Annals of Neurology, 30, 572-580. https://doi.org/10.1002/ana.410300410

  36. 36. Hsiao, Y.H., Chen, P.S., Chen, S.H. and Gean, P.W. (2011) The Involvement of Cdk5 Activator P35 in Social Isolation-Triggered Onset of Early Alzheimer’s Disease-Related Cognitive Deficit in the Transgenic Mice. Neuropsychopharmacology, 36, 1848-1858. https://doi.org/10.1038/npp.2011.69

  37. 37. Lin, Y.S., Lin, Y.F., Chen, K.C., Yang, Y.K. and Hsiao, Y.H. (2019) Collapsin Response Mediator Protein 5 (CRMP5) Causes Social Deficits and Accelerates Memory Loss in an Animal Model of Alzheimer’s Disease. Neuropsychopharmacology, 157, Article ID: 107673. https://doi.org/10.1016/j.neuropharm.2019.107673

  38. 38. Dong, Z., Han, H., Li, H., Bai, Y., Wang, W., Tu, M., Peng, Y., Zhou, L., He, W., Wu, X., Tan, T., Liu, M., Wu, X., Zhou, W., Jin, W., Zhang, S., Sacktor, T.C., Li, T., Song, W. and Wang, Y.T. (2015) Long-Term Potentiation Decay and Memory Loss Are Mediated by AMPAR Endocytosis. Journal of Clinical Investigation, 125, 234-247. https://doi.org/10.1172/JCI77888

  39. 39. Pereda-Perez, I., Popovic, N., Otalora, B.B., Popovic, M., Madrid, J.A., Rol, M.A. and Venero, C. (2013) Long-Term Social Isolation in the Adulthood Results in CA1 Shrinkage and Cognitive Impairment. Neurobiology of Learning and Memory, 106, 31-39. https://doi.org/10.1016/j.nlm.2013.07.004

  40. 40. Schiavone, S., Sorce, S., Dubois-Dauphin, M., Jaquet, V., Colaianna, M., Zotti, M., Cuomo, V., Trabace, L. and Krause, K.H. (2009) Involvement of NOX2 in the Development of Behavioral and Pathologic Alterations in Isolated Rats. Biological Psychiatry, 66, 384-392. https://doi.org/10.1016/j.biopsych.2009.04.033

  41. 41. Liu, Z., Zhou, T., Ziegler, A.C., Dimitrion, P. and Zuo, L. (2017) Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 2525967. https://doi.org/10.1155/2017/2525967

  42. 42. Huang, W.J., Zhang, X. and Chen, W.W. (2016) Role of Oxidative Stress in Alzheimer’s Disease. Biomedical Reports, 4, 519-522. https://doi.org/10.3892/br.2016.630

  43. 43. Leigh-Hunt, N., Bagguley, D., Bash, K., Turner, V., Turnbull, S., Valtorta, N. and Caan, W. (2017) An Overview of Systematic Reviews on the Public Health Consequences of Social Isolation and Loneliness. Public Health, 152, 157-171. https://doi.org/10.1016/j.puhe.2017.07.035

  44. 44. Donovan, N.J., Okereke, O.I., Vannini, P., Amariglio, R.E., Rentz, D.M., Marshall, G.A., Johnson, K.A. and Sperling, R.A. (2016) Association of Higher Cortical Amyloid Burden with Loneliness in Cognitively Normal Older Adults. JAMA Psychiatry, 73, 1230-1237. https://doi.org/10.1001/jamapsychiatry.2016.2657

  45. 45. Huang, H.J., Liang, K.C., Ke, H.C., Chang, Y.Y. and Hsieh-Li, H.M. (2011) Long-Term Social Isolation Exacerbates the Impairment of Spatial Working Memory in APP/PS1 Transgenic Mice. Brain Research, 1371, 150-160. https://doi.org/10.1016/j.brainres.2010.11.043

  46. 46. Ren, Q.G., Gong, W.G., Wang, Y.J., Zhou, Q.D. and Zhang, Z.J. (2015) Citalopram Attenuates Tau Hyperphosphorylation and Spatial Memory Deficit Induced by Social Isolation Rearing in Middle-Aged Rats. Journal of Molecular Neuroscience, 56, 145-153. https://doi.org/10.1007/s12031-014-0475-4

  47. 47. Green, K.N., Billings, L.M., Roozendaal, B., Mcgaugh, J.L. and Laferla, F.M. (2006) Glucocorticoids Increase Amyloid-Beta and Tau Pathology in a Mouse Model of Alzheimer’s Disease. Journal of Neuroscience, 26, 9047-9056. https://doi.org/10.1523/JNEUROSCI.2797-06.2006

  48. 48. Popp, J., Wolfsgruber, S., Heuser, I., Peters, O., Hull, M., Schroder, J., Moller, H.J., Lewczuk, P., Schneider, A., Jahn, H., Luckhaus, C., Perneczky, R., Frolich, L., Wagner, M., Maier, W., Wiltfang, J., Kornhuber, J. and Jessen, F. (2015) Cerebrospinal Fluid Cortisol and Clinical Disease Progression in MCI and Dementia of Alzheimer’s Type. Neurobiology of Aging, 36, 601-607. https://doi.org/10.1016/j.neurobiolaging.2014.10.031

  49. 49. Ouanes, S. and Popp, J. (2019) High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Frontiers in Aging Neuroscience, 11, Article No. 43. https://doi.org/10.3389/fnagi.2019.00043

  50. 50. Gong, W.G., Wang, Y.J., Zhou, H., Li, X.L., Bai, F., Ren, Q.G. and Zhang, Z.J. (2017) Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats. Molecular Neurobiology, 54, 1927-1938. https://doi.org/10.1007/s12035-016-9781-x

  51. 51. Peterman, J.L., White, J.D., Calcagno, A., Hagen, C., Quiring, M., Paulhus, K., Gurney, T., Eimerbrink, M.J., Curtis, M., Boehm, G.W. and Chumley, M.J. (2020) Prolonged Isolation Stress Accelerates the Onset of Alzheimer’s Disease-Related Pathology in 5xFAD Mice Despite Running Wheels and Environmental Enrichment. Behavioural Brain Research, 379, Article ID: 112366. https://doi.org/10.1016/j.bbr.2019.112366

  52. 52. Cheng, S.T. (2016) Cognitive Reserve and the Prevention of Dementia: The Role of Physical and Cognitive Activities. Current Psychiatry Reports, 18, Article No. 85. https://doi.org/10.1007/s11920-016-0721-2

  53. 53. Cabeza, R., Albert, M., Belleville, S., Craik, F., Duarte, A., Grady, C.L., Lindenberger, U., Nyberg, L., Park, D.C., Reuter-Lorenz, P.A., Rugg, M.D., Steffener, J. and Rajah, M.N. (2018) Maintenance, Reserve and Compensation: The Cognitive Neuroscience of Healthy Ageing. Nature Reviews Neuroscience, 19, 701-710. https://doi.org/10.1038/s41583-018-0068-2

  54. 54. Stern, Y., Arenaza-Urquijo, E.M., Bartres-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W.S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P. and Vuoksimaa, E. (2020) Whitepaper: Defining and Investigating Cognitive Reserve, Brain Reserve, and Brain Maintenance. Alzheimer’s & Dementia, 16, 1305-1311. https://doi.org/10.1016/j.jalz.2018.07.219

  55. 55. Stern, Y. (2012) Cognitive Reserve in Ageing and Alzheimer’s Disease. The Lancet Neurology, 11, 1006-1012. https://doi.org/10.1016/S1474-4422(12)70191-6

  56. 56. Voss, M.W., Vivar, C., Kramer, A.F. and Van Praag, H. (2013) Bridging Animal and Human Models of Exercise-Induced Brain Plasticity. Trends in Cognitive Sciences, 17, 525-544. https://doi.org/10.1016/j.tics.2013.08.001

  57. 57. Stern, C. and Munn, Z. (2009) Cognitive Leisure Activities and Their Role in Preventing Dementia: A Systematic Review. JBI Library of Systematic Reviews, 7, 1292-1332. https://doi.org/10.11124/01938924-200907290-00001

  58. 58. Yates, L.A., Ziser, S., Spector, A. and Orrell, M. (2016) Cognitive Leisure Activities and Future Risk of Cognitive Impairment and Dementia: Systematic Review and Meta-Analysis. International Psychogeriatrics, 28, 1791-1806. https://doi.org/10.1017/S1041610216001137

  59. 59. Menardi, A., Pascual-Leone, A., Fried, P.J. and Santarnecchi, E. (2018) The Role of Cognitive Reserve in Alzheimer’s Disease and Aging: A Multi-Modal Imaging Review. Journal of Alzheimer’s Disease, 66, 1341-1362. https://doi.org/10.3233/JAD-180549

  60. 60. Arenaza-Urquijo, E.M. and Vemuri, P. (2020) Improving the Resistance and Resilience Framework for Aging and Dementia Studies. Alzheimer’s Research & Therapy, 12, Article No. 41. https://doi.org/10.1186/s13195-020-00609-2

  61. 61. Brookmeyer, R., Gray, S. and Kawas, C. (1998) Projections of Alzheimer’s Disease in the United States and the Public Health Impact of Delaying Disease Onset. American Journal of Public Health, 88, 1337-1342. https://doi.org/10.2105/AJPH.88.9.1337

  62. 62. Dykstra, P.A., Van Tilburg, T.G. and Gierveld, J.D.J. (2005) Changes in Older Adult Loneliness: Results from a Seven-Year Longitudinal Study. Research on Aging, 27, 725-747. https://doi.org/10.1177/0164027505279712

  63. 63. Bowling, A., Grundy, E. and Farquhar, M. (1995) Changes in Network Composition among the Very Old Living in Inner London. Journal of Cross-Cultural Gerontology, 10, 331-347. https://doi.org/10.1007/BF00972333

  64. 64. Amieva, H., Stoykova, R., Matharan, F., Helmer, C., Antonucci, T.C. and Dartigues, J.F. (2010) What Aspects of Social Network Are Protective for Dementia? Not the Quantity but, The Quality of Social Interactions Is Protective up to 15 Years Later. Psychosomatic Medicine, 72, 905-911. https://doi.org/10.1097/PSY.0b013e3181f5e121

  65. 65. Camozzato, A., Godinho, C., Varela, J., Kohler, C., Rinaldi, J. and Chaves, M.L. (2015) The Complex Role of Having Confidant on the Development of Alzheimer’s Disease in a Community-Based Cohort of Older People in Brazil. Neuroepidemiology, 44, 78-82. https://doi.org/10.1159/000371521

  66. 66. Valtorta, N. and Hanratty, B. (2012) Loneliness, Isolation and the Health of Older Adults: Do We Need a New Research Agenda? Journal of the Royal Society of Medicine, 105, 518-522. https://doi.org/10.1258/jrsm.2012.120128.

期刊菜单