Advances in Clinical Medicine
Vol. 09  No. 11 ( 2019 ), Article ID: 32943 , 6 pages
10.12677/ACM.2019.911194

PCSK9 Monoclonal Antibody: 12 Years, from Basic Research to Clinical Application

Hangying Ying*, Jiacheng Wang, Binquan Zhou#

Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang, Department of Cardiology, Sir Run Run Shaw Hospital Affiliated with Zhejiang University, Hangzhou Zhejiang

Received: Oct. 25th, 2019; accepted: Nov. 7th, 2019; published: Nov. 14th, 2019

ABSTRACT

PCSK9, subfamily of Proprotein convertase subtilisin, is a serine protease synthesized by the liver and responsible for regulating the activity of proteins. A recent study on murine founded that overexpression of PCSK9 led to the decrease in LDL-R (low-density lipoprotein receptor) and an increase in LDL-C (low-density lipoprotein cholesterol). Another experiment in human suggested that deficiency PCSK9 reduced LDL-C level. Since dyslipidemia and atherosclerosis are major risk factors for ischemic cardiovascular diseases, PCSK9 inhibitors rapidly become a new hotspot of blood lipid management. Antibodies applied clinically are Alirocumab, Evolocumab and Bococizumab. Despite the great potential in clinical lipid control, there are still side effects (e.g. cognitive function impairment and plasma glucose fluctuation) that cannot be ignored. In this review, the mechanism, clinical transformation, side effects and clinical prospect of PCSK9 were summarized.

Keywords:PCSK9 Inhibitor, Alirocumab, Evolocumab

PCSK9单克隆抗体:12年,从基础研究 到临床应用

应航鹰*,王嘉程,周斌全#

浙江大学附属邵逸夫医院心内科,浙江省心血管介入与再生修复研究重点实验室,浙江 杭州

收稿日期:2019年10月25日;录用日期:2019年11月7日;发布日期:2019年11月14日

摘 要

PCSK9是一种属于枯草杆菌蛋白酶亚族,由肝脏合成并负责调控蛋白质活性的丝氨酸蛋白酶。有研究发现,鼠科动物实验中PCSK9过表达能引起LDL-R (低密度脂蛋白受体)减少,LDL-C (低密度脂蛋白胆固醇)升高,同时人群中PCSK9功能缺失突变降低LDL-C水平。而血脂异常和动脉粥样硬化是缺血性的心血管疾病的主要危险因素。因此,PCSK9抑制剂迅速成为血脂管理的新热点。目前,临床应用较多的单抗主要有Alirocumab (阿利西尤单抗)、Evolocumab (依洛尤单抗)和Bococizumab。虽然PCSK9在临床血脂控制上有很大的潜力,但仍存在影响认知功能及血糖波动无法忽视的等副作用。本文完整地归纳总结了PCSK9的作用机制、临床转化、临床副作用及临床展望。

关键词 :PCSK9抑制剂,阿利西尤单抗,依洛尤单抗

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. PCSK9的定义及作用机制

PCSK9是一种属于枯草杆菌蛋白酶亚族,由肝脏合成并负责调控蛋白质活性的丝氨酸蛋白酶。在被发现具有调节血脂稳态的作用之前,PCSK9被认为是神经凋亡调节转化酶-1 (NARC-1) [1]。有研究发现,动物实验中PCSK9过表达引起LDL-R (低密度脂蛋白受体)减少,LDL-C (低密度脂蛋白胆固醇)升高 [2],同时人群中PCSK9功能缺失突变降低LDL-C水平 [3]。一项临床前研究发现,PCSK9功能缺失的患者LDL-C降低28%,冠心病风险降低88% [4]。2012年,新英格兰杂志报道了3个临床I期试验,证实了PCSK9单克隆抗体可以显著降低健康志愿者和家族性高胆固醇血症受试者的LDL-C [5];PCSK9迅速成为降低LDL-C,调节血脂稳态的新靶点。

对于血脂的调节,过往的研究都认为胆固醇稳态的调节系统全部都发生在细胞内 [6],细胞外蛋白所起的作用仅限于血浆脂蛋白的分装,加工及其清除。而PCSK9的作用靶点突破了以往的观点。PCSK9可以作为分子伴侣在细胞外产生效应 [7],同时影响细胞内(分泌前)及细胞外(分泌到循环后)的脂蛋白代谢 [8]。在细胞内,PCSK9前体蛋白在细胞内质网自发催化裂解,产生结合亚基和催化亚基,结合亚基使催化亚基酶失活并在分泌时起结合蛋白的作用。在细胞外,PCSK9分子通过催化亚基与LDL受体结合,其C-末端亚基可以作为分子伴侣发挥内吞作用,介导PCSK9-LDLR-LDL复合物运输至溶酶体进行降解 [9]。而当外界PCSK9分子浓度下降或在酸性环境中,内体中LDLR-LDL复合物解离,LDLR循环回到细胞表面 [10]。

2. PCSK9的临床转化

PCSK9是肝脏合成的分泌型丝氨酸蛋白酶,可与LDLR结合并使其降解,从而减少LDLR对血清LDL-C的清除。以PCSK9为靶点的药物主要可分为两大类:一、阻止PCSK9与LDL-R的结合(单克隆抗体、模拟肽、模拟抗体蛋白药);二、通过抑制PCSK9分子的表达及干扰PCSK9分泌使PCSK9分子的合成受到抑制(反义寡核苷酸、小分子干扰RNA、小分子抑制剂) [11]。临床上,PSCK9分子的单克隆抗体自2009问世以来就得到迅猛的发展,多种单克隆抗体迅速通过临床研究并得已批准上市。目前,临床应用较多的单抗主要有Alirocumab (阿利西尤单抗)、Evolocumab (依洛尤单抗)和Bococizumab。

2.1. Alirocumab (REGN727/SAR236553,阿利西尤单抗)

Alirocumab是2015年首个被美国食品药品管理局(FDA)批准上市的人源性PCSK9的单克隆抗体,主要适用于杂合子家族性高胆固醇血症或作为他汀类药物不能有效控制LDL-C的心血管高危风险患者的辅助治疗。Alirocumab是一个145 kDa的大分子,在皮下注射后3~7小时内达到最大血药浓度,4~8小时内发挥最大的生物抑制作用。Alirocumab的作用呈现剂量依赖性,其生物利用度约为85%,半衰期约为17~20天 [12]。Alirocumab初始I期临床试验中参与者耐受良好,在LDL > 2.6 mmol/L的健康志愿者中,可平均降低65%的LDL-C,高剂量药物维持时间可达30天以上 [5]。进一步I期多剂量研究显示出了Alirocumab降低LDL-C呈剂量依赖性,随着皮下药物注射剂量的增加(50、100或150 mg),药物组较安慰剂组LDL-C水平分别降低39%,54%和61% [5]。Alirocumab的II期临床实验首先对比了5种不同剂量(每两周50、100、150 mg或每四周200、300 mg) Alirocumab与安慰剂在原先长期接受阿托伐他汀治疗的原发性高胆固醇血症患者的疗效,治疗持续12周 [13]。12周后,2周疗法(50, 100, 150 mg)参与者的LDL-C较基线下降40%~72%,4周疗法(200, 300 mg)前两周LDL-C可分别较基线下降67%和70%,但在接下来两周LDL-C回升,只较基线下降39%和53%。因此,相比4周疗法,两周疗法一次皮下注射的疗法可能会产生更好的临床效果,并且是更有效血脂控制方案;该研究同时评估了杂合基因的家族性高胆固醇血症参与者在使用他汀类药物时使用累增剂量Alirocumab的降脂安全性和有效性 [14]。对于Alirocumab的III期临床试验,ODYSSEY项目汇集了14项临床III期试验来评估Alirocumab在各种人群中和临床条件的安全性和有效性,该项目显示发生过急性冠脉综合征患者2.8年的随访期中,Alirocumab联合他汀药物强化降脂治疗可以减少1型和2型心肌梗死的再发。对于1型心肌梗死,降脂治疗益处会随着时间逐渐增加;同时项目数据首次表明表示降脂治疗可以降低2型心肌梗死的风险 [15]。

2.2. Evolocumab (AMG 145,依洛尤单抗)

Evolocumab作为2015年首个被欧洲药物管理局(EMA)批准上市的PCSK9人源性IgG2单克隆抗体,主要适用于12岁及以上的纯合子家族性高胆固醇血症及成人原发性高胆固醇血症。Evolocumab通过皮下注射给药,并在4小时内最大程度地抑制未结合PCSK9在血液的循环。Eoolocumab的血清浓度在3-4天内达到峰值,生物利用度约为72% [16]。Evolocumab主要通过与PCSK9的结合而消除,而在更高浓度的情况下,通过不饱和蛋白而消除。Evolocumab的半衰期约为11~17天 [17]。更重要的是,evolocumab是一个144 kDa的大分子,透过血脑屏障的可能性很小,多项荟萃分析也未发现对神经系统的不利影响 [18]。在2017年3月,FOURIER临床试验结果发布,该实验随机将27,564名患有冠状动脉粥样硬化心血管且LDL-C > 70 mg/dl (1.8 mmol/L)患者被随机分配接受evolocumab (每2周140 mg或每月420 mg)或相应的安慰剂皮下注射。主要疗效观察终点是心血管死亡,心肌梗塞,中风,不稳定型心绞痛住院或需要冠脉血运重建的情况的出现;次要疗效终点是心血管死亡,心肌梗塞或中风症状的出现。中位随访时间为48周 [19]。治疗48周后,evolocumab组患者的LDL-C中位数为30 mg/dL (IQR 19-46)。evolocumab患者中87%的患者LDC-C降至70 mg/dL (1.8 mmol/L)以下,67%的患者降至40 mg/dL (1.0 mmol/L),42%的患者甚至达到25 mg/dL (0.65 mmol/L),而在安慰剂组,只有分别18%,0.5%和少于0.1%的患者达到了同样的LDL-C水平。在该事件驱动的试验中,随访的中位时间为26个月(IQR 22~30)。总体而言,与安慰剂相比,埃洛韦单抗联合背景他汀类药物治疗可显着降低主要终点风险(9.8%比11.3%,HR 0.85,95% CI 0.79~0.92; P < 0.001)。主要终点之间的组间差异是由于心肌梗塞(3.4% vs 4.6%, HR 0.73, 95% CI 0.65~0.82; P < 0.001),中风(1.5% vs 1.9%, HR 0.79)显着降低;95% CI 0.66~0.95;P < 0.01)和冠脉血运重建(5.5% vs 7.0%, HR 0.78, 95% CI 0.71~0.86; P < 0.001)。心血管疾病死亡,任何原因导致的死亡或不稳定型心绞痛的住院治疗均无显着差异,各子组的事件减少量相似。重要的是,evolocumab和安慰剂之间导致药物停用的不良事件没有显著差异(1.6%比1.5%)。evolocumab组的注射部位反应稍常见(2.1%比1.6%),但总体上很少发生。两组之间神经认知事件和新发糖尿病的风险没有显着差异。对于每年超过60,000患者evolocumab治疗者,只有3例具有抗药物抗体的患者,同时没有1例患者是中和抗体 [19]。GLAGOV临床试验评估PCSK9抑制剂Evolocumab。

2.3. Bococizumab (RN316/PF04950615)

Bococizumab是另一种直接抑制PCSK9的人源性单克隆抗体。在已经结束的四项I期临床试验中,每2周150 mg的静脉或皮下注射的治疗剂量可将LDL-C降低多达54%,并且无明显不良反应发生 [20]。II期临床试验中,Bococizumab安全有效地降低了大剂量他汀治疗无法控制的高胆固醇血症受试者 [21]。然而,与Alirocumab和Evolocumab不同的是,Bococizumab并不非完全人源性的单克隆抗体,在抗原结合互补决定簇仍保留了3%鼠序列,因此更容易产生耐药抗体导致药物失效 [22]。在III期临床试验SPIRE-1与SPIRE-2中,Bococizumab联合他汀用药时,最多可使LDL-C下降60%,但由于耐药抗体的出现,10%~15%接受Bococizumab治疗的受试者的LDL-C下降水平会随着时间而减弱;同时即使在没有出现耐药抗体的受试者中,LDL-C水平降低也存在着广泛的个体差异 [23];因此辉瑞公司终止了对Bococizumab的继续研发。

3. PCSK9单克隆抗体的副作用

对于PCSK9单克隆抗体,临床严重的不良反应极少,最常见不良反应是局部注射反应,与安慰剂组相比,Alirocumab组较典型的不良反应分别为:局部注射部位反应(7.2% vs 5.1%),流感(5.7% vs 4.6%),上呼吸道感染(3.1% vs 2.4%),肌肉疼痛(4.2% vs 3.4%) [24];而在Evolocumab临床试验中,Evolocumab与安慰剂组主要不良事件的对比分别为:局部注射部位反应(5.7% vs 5.0%),流感(7.5% vs 6.3%),上呼吸道感染(9.3% vs 6.3%),肌肉疼痛(4.0% vs 3.0%) [25]。

尽管PCSK9单克隆抗体在血脂控制方面显示出了较大的优势,但是PCSK单克隆抗体在极少发生的神经认知不良反应及对于阿尔兹海默病病程的发展仍值得探究。PCSK9最早被发现是作为神经凋亡转化酶-1(NARC-1) [1],PCSK9可能通过神经细胞BACE1 (β-淀粉样蛋白前体蛋白裂解酶1)的降解减少β-淀粉样蛋白Aβ (β-淀粉样蛋白)生成,从而减少神经细胞凋亡和预防阿尔兹海默症的发生 [26]。认知能力下降可能也是因为可溶性Aβ在脑毛细血管和动脉壁沉积所致,同时单克隆抗体和PCSK9之间形成免疫复合物还可以加重这一过程 [12]。在接受alirocumab治疗的受试者中,神经认知不良事件的发生率为0.8%,而在安慰剂治疗组中为0.7%。Alirocumab治疗导致0.2%的患者记忆力减退和混乱,而在安慰剂组中这些副作用的发生率未达到0.1% [24];同时其他临床试验,不到1%的Evolocumab受试者也报告了诸如健忘及精神障碍等神经认知不良反应 [27]。虽然PCSK9和阿尔兹海默症的联系还存在着广泛的争议,但现阶段没有进一步的临床试验和荟萃分析揭示两者间的关系 [28],对于神经方面的副作用,我们仍需保持关注。

4. PCSK9的发展展望

自从第一个他汀类药物1987年获批上市30余年以来,降低LDL-C一直是预防心血管疾病的最有效方法。大量的临床试验和医学指南也告诉我们,他汀类药物仍是血脂管理的首选药物。然而,临床上面临着越来越多他汀不耐受或药物控制LDL-C水平不佳的情况。PCSK9作为降脂作用靶点,从基因的发现,功能的研究,药物的面世只用了12年。就临床开发而言,单克隆抗体是目前发展最完善的抑制PCSK的手段。基于大规模临床实验显示出的结果和数据,PCSK9单克隆抗体可以作为他汀药物治疗的有效补充。与此同时,我们也要认识到PCSK9在临床血脂控制虽然有很大的潜力,但类似影响神经认知功能及血糖波动等副作用仍需我们警惕。同时昂贵的价格也限制了PCSK9单克隆抗体在临床上的应用,因此需要进一步的临床试验和效价模型分析以阐明PCSK9单克隆抗体的价值。

致谢

该工作收到浙江省自然科学基金资助,编号:LY16H020008。

文章引用

应航鹰,王嘉程,周斌全. PCSK9单克隆抗体:12年,从基础研究到临床应用
PCSK9 Monoclonal Antibody: 12 Years, from Basic Research to Clinical Application[J]. 临床医学进展, 2019, 09(11): 1255-1260. https://doi.org/10.12677/ACM.2019.911194

参考文献

  1. 1. Seidah, N.G., et al. (2003) The Secretory Proprotein Convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): Liver Regeneration and Neuronal Differentiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 928-933. https://doi.org/10.1073/pnas.0335507100

  2. 2. Benjannet, S., et al. (2004) NARC-1/PCSK9 and Its Natural Mutants: Zymogen Cleavage and Effects on the Low Density Lipoprotein (LDL) Re-ceptor and LDL Cholesterol. The Journal of Biological Chemistry, 279, 48865-48875. https://doi.org/10.1074/jbc.M409699200

  3. 3. Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K. and Hobbs, H.H. (2005) Low LDL Cholesterol in Individuals of African Descent Resulting from Frequent Nonsense Mutations in PCSK9. Nature Genetics, 37, 161-165. https://doi.org/10.1038/ng1509

  4. 4. Hobbs, H.H. (2011) Sequence Variations in PCSK9, Low LDL, and Protec-tion against Coronary Heart Disease. The New England Journal of Medicine, 354, 1264-1272.

  5. 5. Stein, E.A., et al. (2012) Effect of a Monoclonal Antibody to PCSK9 on LDL Cholesterol. The New England Journal of Medicine, 366, 1108-1118. https://doi.org/10.1056/NEJMoa1105803

  6. 6. Goldstein, J. and Grown, M.S. (1997) The Srebp Pathway: Regulation of Cholesterol and Fatty Acid Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. The FASEB Journal, 11, 331-340. https://doi.org/10.1016/S0092-8674(00)80213-5

  7. 7. Horton, J.D., Cohen, J.C. and Hobbs, H.H. (2009) PCSK9: A Convertase That Coordinates LDL Catabolism. The Journal of Lipid Research, 50, S172-S177. https://doi.org/10.1194/jlr.R800091-JLR200

  8. 8. Poirier, S., et al. (2008) The Proprotein Convertase PCSK9 In-duces the Degradation of Low Density Lipoprotein Receptor (LDLR) and Its Closest Family Members VLDLR and ApoER2. The Journal of Biological Chemistry, 283, 2363-2372. https://doi.org/10.1074/jbc.M708098200

  9. 9. Pitts, R.N. and Eckel, R.H. (2014) The Emerging Role of PCSK9 Inhibitors in Preventive Cardiology. European Cardiology Review, 9, 65-70. https://doi.org/10.15420/ecr.2014.9.2.65

  10. 10. Lo Surdo, P., et al. (2011) Mechanistic Implications for LDL Recep-tor Degradation from the PCSK9/LDLR Structure at Neutral pH. EMBO Reports, 12, 1300-1305. https://doi.org/10.1038/embor.2011.205

  11. 11. Catapano, A.L. and Papadopoulos, N. (2013) The Safety of Thera-peutic Monoclonal Antibodies: Implications for Cardiovascular Disease and Targeting the PCSK9 Pathway. Atheroscle-rosis, 228, 18-28. https://doi.org/10.1016/j.atherosclerosis.2013.01.044

  12. 12. He, N.Y., et al. (2017) Lowering Serum Lipids via PCSK9-Targeting Drugs: Current Advances and Future Perspectives. Acta Pharmacologica Sinica, 38, 301-311. https://doi.org/10.1038/aps.2016.134

  13. 13. McKenney, J.M., Koren, M.J., Kereiakes, D.J., Hanotin, C., Ferrand, A.C. and Stein, E.A. (2012) Safety and Efficacy of a Monoclonal Antibody to Proprotein Convertase Subtilisin/Kexin Type 9 Serine Protease, SAR236553/REGN727, in Patients with Primary Hypercholesterolemia Receiving Ongoing Sta-ble Atorvastatin Therapy. Journal of the American College of Cardiology, 59, 2344-2353. https://doi.org/10.1016/j.jacc.2012.03.007

  14. 14. Stein, E.A., et al. (2012) Effect of a Monoclonal Antibody to PCSK9, REGN727/SAR236553, to Reduce Low-Density Lipoprotein Cholesterol in Patients with Heterozygous Famili-al Hypercholesterolaemia on Stable Statin Dose with or without Ezetimibe Therapy: A Phase 2 Randomised Controlle. The Lancet, 380, 29-36. https://doi.org/10.1016/S0140-6736(12)60771-5

  15. 15. White, H.D., et al. (2019) Effects of Alirocumab on Types of Myocardial Infarction: Insights from the ODYSSEY OUTCOMES Trial. European Heart Journal, 40, 2801-2809. https://doi.org/10.1093/eurheartj/ehz299

  16. 16. Cicero, A.F.G., Tartagni, E. and Ertek, S. (2014) Efficacy and Safety Profile of Evolocumab (AMG145), an Injectable Inhibitor of the Proprotein Convertase Subtilisin/Kexin Type 9: The Available Clinical Evidence. Expert Opinion on Biological Therapy, 14, 863-868. https://doi.org/10.1517/14712598.2014.902929

  17. 17. Dixon, D.L., Buckley, L.F., Trankle, C.R., Kadariya, D. and Abbate, A. (2017) Clinical Utility of Evolocumab in the Management of Hyperlipidemia: Patient Selection and Fol-low-Up. Drug Design, Development and Therapy, 11, 2121-2129. https://doi.org/10.2147/DDDT.S114091

  18. 18. Khan, A.R., et al. (2017) Increased Risk of Adverse Neurocognitive Outcomes with Proprotein Convertase Subtilisin-Kexin Type 9 Inhibitors. Circulation: Cardiovascular Quality and Outcomes, 10, e003153. https://doi.org/10.1161/CIRCOUTCOMES.116.003153

  19. 19. Sabatine, M.S., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. The New England Journal of Medicine, 376, 1713-1722. https://doi.org/10.1056/NEJMoa1615664

  20. 20. Ling, H., Burns, T.L. and Hilleman, D.E. (2014) An Update on the Clinical Development of Proprotein Convertase Subtilisin Kexin 9 Inhibitors, Novel Therapeutic Agents for Lowering Low-Density Lipoprotein Cholesterol. Cardiovascular Therapeutics, 32, 82-88. https://doi.org/10.1111/1755-5922.12056

  21. 21. Fazio, S., et al. (2018) Effects of 12 Weeks of Treatment with Intra-venously Administered Bococizumab, a Humanized Monoclonal Antibody Blocking Proprotein Convertase Subtil-isin/Kexin Type 9, in Hypercholesterolemic Subjects on High-Dose Statin. Cardiovascular Therapeutics, 36, 1-9. https://doi.org/10.1111/1755-5922.12308

  22. 22. Foltz, I.N., Karow, M. and Wasserman, S.M. (2013) Evolution and Emergence of Therapeutic Monoclonal Antibodies what Cardiologists Need to Know. Circulation, 127, 2222-2230. https://doi.org/10.1161/CIRCULATIONAHA.113.002033

  23. 23. Ridker, P.M., et al. (2017) Lipid-Reduction Varia-bility and Antidrug-Antibody Formation with Bococizumab. The New England Journal of Medicine, 376, 1517-1526. https://doi.org/10.1056/NEJMoa1614062

  24. 24. Dahagam, C., et al. (2016) PCSK9 Inhibitors and Their Role in High-Risk Patients in Reducing LDL Cholesterol Levels: Alirocumab. Future Cardiology, 12, 149-157. https://doi.org/10.2217/fca.15.88

  25. 25. Strilchuck, L., Fogacci, F. and Cicero, A.F. (2019) Safety and Tolerability of Injectable Lipid-Lowering Drugs: An Update of Clinical Data. Expert Opinion on Drug Safety, 18, 611-621. https://doi.org/10.1080/14740338.2019.1620730

  26. 26. Liu, M., et al. (2010) PCSK9 Is Not Involved in the Degra-dation of LDL Receptors and BACE1 in the Adult Mouse Brain. The Journal of Lipid Research, 51, 2611-2618. https://doi.org/10.1194/jlr.M006635

  27. 27. Koren, M.J., et al. (2014) Efficacy and Safety of Longer-Term Admin-istration of Evolocumab (AMG 145) in Patients with Hypercholesterolemia: 52-Week Results from the Open-Label Study of Long-Term Evaluation against LDL-C (OSLER) Randomized Trial. Circulation, 129, 234-243. https://doi.org/10.1161/CIRCULATIONAHA.113.007012

  28. 28. Adorni, M.P., Ruscica, M., Ferri, N., Bernini, F. and Zimetti, F. (2019) Proprotein Convertase Subtilisin/Kexin Type 9, Brain Cholesterol Homeostasis and Potential Im-plication for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 11, 120. https://doi.org/10.3389/fnagi.2019.00120

期刊菜单