﻿ FSC赛车轮辋轻量化设计 Lightweight Design of Formula Racing Rims

Mechanical Engineering and Technology
Vol.04 No.03(2015), Article ID:16124,6 pages
10.12677/MET.2015.43024

Lightweight Design of Formula Racing Rims

Pucai Ning, Chuanchang Li, Wei Xu, Yanan Ding, Mengchen Hu

College of Automotive Engineering, Shanghai University of Engineering Science, Shanghai

Email: 1149208692@qq.com

Received: Sep. 10th, 2015; accepted: Sep. 23rd, 2015; published: Sep. 30th, 2015

ABSTRACT

According to FSC racing design rules, the wheel rim is used to be the object in this paper. The three-dimensional modeling software UG has been used to complete 3D geometric modeling of wheels. The analysis software ANSYS has been used to establish nonlinear finite element model of the impact block and aluminum rims. The impact parameters of the block and the rim are analyzed. Finally, according to analyzed results, the lightweight design for rim has been carried out. The study can provide theoretical support for racing rim design.

Keywords:Alloy Wheels, Impact Test, Lightweight

FSC赛车轮辋轻量化设计

Email: 1149208692@qq.com

1. 赛车轮辋轻量化的意义

2. 轮辋结构及选用材料

3. 轮辋冲击试验

Figure 1. FSC racing wheel rim

3.1. 材料属性定义

3.2. 冲击载荷确定

3.3. 冲击块运动数值模拟结果及分析

Table 1. The relevant parameters of material properties

Figure 2. Displacement curve of impact block Z-direction

Figure 3. Velocity curve of impact block Z-direction

Figure 4. Acceleration curve of impact block Z-direction

3.4. 冲击效果仿真及应力分析

Figure 5. Impact stress map of rim edge at the zeroth millisecond

Figure 6. Impact stress map of rim edge at the third millisecond

Figure 7. Impact stress map of rim edge at the twelfth millisecond

4. 轮辋的改进

4.1. 改进方法

Figure 8. Impact stress map of rim edge at the twenty-fourth millisecond

Figure 9. Analysis of ANSYS optimizing area

(a) (b)

Figure 10. Comparison of wheel rim quality lightweight: (a) Quality before improved; (b) Quality after improved

4.2. 改进结果

5. 总结

Lightweight Design of Formula Racing Rims. 机械工程与技术,03,218-224. doi: 10.12677/MET.2015.43024

1. 1. 单辉祖 (2009) 材料力学(1)第三版. 高等教育出版社, 北京.

2. 2. 张响, 童水光 (2008) 铝合金车轮弯曲试验疲劳寿命预测研究. 机械强度, 4, 673-677.

3. 3. 王永山, 王斌 (2013) 铝合金轮毂有限元分析及轻量化设计. 汽车工程师, 4, 32-33.

4. 4. 王良模, 陈玉发, 王晨志, 等 (2009) 铝合金车轮弯曲疲劳寿命的仿真分析与试验研究. 南京理工大学学报(自然科学版), 5, 571-575.

5. 5. 权高峰, 刘绍东 (2012) 超塑性模锻镁合金汽车轮毂应用研究. 兵器材料科学与工程, 4, 23-26.

6. 6. Atzori, B., Meneghetti, G. and Susmel, L. (2004) Fatigue behaviour of AA356-T6 cast aluminium alloy weakened by cracks and notches. Engineering Fracture Mechanics, 71, 759-768. http://dx.doi.org/10.1016/S0013-7944(03)00036-5

7. 7. Berg-Pollack, A., Voellmecke, F.-J. and Sonsino, C.M. (2011) Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels. International Journal of Fatigue, 33, 513-518. http://dx.doi.org/10.1016/j.ijfatigue.2010.09.017

8. 8. Chang, C.-L. and Yang, S.-H. (2009) Simulation of wheel impact test using finite element method. Engineering Failure Analysis, 16, 1711-1719.