Advances in Clinical Medicine
Vol. 08  No. 10 ( 2018 ), Article ID: 27942 , 8 pages
10.12677/ACM.2018.810150

Research Progress of Myeloid Derived Suppressor Cells in Recurrence and Metastasis of Colorectal Cancer

Zhikuan Wang, Haiyan Si, Yanhua Zhou, Guanghai Dai

Department of Medical Oncology, PLA General Hospital, Beijing

Received: Nov. 18th, 2018; accepted: Dec. 3rd, 2018; published: Dec. 11th, 2018

ABSTRACT

Myeloid derived suppressor cells (MDSCs) are a group of heterogeneous cells derived from bone marrow, which have remarkable ability of suppressing immune cell response. MDSCs have a positive regulatory effect on Tregs in the process of recurrence and metastasis of colorectal cancer. It inhibits the normal anti-tumor immunity of the body. Immunosuppression leads to immune escape of CTC and promotes tumor metastasis through TME. There are still many mechanisms of MDSCs that have not been elucidated, and we need to devote more efforts to prevent recurrence and metastasis of tumors and immunotherapy.

Keywords:Myeloid Derived Suppressor Cells, Colorectal Cancer, Recurrence and Metastasis

髓源性抑制细胞在结直肠癌复发转移中的研究进展

王治宽,司海燕,周艳华,戴广海

解放军总医院肿瘤内科,北京

收稿日期:2018年11月18日;录用日期:2018年12月3日;发布日期:2018年12月11日

摘 要

髓源性抑制细胞是骨髓来源的一群异质性细胞,具有显著抑制免疫细胞应答的能力。MDSCs在结直肠癌的复发转移过程中,对Tregs具有正向调控作用,抑制机体正常的抗肿瘤免疫,免疫抑制导致CTC免疫逃逸,通过TME促进肿瘤转移。MDSCs仍有许多作用机制未被阐明,还需要我们投入更大的精力,为预防肿瘤的复发转移及免疫治疗做出贡献。

关键词 :髓源性抑制细胞,结直肠癌,复发转移

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

结直肠癌(colorectal cancer, CRC)是目前发病率和致死率位居前三的恶性肿瘤之一。随着饮食习惯和饮食结构的改变,我国结直肠癌发病率和死亡率也呈上升趋势。结直肠癌的普查和居民健康意识的增强使得结直肠癌早期诊断率提高而使其整体死亡率有所下降,但转移性结直肠癌(metastatic colorectal cancer, mCRC)的死亡率仍居高不下,结直肠癌致死的主要原因是肿瘤的复发转移 [1] 。

髓源性抑制细胞(Myeloid-derived suppressor cells, MDSCs)是一类具有显著免疫抑制活性的异质细胞群,其通过抑制效应T细胞功能从而介导肿瘤免疫逃逸,促进肿瘤生长。研究表明MDSCs的聚集能够促进肿瘤的发生和疾病进程,MDSCs的高表达与癌症患者的总体生存率降低密切相关 [2] 。本文就MDSCs及其在结直肠癌复发转移中的研究进展进行综述。

2. 关于髓源性抑制细胞

MDSCs是一群来源于骨髓前体细胞和未成熟骨髓细胞(immature myeloid cells, IMCs),具有不同分化潜能和免疫抑制能力的异质性细胞 [3] 。正常情况下,是树突状细胞(DC)、巨噬细胞和粒细胞的前体,能迅速地分化为成熟的粒细胞、DCs和巨噬细胞,并进入相应的器官、组织,发挥正常免疫功能。在肿瘤等其它病理条件下,受细胞因子的作用,这些髓系来源的前体细胞成熟受阻,因而停留在各个分化阶段,成为具有免疫抑制功能的MDSCs。它们在TGF-β、IL-6、IFN-γ等细胞因子的作用下被募集、迁移、扩增,使得其在外周血中的数量和比例增加,通过各种途径抑制机体的免疫反应,使肿瘤细胞逃避机体的免疫系统,促进肿瘤的发生、发展和转移 [4] 。

MDSCs主要分为两大亚群:粒细胞型MDSCs (G-MDSCs)和单核细胞型MDSCs (M-MDSCs)。G-MDSCs数量较多,在机体内发挥主要作用,但M-MDSCs功能更强,在一些研究中也显示出主导作用。小鼠的MDSCs细胞表面共表达CDllb和髓系分化抗原Gr-1。对于小鼠,M-MDSCs的特征为CDllb + Ly6ChighLy6G-,而G-MDSCs为CDllb + Ly6ClowLy6G +。目前普遍认为,人MDSCs细胞表面共表达标志物CD33和CD11b,但不表达成熟髓系标志物HLA-DR及MHC II [5] 。1995年有研究首次报道了在人类头颈部肿瘤患者体内发现CD34+的MDSCs的表达 [6] 。目前在甲状腺肿瘤、胰腺癌、肝癌、食管癌、乳腺癌等肿瘤患者体内均有MDSCs表达的报道,并且对免疫系统均有抑制作用 [7] 。一般将单个核细胞中CDl4-CD1lb + CD33 + CDl5 +或CD66b +细胞定义为G-MDSCs,而CDl4 + CDllb + CD33 + HLA-DR-/low为M-MDSCs;由于表面标记缺乏良好的特异性,严格的MDSCs鉴别需进一步验证其是否具有免疫抑制功能 [8] [9] 。研究发现,肿瘤乏氧微环境下的MDSCs表面PD-L1明显升高,与T细胞上的PD-1受体结合,T细胞无法识别肿瘤细胞,肿瘤细胞开启免疫逃逸 [10] 。MDSCs还可在肿瘤部位分化成调节性DC,进而引起T细胞分泌IFN-γ能力下降 [11] 。以上各种机制在肿瘤的不同类型、不同分期以及不同MDSCs亚群中各有侧重,而非一成不变 [12] 。MDSCs由多种肿瘤和宿主细胞分泌的细胞因子所诱导,不同肿瘤中MDSCs表型的不同可能是由于不同肿瘤产生的细胞因子的不同组合所致。迄今为止,除表达CD33、CD11b和对T细胞活化的抑制能力外,尚无确定的表型标志或组合能够明确地定义MDSCs。

3. 髓源性抑制细胞与结直肠癌的复发转移

在肿瘤患者体内,MDSCs受到肿瘤来源相关因子(tumor-derived factors, TDFs)刺激后,未成熟的前体细胞从骨髓募集至外周组织器官,并在外周被激活后,大量增殖、分化和成熟,发挥抑制肿瘤免疫系统作用,进一步促进肿瘤的发生和发展 [13] 。

在小鼠结肠癌模型中Gr-1 + CD115 + MDSCs在IFN-γ和IL-10存在的条件下可将抗原特异性CD4 + CD25-T细胞转化为CD4 + CD25-Foxp3+的Tregs,但不依赖NO的产生 [14] 。在结直肠癌发生和发展过程中,转化上皮细胞和基质细胞的相互作用诱导正常环境向支持肿瘤生长和扩散的微环境转化,肿瘤微环境与免疫细胞功能障碍及大面积浸润相关。肿瘤浸润细胞主要包括肿瘤相关巨噬细胞、MDSCs、CD4 + T细胞、CD8 + T细胞、Tregs、间质干细胞、癌相关成纤维细胞、内皮祖细胞、肥大细胞和血小板。这些细胞能够维持肿瘤相关的炎症、血管生成和免疫抑制,进而促进结直肠癌生长、血管生成和转移。MDSCs通过氨基酸依赖和不依赖两种方式下调机体的抗肿瘤免疫,具有很强的T细胞应答抑制能力。有学者报道,MDSCs通过抑制免疫促进了结肠癌的进展 [15] ;在结肠癌组织存在大量MDSCs浸润,它们通过促进血管生成加速了肿瘤的进展 [16] [17] 。另外有研究报道,通过小鼠模型发现MDSCs浸润促进结肠癌肝转移灶的生长 [18] 。这些细胞通过分泌不同的趋化因子、生长因子、免疫抑制因子、细胞外基质降解酶及促血管生成因子等,促进肿瘤的进展与转移。但目前有关MDSCs促进结直肠癌复发转移的具体机制仍不清楚,现就其可能相关性进行探讨。

3.1. 调节性T细胞

调节性T细胞(regulatory T cells, Tregs)是一类能对自身免疫原保持免疫耐受、发挥功能性免疫抑制和防止免疫损伤的特定淋巴细胞亚群。根据产生部位和诱导条件等差异分为自然调节性T细胞(nTregs)和诱导性调节T细胞(iTregs)。由于大多数的肿瘤可以表达自身抗原,Tregs引起的免疫耐受,被认为是肿瘤免疫逃逸和免疫治疗失败的一个重要因素 [19] 。其在肿瘤免疫和免疫逃逸中发挥关键作用,在人和小鼠的外周血及淋巴组织中约占CD4+T细胞的5%~10%。Tregs代表一群独特的CD4+辅助性T细胞亚群,在控制自身免疫中发挥着重要作用,CD4+CD25+是其主要的分子表型,FoxP3是Tregs关键的细胞内标志,对Tregs的分化、发育和免疫调节功能的发挥具有重要作用 [20] [21] [22] 。

Tregs在肿瘤患者体内诱导免疫耐受,是肿瘤免疫的重要负向调节因素,促进肿瘤发生发展。在实验小鼠模型中,消除Tregs可以明显加强机体的抗肿瘤免疫反应以及免疫治疗效果 [23] 。有学者报道,肿瘤诱导的G-MDSC能够抑制nTreg的增殖以及早期极化过程中CD4+T细胞向Tregs转化 [24] 。Ji等 [25] 也发现G-MDSC能够通过ROS途径抑制Tregs分化。而iNOS作为M-MDSCs的效应分子,也与Tregs产生有关,但还存在争议 [26] [27] 。目前报道,诱导Tregs生的MDSCs大部分为M-MDSCs [28] [29] [30] [31] ,是否G-MDSC与M-MDSC对于Tregs作用不同,需要更进一步的研究证实。相关文献也证实MDSCs亚型并不是独立的群体,亚型之间存在着动态转变的过程。在小鼠实验性关节炎中,MDSCs会发生一个从G-MDSCs向M-MDSCs转变的过程,且其免疫抑制效能也明显减弱 [32] 。国内学者通过流式细胞计数对健康者和肿瘤患者的外周血进行Tregs比例测定,结果提示肿瘤患者外周血中Tregs比例显著高于健康者外周血中Tregs比例,差异有统计学意义 [33] 。高素珍等 [34] 通过流式细胞计数和免疫组化法对分别对肿瘤组织中Tregs进行定量及定位分析,其结果显示,远离肿瘤部位组织Tregs比例明显低于肿瘤组织部位Tregs比例,差异有统计学意义;有淋巴结转移者Tregs比例明显高于无淋巴结转移者,差异亦有统计学意义,表明Tregs与大肠癌进展密切相关。MDSCs通过抑制效应T细胞和自然杀伤(NK)细胞等抗肿瘤免疫细胞的功能介导肿瘤免疫逃逸,Tregs则在维持自身免疫稳态、控制移植排斥反应中发挥着非常重要的作用,但肿瘤微环境中的Tregs却能够减弱机体的抗肿瘤免疫,而且肿瘤抗原和相关细胞因子对Tregs的募集、扩增以及诱导产生有重要作用。肿瘤发生时,MDSCs对Tregs具有正向调控作用,抑制机体正常的抗肿瘤免疫。

3.2. 循环肿瘤细胞

循环肿瘤细胞(circulatingtumorcells,CTCs)是指由实体瘤或肿瘤转移灶释放进入外周血循环中的肿瘤细胞 [35] 。肿瘤细胞侵入到原发肿瘤细胞的周围组织中,进入血液和淋巴管系统,形成循环肿瘤细胞CTCs,并转运到远端组织,再渗出,适应新的微环境,最终形成新的转移灶 [36] 。在CTCs的形成及发生远处转移的过程中,MDSCs的免疫抑制作用可能是导致CTCs免疫逃逸发生的重要因素 [37] 。

肿瘤微环境(tumor microenvironment, TME)中含有大量的免疫活性细胞,主要包含具有免疫抑制功能的Tregs [38] 、肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs) [39] 、调节/耐受树突状细胞 [40] 和MDSCs [41] ,及参与免疫反应的T、B细胞及NK细胞等。这些免疫活性细胞在细胞在肿瘤微环境中相互作用,同样,MDSCs也通过与其他免疫活性细胞的相互作用而利于CTCs的存活,从而促进肿瘤的发生、发展。MDSCs通过分泌大量抑制性细胞因子IL-10、转化生长因子β (TGF-β)等来抑制NK细胞的杀伤作用及IFN-γ的产生 [42] ,使患者免疫功能下降,从而有利于CTCs的免疫逃逸和生存,最终形成远处转移。另外,MDSCs还可抑制DC细胞的正常分化,而DC则是主要的抗原提呈细胞,DC细胞的数量和功能状态可能对CTCs的免疫耐受起着决定性作用。有研究发现MDSCs表达膜结合TGF-β1,并通过其抑制NK细胞的活性、NKG2D的表达和INF-γ的产生,诱导NK细胞的细胞毒作用减弱 [43] 。MDSCs不仅通过免疫抑制途径及促进肿瘤血管生成等导致肿瘤进展,并且分泌一些细胞因子及蛋白侵入基底膜或间质,促进CTCs的形成和数目增加 [44] [45] 。MDSCs除了抑制T细胞和NK细胞的免疫杀伤作用,可能还与外周血中的巨噬细胞、血小板、Tregs和肥大细胞等共同对免疫系统产生抑制。

3.3. 上皮间质转化

上皮间质转化(epithelial-mesenchymal transition,EMT)是指上皮细胞通过特定程序转化为具有间质表型的细胞 [46] 。参与包括结直肠癌在内多种肿瘤的发生、发展、侵袭和转移,并与肿瘤化疗耐药密切相关。

MDSCs不仅可以通过免疫抑制的机制影响肿瘤的发生发展,还可以通过诱导肿瘤细胞发生EMT以及促进肿瘤血管生成等非免疫学机制参与肿瘤的进展 [47] [48] 。在肿瘤的发生过程中,MDSCs通过肿瘤细胞侵袭健康组织以及转移,促进肿瘤的发生发展 [49] 。研究表明肿瘤可以招募MDSCs到其周围并诱导激活信号转导与转录激活因子3 (signal transducer and activator of transcription, STAT3)信号通路,从而促进肿瘤的发展 [50] [51] 。另外,在TME中有肿瘤坏死因子(tumor necrosis factor, TNF)等各种细胞因子,并且具有一定的肿瘤杀伤作用。已有研究发现 [52] TNF受体-2(TNFR-2)可以促进MDSCs存活并向TME中聚集,利于TME中的肿瘤细胞发生免疫逃逸。低氧诱导因子(hypoxia inducible factor, HIF)是TME中的另外一个重要细胞因子,与其相关的低氧环境对肿瘤细胞的生存具有重要影响。研究发现 [53] ,HIF-1α使MDSCs向着TAMs分化,促使肿瘤细胞发生播散。敲除HIF-1α的小鼠体内的MDSCs免疫抑制功能下降且精氨酸酶-1 (arginase1, Arg-1)及一氧化氮合成酶-2 (nitricoxidesynthase2, NOS-2)表达水平亦降低 [54] ,说明低氧环境可能是MDSCs发挥作用的条件之一。LIM1863是一个结肠癌细胞系,分化程度较高,是研究EMT理想的细胞模型 [55] 。用TGF-β刺激LIM1863细胞可诱导出现EMT现象,分化良好的球样结构消失而细胞迁移能力增强,形成单层细胞 [56] 。将TGF-β和TNF-α两种细胞因子共同刺激LIM1863细胞,则可更加明显的诱导EMT过程 [57] 。由此可见,EMT在结直肠癌的发生发展及转移中发挥着重要的作用。

4. 结语

MDSCs是骨髓来源的一群异质性细胞,作为肿瘤免疫微环境中重要的免疫抑制细胞,通过多种途径抑制机体的免疫细胞,减弱机体对肿瘤细胞的杀灭作用,与肿瘤的发生发展、及复发转移息息相关。本文通过对Tregs、CTCs、TME及EMT等在结直肠癌发生发展及转移中作用机制的阐述,探索MDSCs在结直肠癌中的可能机理。但肿瘤的复发与转移机制十分复杂,MDSCs促进结直肠癌的复发及转移仍有许多作用机制未被阐明,还需从临床及基础方面进一步验证判断。因此,对MDSCs深入的基础研究及相应的临床实践还需要我们投入更大的精力,以便为预防肿瘤的复发转移及免疫治疗取得更大的进步。

文章引用

王治宽,司海燕,周艳华,戴广海. 髓源性抑制细胞在结直肠癌复发转移中的研究进展
Research Progress of Myeloid Derived Suppressor Cells in Recurrence and Metastasis of Colorectal Cancer[J]. 临床医学进展, 2018, 08(10): 902-909. https://doi.org/10.12677/ACM.2018.810150

参考文献

  1. 1. Siegel, R., Ma, J. and Zou, Z. (2014) Cancer Statistics, 2014. CA: A Cancer Journal for Clinicians, 64, 9-29. https://doi.org/10.3322/caac.21208

  2. 2. Solito, S., Marigo, I., Pinton, L., et al. (2014) Myeloid-Derived Suppressor Cell Heterogeneity in Human Cancers. Annals of the New York Academy of Sciences, 1319, 47-65. https://doi.org/10.1111/nyas.12469

  3. 3. Gabrilovich, D.I. and Nagaraj, S. (2009) Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nature Reviews Immunology, 9, 162-174. https://doi.org/10.1038/nri2506

  4. 4. 刘秋燕, 曹雪涛. MDSCs与肿瘤免疫逃逸[J]. 中国肿瘤生物治疗杂志, 2009, 16(4): 319-324.

  5. 5. Kusmartsev, S., Su, Z., Heiser, A., et al. (2008) Reversal of Myeloid Cell-Mediated Immunosuppression in Patients with Metastatic Renal Cell Carcinoma. Clinical Cancer Research, 14, 8270-8278. https://doi.org/10.1158/1078-0432.CCR-08-0165

  6. 6. Pak, A.S., Wright, M.A., Matthews, J.P., et al. (1995) Mechanisms of Immune Suppression in Patients with Head and Neck Cancer: Presence of CD34(+) Cells Which Suppress Immune Functions within Cancers That Secrete Granulocytemacrophage Colony-Stimulating Factor. Clinical Cancer Research, 1, 95-103.

  7. 7. Dolcetti, L., Marigo, I., Mantelli, B., et al. (2008) Myeloid-Derived Suppressor Cell Role in Tumor-Relatied Inflammation. Cancer Letters, 267, 216-225. https://doi.org/10.1016/j.canlet.2008.03.012

  8. 8. Mabel, D. and Gabrilovich, D.I. (2015) Myeloid-Derived Suppressor Cells in the Tumor Microenvironment:Expect the Unexpected. Journal of Clinical Investigation, 125, 3356-3364. https://doi.org/10.1172/JCI80005

  9. 9. Damuzzo, V., Pinton, L., Desantis, G., et al. (2015) Complexity and Challenges in Defining Myeloid-Derived Suppressor Cells. Cytometry B Clinical Cytometry, 88, 77-91.

  10. 10. Noman, M.Z., Desantis, G., Janji, B., et al. (2014) PD-L1 Is a Novel Direct Target of HIF-1, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. Journal of Experimental Medicine, 211, 781-790. https://doi.org/10.1084/jem.20131916

  11. 11. Zhong, H., Gutkin, D.W., Han, B., et al. (2014) Origin and Pharmacological Modulation of Tumor-Associated Regulatory Dendritic Cells. International Journal of Cancer, 134, 2633-2645. https://doi.org/10.1002/ijc.28590

  12. 12. Wu, L., Du, H., Li, Y., et a1. (2011) Signal Transducer and Activator of Transcription 3(Stat3C) Promotes Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Lung Tumorigenesis. American Journal of Pathology, 179, 2131-2141. https://doi.org/10.1016/j.ajpath.2011.06.028

  13. 13. Ko, J.S., Bukowski, R.M. and Fincke, J.H. (2009) Myeloid-Derived Suppressor Cells: A Novel Therapeutic Target. Current Oncology Reports, 11, 87-93. https://doi.org/10.1007/s11912-009-0014-6

  14. 14. Huang, B., Pan, P.Y., Li, Q., et al. (2006) Gr-1 + CD115 + Immature Myeloid Suppressor Cells Mediate the Development of Tumor-Induced T Cell Anergy in Tumor-Bearing Host. Cancer Research, 66, 1123-1131. https://doi.org/10.1158/0008-5472.CAN-05-1299

  15. 15. Pages, F., Berger, A., Camus, M., et al. (2005) Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer. New England Journal of Medicine, 353, 2654-2666. https://doi.org/10.1056/NEJMoa051424

  16. 16. Yang, L., DeBusk, L.M., Fukuda, K., et al. (2004) Expansion of Myeloid Immune Suppressor Gr+ CD11b+ Cells in Tumor-Bearing Host Directly Promotes Tumor Angiogenesis. Cancer Cell, 6, 409-421. https://doi.org/10.1016/j.ccr.2004.08.031

  17. 17. Cross, S.S., Hamdy, F.C., Deloulme, J.C., et al. (2005) Expression of S100 Proteins in Normal Human Tissues and Common Cancers Using Tissue Microarrays: S100A6, S100A8, S100A9 and S100A11 Are All Overexpressed in Common Cancers. Histopathology, 46, 256-269. https://doi.org/10.1111/j.1365-2559.2005.02097.x

  18. 18. Connolly, M.K., Mallen-St Clair, J., Bedrosian, A.S., et al. (2010) Distinct Populations of Metastases-Enabling Myeloid Cells Expand in the Liver of Mice Harboring Invasive and Preinvasive Intra-Abdominal Tumor. Journal of Leukocyte Biology, 87, 713-725. https://doi.org/10.1189/jlb.0909607

  19. 19. Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., et al. (2003) Induction of FoxP3 and Acquisition of T Regulatory Activity by Stimulated Human CD4+ CD25+ T Cells. Journal of Clinical Investigation, 112, 1437-1443. https://doi.org/10.1172/JCI19441

  20. 20. Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of Regulatory T Cell Development by the Transcription Factor FOXP3. Science, 299, 1057-1061.

  21. 21. Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) FOXP3 Programs the Development and Function of CD4+ CD25+ Regulatory T Cells. Nature Immunology, 4, 330-336. https://doi.org/10.1038/ni904

  22. 22. Khattri, R., Cox, T., Yasayko, S.A., et al. (2003) An Essential Role for Scurfin in CD4+ CD25+ T Regulatory Cells. Nature Immunology, 4, 337-342. https://doi.org/10.1038/ni909

  23. 23. Gregori, S., Passerini, L. and Roncarolo, M.G. (2015) Clinical Outlook for Type-1 and Foxp3+ T Regulatory Cell-Based Therapy. Frontiers in Immunology, 6, 593. https://doi.org/10.3389/fimmu.2015.00593

  24. 24. Centuori, S.M., Trad, M., LaCasse, C.J., et al. (2012) Myeloid-Derived Suppressor Cells from Tumor-Bearing Mice Impair TGF-Beta-Induced Differentiation of CD4+ CD25+ FoxP3+ Tregs from CD4+ CD25-FoxP3-T Cells. Journal of Leukocyte Biology, 92, 987-997. https://doi.org/10.1189/jlb.0911465

  25. 25. Ji, J., Xu, J., Zhao, S., et al. (2016) Myeloid-Derived Suppressor Cells Contribute to Systemic Lupus Erythematosus by Regulating Differentiation of Th17 Cells and Treg. Clinical Science, 130, 1453-1467. https://doi.org/10.1042/CS20160311

  26. 26. O’Connor, M.A., Vella, J.L. and Green, W.R. (2016) Reciprocal Relationship of T Regulatory Cells and Monocytic Myeloid-Derived Suppressor Cells in LP-BM5 Murine Retrovirus-Induced Immunodeficiency. Journal of General Virology, 97, 509-522. https://doi.org/10.1099/jgv.0.000260

  27. 27. Jayaraman, P., Alfarano, M.G., Svider, P.F., et al. (2014) iNOS Expression in CD4+ T Cells Limits Treg Induction by Repressing TGFβ1: Combined iNOS Inhibition and Treg Depletion Unmask Endogenous Antitumor Immunity. Clinical Cancer Research, 20, 6439-6451. https://doi.org/10.1158/1078-0432.CCR-13-3409

  28. 28. Ren, J.P., Zhao, J., Dai, J., et al. (2016) Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Regulate T Cell Differentiation and Function via the STAT3 Pathway. Immunology, 148, 377-386. https://doi.org/10.1111/imm.12616

  29. 29. Wang, L., Zhao, J., Ren, J.P., et al. (2016) Expansion of Myeloid-Derived Suppressor Cells Promotes Differentiation of Regulatory T Cells in HIV-1+ Individuals. AIDS, 30, 1521-1531. https://doi.org/10.1097/QAD.0000000000001083

  30. 30. Zahorchak, A.F., Ezzelarab, M.B., Lu, L., et al. (2016) In Vivo Mobilization and Functional Characterization of Nonhuman Primate Monocytic Myeloid-Derived Suppressor Cells. American Journal of Transplantation, 16, 661-671. https://doi.org/10.1111/ajt.13454

  31. 31. Luan, Y., Mosheir, E., Menon, M.C., et al. (2013) Monocytic Myeloid-Derived Suppressor Cells Accumulate in Renal Transplant Patients and Mediate CD4+ Foxp3+ Treg Expansion. American Journal of Transplantation, 13, 3123-3131. https://doi.org/10.1111/ajt.12461

  32. 32. Wang, W., Jiao, Z., Duan, T., et al. (2015) Functional Characterization of Myeloid-Derived Suppressor Cell Subpopulations during the Development of Experimental Arthritis. European Journal of Immunology, 45, 464-473. https://doi.org/10.1002/eji.201444799

  33. 33. 沈彦伟, 高旭霞, 李晶晶, 等. 肿瘤患者化疗前后外周血NK/T及Treg细胞比例分析[J]. 中华结直肠疾病电子杂志, 2012, 1(1): 25-27.

  34. 34. 高素珍, 韩慧霞. CD4+ CD25+调节性T细胞在结直肠癌中的表达及其意义[J]. 中国癌症杂志, 2008, 18(4): 245-248.

  35. 35. Pachmann, K., Clement, J.H., Schneider, C.P., et al. (2005) Standardized Quantification of Circulating Peripheral Tumor Cells from Lung and Breast Cancer. Clinical Chemistry and Laboratory Medicine, 43, 6l7-627.

  36. 36. Gilbey, A.M., Burnett, D., Coleman, R.E., et al. (2004) The Detection of Circulating Breast Cancer Cells in Blood. Journal of Clinical Pathology, 57, 903-911. https://doi.org/10.1136/jcp.2003.013755

  37. 37. Smith, H.A. and Kang, Y. (2013) The Metastasis-Promoting Roles of Tumor-Associated Immune Cells. Journal of Molecular Medicine, 91, 411-429. https://doi.org/10.1007/s00109-013-1021-5

  38. 38. Nishikawa, H. and Sakaguchi, S. (2010) Regulatory T Cells in Tumor Immunity. International Journal of Cancer, 127, 759-767. https://doi.org/10.1002/ijc.25429

  39. 39. Sica, A., Larghi, P., Mancino, A., et al. (2008) Macrophage Polarization in Tumour Progression. Seminars in Cancer Biology, 18, 349-355. https://doi.org/10.1016/j.semcancer.2008.03.004

  40. 40. Shurin, M.R., Naiditch, H., Zhong, H., et al. (2011) Regulatory Dendritic Cells: New Targets for Cancer Immunotherapy. Cancer Biology & Therapy, 11, 988-992. https://doi.org/10.4161/cbt.11.11.15543

  41. 41. Gabrilovich, D.I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated Regulation of Myeloid Cells by Tumours. Nature Reviews Immunology, 12, 253-268. https://doi.org/10.1038/nri3175

  42. 42. Choi, J., Suh, B., Ahn, Y.O., et al. (2012) CD15+/CD16low Human Granulocytes from Terminal Cancer Patients: Granulocytic Myeloid-Derived Suppressor Cells That Have Suppressive Function. Tumor Biology, 33, 121-129. https://doi.org/10.1007/s13277-011-0254-6

  43. 43. Li, H., Han, Y., Guo, Q., et al. (2009) Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Energy of NK Cells through Membrane-Bound TGF-beta1. The Journal of Immunology, 182, 240-249. https://doi.org/10.4049/jimmunol.182.1.240

  44. 44. Talmadge, J.E. and Gabrilovich, D.I. (2013) History of Myeloid-Derived Suppressor Cells. Nature Reviews Cancer, 13, 739-752. https://doi.org/10.1038/nrc3581

  45. 45. Ostrand-Rosenberg, S., Sinha, P., Beury, D.W., et al. (2012) Cross-Talk between Myeloid-Derived Suppressor Cells (MDSC), Macrophages, and Dendritic Cells Enhances Tumor-Induced Immune Suppression. Seminars in Cancer Biology, 22, 275-281. https://doi.org/10.1016/j.semcancer.2012.01.011

  46. 46. Creighton, C.J., Chang, J.C. and Rosen, J.M. (2010) Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253-260. https://doi.org/10.1007/s10911-010-9173-1

  47. 47. Toh, B., Wang, X., Keeble, J., et al. (2011) Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor. PLOS Biology, 9, e1001162. https://doi.org/10.1371/journal.pbio.1001162

  48. 48. Guedez, L., Jensen Taubman, S., Bourboulia, D., et al. (2012) TIMP-2 Targets Tumor-Associated Myeloid Suppressor Cells with Effects in Cancer Immune Dysfunction and Angiogenesis. Journal of Immunotherapy, 35, 502-512. https://doi.org/10.1097/CJI.0b013e3182619c8e

  49. 49. Kumar, V., Patel, S., Tcyganov, E., et al. (2016) The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 37, 208-220. https://doi.org/10.1016/j.it.2016.01.004

  50. 50. Panni, R.Z., Sanford, D.E., Belt, B.A., et al. (2014) Tumor-Induced STAT3 Activation in Onocytic Myeloid-Derived Suppressor Cells Enhances Stemness and Mesenchymal Properties in Human Pancreatic Cancer. Cancer Immunology, Immunotherapy, 63, 513-528. https://doi.org/10.1007/s00262-014-1527-x

  51. 51. Qian, B.Z., Li, J., Zhang, H., et al. (2011) CCL2 Recruits Inflammatory Monocytes to Facilitate Breast-Tumour Metastasis. Nature, 475, 222-225. https://doi.org/10.1038/nature10138

  52. 52. Zhao, X., Rong, L., Zhao, X., et al. (2012) TNF Signaling Drives Myeloid-Derived Suppressor Cell Accumulation. Journal of Clinical Investigation, 122, 4094-4104. https://doi.org/10.1172/JCI64115

  53. 53. Corzo, C.A., Condamine, T., Lu, L., et al. (2010) HIF-1α Regulates Function and Differentiation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. The Journal of Experimental Medicine, 207, 2439-2453. https://doi.org/10.1084/jem.20100587

  54. 54. Haile, L.A., Greten, T.F. and Korangy, F. (2012) Immune Suppression: The Hallmark of Myeloid Derived Suppressor Cells. Immunological Investigations, 41, 581-594. https://doi.org/10.3109/08820139.2012.680635

  55. 55. Bates, R.C., Pursell, B.M. and Mercurio, A.M. (2007) Epithelial-Mesenchymal Transition and Colorectal Cancer: Gaining Insights into Tumor Progression Using LIM 1863 Cells. Cells Tissues Organs, 185, 29-39.

  56. 56. Hayward, I.P., Whitehead, R.H., Ward, L., et al. (1995) Effect of TGF-β on Differentiated Organoids of the Colon Carcinoma Cell Line LIM 1863. Immunology & Cell Biology, 73, 249-257. https://doi.org/10.1038/icb.1995.41

  57. 57. Bates, R.C. and Mercurio, A.M. (2003) Tumor Necrosis Factor-Alpha Stimulates the Epithelial-to-Mesenchymal Transition of Human Colonic Organoids. Molecular Biology of the Cell, 14, 1790-1800. https://doi.org/10.1091/mbc.e02-09-0583

期刊菜单