﻿ 运载火箭整流罩对接桁组件铆接变形有限元分析 Finite Element Analysis of Riveting Deformation of Docking Stringer Assembly of Launch Vehicle Fairing

Mechanical Engineering and Technology
Vol. 08  No. 03 ( 2019 ), Article ID: 30683 , 9 pages
10.12677/MET.2019.83026

Finite Element Analysis of Riveting Deformation of Docking Stringer Assembly of Launch Vehicle Fairing

Guangcai Xiao, Shining Li, Lili Gao, Biao Wang, Wei Zhang

Capital Aerospace Machinery Corporation Limited, Beijing

Received: May 19th, 2019; accepted: June 3rd, 2019; published: June 10th, 2019

ABSTRACT

The docking stringer assembly is an important part of the launch vehicle fairing, which involves the separation of the fairing, which is related to the success or failure of the rocket launch. By using ANSYS/LS-DYNA software and combining with the actual riveting process, this paper carried out the finite element analysis of the double-sided countersunk riveting process of the docking stringer, obtained the deformation mechanism of the riveting deformation process of the docking stringer assembly and the deformation law of the process of the hammer riveting and servo rivet riveting. By analyzing the deformation results under different working conditions, it is obtained the process parameters with the minimal riveting deformation of the docking stringer assembly.

Keywords:The Docking Stringer Assembly, Riveting, Finite Element Analysis, Minimal Riveting Deformation, Process Parameters

1. 引言

Figure 1. Diagram of assembly docking stringer

2. 对接桁组件铆接变形有限元分析过程及方案

2.1. 对接桁组件铆接变形模型的建立

Figure 2. Finite element analysis model of docking riveting

Table 1. Material properties of rivet and riveted parts

Figure 3. Finite element analysis mesh model for double-sided countersunk riveting

2.2. 铆接工况的划分

Table 2. Finite element deformation analysis of pressure riveting process

3. 对接桁双面埋头铆接成形机理

1) 初始阶段

Figure 4. End of initial phase state

2) 钉杆镦粗阶段

Figure 5. Status diagram of nail rod upsetting

Figure 6. Enlarged picture of nail rod root’s interval

3) 镦头成形阶段

Figure 7. Partial picture of finite element of upsetting state

Figure 8. Practical picture of local upset head depression

4) 压铆回弹阶段

Figure 9. Spring-back stage of initial riveting state

Figure 10. The final state of riveting rebound stage

4. 对接桁铆接变形有限元分析结果

4.1. 铆钉孔周围变形分析

Figure 11. Shifting displacement curve

4.2. 双面埋头铆接变形分析结果

Figure 12. Z direction displacement curve cloud chart of status 1-1

Figure 13. Z direction displacement curve cloud chart of status 2-1

Table 3. Maximum strain and Z-direction displacement of riveted parts 2 under different working conditions

5. 结束语

1) 在相同工况下，对接桁压铆铆接的变形量要小于锤击铆接的变形量，且压铆铆接过程变形过程较为稳定；

2) 根据铆接变形有限元分析的结果，认为当铆钉长度L为6 mm、划窝深度k2为0.8 mm、铆接方式为伺服压铆时，此时铆接变形最小，最大的应变节点发生在铆钉孔附近，Z向最大位移发生在铆接件2四周边缘。

Finite Element Analysis of Riveting Deformation of Docking Stringer Assembly of Launch Vehicle Fairing[J]. 机械工程与技术, 2019, 08(03): 202-210. https://doi.org/10.12677/MET.2019.83026

1. 1. 李艳, 于克杰, 李小雷. 铆钉材料对铆接变形影响的有限元分析[J]. 机床与液压, 2013, 41(4): 50-52.

2. 2. 刘平, 张开富. 铆接变形及其有限元分析[J]. 航天制造技术, 2008(22): 94-97.

3. 3. 冯伟干, 张建华, 朱元夫. 圆筒形铆接结构中铆钉的数值模拟[J]. 强度与环境, 2010, 37(1): 30-34.

4. 4. Pan, M.-H., Tang, W.-C., Xing, Y. and Ni, J. (2018) Numerical Simulation Analysis for Deformation Deviation and Experimental Verification for an Antenna Thin-Wall Parts Considering Riveting Assembly with Finite Element Method. Journal of Central South University, 25, 60-67. https://doi.org/10.1007/s11771-018-3717-8

5. 5. 殷俊清. 航空薄壁件铆接变性分析及预测研究[D]: [博士学位论文]. 西安: 西北工业大学, 2015.

6. 6. 冯晓旻, 谢兰生. 铆接变形的有限元分析[J]. 机械制造与自动化, 2009, 38(2): 62-64.