Botanical Research
Vol. 09  No. 06 ( 2020 ), Article ID: 38924 , 12 pages
10.12677/BR.2020.96069

柑橘主要采后真菌病害及拮抗酵母的应用研究进展

刘书琪,张德遥,杨凡,赵娟,王澜,龙超安*

华中农业大学,国家柑橘保鲜技术研发专业中心,园艺植物生物学教育部重点实验室,湖北 武汉

收稿日期:2020年10月21日;录用日期:2020年11月23日;发布日期:2020年11月30日

摘要

柑橘绿霉病、酸腐病是最主要的柑橘采后真菌性病害,造成大量的腐烂损失,严重制约柑橘产业的发展。为了有效的防治措施提供基础,本文阐述了柑橘采后绿霉病、酸腐病的发病情况和影响因素。目前柑橘釆后病害主要防控是使用化学杀菌剂,但是它的使用产生诸多不良的影响(如化学残留对环境和人体的危害,抗药性菌株的产生等),因此寻找安全有效的防控柑橘采后病害的方法至关重要。生物防治对柑橘采后病害防治具有重要意义,本文重点介绍了安全有效的拮抗酵母菌对这两种病原真菌的防控机制及应用方法,并阐明了拮抗酵母菌与其他抑菌方法相结合来提高拮抗效力,最后对拮抗酵母菌的应用前景进行展望。

关键词

柑橘,绿霉病,酸腐病,生物防治,拮抗酵母菌

Research Progress on Main Postharvest Fungal Diseases of Citrus and Application of Antagonistic Yeasts

Shuqi Liu, Deyao Zhang, Fan Yang, Juan Zhao, Lan Wang, Chaoan Long*

Key Laboratory of Horticultural Plant Biology, Ministry of Education, National Citrus Preservation Technology R&D Center, Huazhong Agricultural University, Wuhan Hubei

Received: Oct. 21st, 2020; accepted: Nov. 23rd, 2020; published: Nov. 30th, 2020

ABSTRACT

Green mold and sour rot are the most important postharvest fungal diseases in citrus, which cause a large number of rotten fruits and seriously restrict the development of citrus industry. This article explains the incidence and influencing factors of the green mold and sour rot of citrus, and it provides the basis for better control. The use of chemical fungicides has many adverse effects, so it is very important to find harmless and safe methods to control postharvest diseases of citrus. Biological control is of great significance to the control of postharvest diseases of citrus. This paper mainly introduces the control mechanism of pollution-free and low-toxicity antagonistic yeast against these two pathogenic phytopathogens. It also introduces the combination of antagonistic bacteria with other antibacterial methods to improve the antagonistic effect. Finally, the application of antagonistic yeast was prospected.

Keywords:Citrus, Green Mold, Sour Rot, Biological Control, Antagonistic Yeasts

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

柑橘是芸香科柑橘属植物,主要栽培品种包括柑、橘、橙、柠檬、柚五类,市面上较为常见的种类是宽皮柑橘、甜橙、柚等 [1]。柑橘是世界上种植最广产量最高的水果,也是我国主要的水果之一,是人们餐桌上必不可少的。我国柑橘的产地主要分布在长江以南地区,柑橘在贮藏和运输过程中极易因环境变化而腐烂,腐烂率可高达30%,使得经济效益降低。由于柑橘是非呼吸跃变型果实,在贮藏和运输途中不会出现呼吸高峰 [2],所以腐烂主要是侵染性真菌病害导致的。柑橘采后真菌病害已报道20多种,其中主要病害是柑橘青霉病、绿霉病、酸腐病,分别由病原菌意大利青霉(Penicill italicum Wehmer.)、指状青霉(P. digitatum Sacc.)、白地霉(Geotrichum citri-candidum Link)造成。这三种病原菌都是弱寄生性病害,只能通过果皮表面伤口侵染果实。在柑橘果实采收、包装、贮藏、运输过程中,柑橘果皮极易受伤从而感病。因此,为减少果实腐烂,延长保鲜期,柑橘采后病害的防治极其重要。

目前柑橘绿霉病主要通过在采前和采后应用化学杀菌剂来防控,如抑霉唑(imazalil)、咪鲜胺(prochloraz)、咯菌腈(fludioxonil)、嘧霉胺(pyrimethanil)、噻苯咪唑(thiabendazole)来实现 [3]。不同的是,这些杀菌剂对柑橘酸腐病的防控效果较差,而双胍盐(guazatine)效果极佳,具有特效性。然而,化学杀菌剂长期广泛的应用也带来也一些负面影响,如病原菌抗药性的逐渐增加、化学残留对环境和人体的危害等 [4]。随着人们越来越重视食品安全问题和营养均衡问题,以及对环境保护意识越来越强 [5],化学杀菌剂的使用正逐渐受到人们排斥。因此寻找无害、安全的防治柑橘采后病害的方法至关重要。迄今为止已有大量关于非化学处理防治柑橘采后真菌病害的报道。例如,柠檬草精油可以有效抑制青绿霉的菌丝生长和孢子萌发 [6],百里香精油与碳酸氢钠结合可以完全抑制酸腐病的发生 [7];抑制柑橘青绿霉的最适热处理温度为(53℃或45℃) [8],采后热处理(40℃以上)可以在一定时期较好地防治酸腐病 [9];蓝光也能有效地抑制青绿霉和酸腐菌的生长 [10] [11];等等。除此之外,拮抗酵母菌由于其不产生毒素、对环境没有危害越来越被人们重视,利用拮抗微生物来防治柑橘采后病害于20世纪80年代就已经进行研究 [12],生物杀菌剂既能减轻有害微生物对果蔬侵染,而且对环境和人体健康没有危害,是生产安全性食品的有效方法 [13]。因此研究拮抗酵母菌的生防机制,提高拮抗酵母菌的拮抗效力对柑橘采后病害的防控具有重要意义。

本文主要阐述了柑橘采后绿霉病、酸腐病的发病情况、影响因素,以及重点阐明了无污染低毒的拮抗酵母菌对这两种病原真菌的防控机制及应用效果。

2. 柑橘绿霉病、酸腐病的生物学特性

2.1. 柑橘绿霉病的发病症状和影响因素

柑橘绿霉病是柑橘中最影响经济价值的采后病害 [14] [15]。在柑橘果实贮藏运输销售期间,绿霉病菌会侵染果实表面伤口,包括各类伤口或果蒂切口,引起果实腐烂发霉。柑橘绿霉病的发病过程和症状如下(见图1):初期病菌侵染伤口,伤口周围出现水渍状病斑,病部软化潮湿,用手指按压病部果皮容易破裂;2~3 d时,伤口中央产生白色菌丝并向外扩散,接着中央产生青色或深绿色粉状霉;菌丝和霉层迅速扩散,大约7 d后柑橘果实全部腐烂。

A:指状青霉在柑橘果实与PDA平板7 d内生长形态,红圈所示2 d时伤口周围水渍软化,伤口中央孢子萌发开始产生菌丝,3 d时白色菌丝向外扩散,伤口中央产生青绿色的分生孢子B:手指轻轻按压发病的果实水渍化病部(红圈所示),果皮破裂;C:光学显微镜与电镜下指状青霉形态结构,比列尺,光学显微镜20 µm,电镜50 µm、10 µm、1 µm (从左往右)。

Figure 1. Phenotypes of citrus green mold in vivo and in vitro

图1. 柑橘绿霉离体与活体表型

柑橘绿霉病是由丝状真菌指状青霉引起的,是伤口型病害,属于青霉属青霉亚属株孢组意大利系真菌 [16]。其分生孢子梗呈帚状,顶端为1~2次分枝;瓶梗较少,3~5个,小梗中部较宽,上下部稍狭长,呈细长纺锤形;瓶梗上分生孢子3~6个串生;分生孢子卵形至圆柱形 [17] (见图1)。20℃~30℃都适宜柑橘绿霉病菌的生长,甚至在接近0℃仍能缓慢生长,26℃~27℃为最适生长温度,但在高温37℃时无法生长,菌丝体生长和孢子形成适宜温度为15℃~30℃ [18] [19]。柑橘绿霉病菌分布广泛,可以在各种有机质上腐生生活,产生大量孢子,分生孢子能通过空气传播,侵染带伤口的柑橘果实,造成果实腐烂发霉,之后病部又能产生大量分生孢子继续侵染果实。在侵染果实的过程中,P. digitatum能分泌出水解酶,如多半乳糖醛酸酶 [20],水解果皮组织促进自身定殖。同时,受伤的柑橘果皮会释放出一些单萜挥发物,如柠檬烯、桃金娘烯、松果烯等,促进柑橘绿霉病菌孢子的萌发 [21]。

2.2. 柑橘酸腐病的发病症状和影响因素

柑橘酸腐病是柑橘采后中最难防、最常见的病害之一,随着对柑橘绿霉病深入研究防治之后,酸腐病发生逐年上升。柑橘酸腐病由白地霉菌引发,一般只对对柑橘果实具有侵染性。患病初期,受到感染的果实部位会产生斑点,呈水渍状,随后表皮慢慢变黑黄色;3~4天病斑开始加速向四周扩散,此时在病斑表面开始出现少量白色菌丝,之后菌丝不断增多;第6天能见大面积病斑产生,病斑表面最终形成较致密的白色菌丝层,且病斑外围会略带皱褶;之后造成整个果实的腐烂,病斑内部呈现出软腐的现象,表皮极易分离,用手一碰就碎,轻按病部,有气味刺鼻的汁液流出 [22] (见图2)。

Figure 2. Incidence of citrus fruits inoculated with G. citri-candidum

图2. 接种酸腐病的柑橘果实发病情况

柑橘酸腐病菌是一种类似于酵母菌的丝状真菌,较之于柑橘绿霉病致病菌(指状青霉),其在PDA (马铃薯葡萄糖琼脂培养基)上的生长速度较快,菌苔呈乳白色,近乎绒状。酸腐菌的菌丝体具有隔膜,没有颜色有分枝,成熟的菌丝自中间裂开形成节孢子,节孢子没有颜色,呈球状或圆柱状 [23] (见图3)。

Figure 3. Microscopic structure of G. citri-candidum

图3. 酸腐病菌显微结构图

柑橘酸腐病菌在土壤中普遍存在,甚至在未栽培柑橘的果园土壤中也能发现该病原菌 [24]。病菌可在土壤中腐生,其分生孢子可以雨水、农用器械、土壤粉尘、昆虫、或其它动物作为媒介散播到果实表面进行再次转染 [25]。在多雨、重雾、湿气大的时候或贮藏时空气相对湿度较高时,病害较易发生,在低温条件下病菌生长慢 [26]。若与柑橘青、绿霉病等混合发生,则果实腐败速度将大大增加。酸腐菌在10℃~35℃时均可生长,当温度低于4℃或高于40℃时,菌落几乎不生长。其最适生长温度在(25℃~30℃)之间。在采收及采后处理过程中,病原菌通过果实表面形成的各种伤口侵染果实,并利用伤口处提供的营养和水分快速繁殖,最终导致果实腐烂变质 [27]。

3. 拮抗酵母菌对柑橘绿霉病、酸腐病的防控机制及应用效果

随着对拮抗酵母菌的不断分离筛选,人们逐渐发现了更多的拮抗酵母菌种类。拮抗酵母菌主要从果实表面、根际土壤、叶片、海水等中分离出来。已发现能有效控制柑橘采后真菌病害的酵母(表1)。

3.1. 拮抗酵母菌的拮抗机制

拮抗酵母菌可以有效抑制病原菌的生长和发病,其拮抗作用机制一直是人们研究的热点。现已有的拮抗酵母菌的生防作用机理主要包括(表2):1) 营养及空间竞争;2) 直接寄生作用;3) 产生抑菌物质;4) 诱导寄主抗性。而寄主、病原菌、拮抗酵母菌三者以及与环境之间的相互作用机理见图4

Table 1. Effective control of actionagainstic yeasts against postharvest diseases on citrus

表1. 有效控制柑橘采后病害的拮抗酵母

3.1.1. 营养及空间竞争

营养和空间竞争是绝大多数拮抗酵母菌的抑菌机制。柑橘采后病原菌首先在伤口上定植,利用寄主的营养物质生长繁殖,而拮抗酵母可以在寄主伤口处群集,与病原菌抢占伤口处的营养物质和氧气,抢占空间位点 [44],并开始在寄主伤口处大量繁殖,使的病原菌得不到足够的营养和生存空间进行营养和生殖生长,从而抑制病原菌的增殖,拮抗柑橘采后病害。研究发现浅白隐球酵母(Cryptococcus albidus) 2株菌对葡萄灰霉病菌、柑橘青霉病菌菌丝生长均有明显的抑制作用,通过显微观察,酵母菌迅速占位,先于病原菌消耗掉大量的营养和空间,意味着酵母菌活菌数量越多,接种时间越早,抑制病原菌效果越显著 [45]。在克莱门氏小柑橘的伤口上接种青绿霉病原菌和拮抗菌C. oleophila,发现先接种拮抗菌24 h后再接种病原菌,青绿霉的发病率均为0%。所以提前接种拮抗酵母菌有利于酵母先在伤口处定植,摄取营养占领空间 [44]。研究人员先将梅奇酵母(M. citriensis)接种在柑橘伤口处,2 h后接种病原菌G. citri-aurantii,培养2 d后通过SEM观察发现酵母细胞能迅速在创面上定植并紧密附着于创面表面,建立了一个密集的网络,减少了柑橘表面可供病原菌发育的物理空间。在体外也表现出生物膜的形成作用,更有助于抢夺营养和空间,从而使得G. citri-aurantii无法繁殖 [45]。所以酵母菌与病原菌存在营养及空间竞争关系。

Table 2. Mechanism of actionagainstic yeasts against postharvest diseases on citrus

表2. 柑橘采后拮抗酵母生物防控作用机制

3.1.2. 直接寄生作用

拮抗酵母菌对病原菌的直接寄生作用是寄主伤口处酵母菌紧密附着在病原菌的菌丝上,形成一层生物膜,并且分泌一些水解酶类,如几丁质酶和β-1,3-葡聚糖酶,从而水解病原菌的细胞壁或菌丝体 [48],使得病原菌生长受限甚至病原菌菌丝体死亡。人们发现拮抗酵母菌菌株K. apiculata的主要抑菌机理就是拮抗菌株对病原菌株的直接寄生作用,通过扫描电镜可观察到酵母菌株(34-9)紧紧包围柑橘青、绿霉病菌菌丝或附着在柑橘青、绿霉病菌菌丝上,最终使柑橘青、绿霉病菌菌丝浓缩、畸形 [49]。研究发现酵母菌P. antarctica分泌出较高的胞外水解酶活性,包括几丁质酶和蛋白水解酶,从而水解指状青霉细胞壁,并导致指状青霉的菌丝断裂 [50]。前人证实了拮抗酵母M. citriensis sp. nov. FL01和FL02能紧密的附着在绿霉病病原菌菌丝上,并形成色素圈来消耗培养基和果实伤口组织中的铁,使病原菌的可用铁减少,从而导致P. digitatum和P. italicum的孢子萌发和菌丝生长受到抑制 [37]。

3.1.3. 产生抑菌物质

许多拮抗酵母菌可以分泌一些抗菌物质从而抑制病原菌的生长。主要是一些醇类以及酯类等挥发性有机物;如:乙醇、乙酸乙酯、苯乙醇等。利用高效液相色谱(HPLC)、气质联用(GC-MS)和液质联用(LC-MS)等分离纯化与鉴定方法,分离出了可以抑制柑橘青、绿霉病的拮抗酵母菌K. apiculata (34-9)的抗菌物质,表明该抗菌物质为苯乙醇(2-Phenylethanol, PEA) [51]。且通过气相色谱–质谱法鉴定拮抗酵母Pichia galeiformis (BAF03)共产生八种挥发性有机化合物(VOCs)来抑制柑橘绿霉病病原菌P. digitatum的生长 [52]。

3.1.4. 诱导寄主抗性

拮抗酵母菌寄生在果实表面时,可以使寄主产生抗病性来抵御病原菌入侵。主要包括1) 诱导寄主产生一些水解酶类,分解病原菌的细胞壁。2) 诱导寄主产生抗病性的次生代谢物,如:异黄酮类、萜类物质和植保素。3) 使寄主细胞结构发生变化,如:细胞壁加厚,产生特异结构等 [12]。研究发现葡萄汁有孢汉逊酵母(H. uvarum)诱导了柑橘产生更多的多酚氧化酶(PPO)、类黄酮含量、过氧化氢酶(POD)、几丁质酶和过氧化物酶等抗性酶,从而起到抵抗病原菌入侵的效果 [53]。前人研究了拮抗酵母Y. lipolytica,并发现其能诱导柑橘的防御酶活性、黄酮类化合物和总酚类化合物的产生,提高了柑橘的抗青绿霉病的能力 [29]。

Figure 4. Possible interactions between host, pathogen, antagonist and environment

图4. 寄主、病原菌、拮抗酵母菌三者以及与环境之间的相互作用机理

3.2. 拮抗酵母的应用效果及生防效力的改良

拮抗酵母菌虽然通过对病原菌的拮抗作用来控制柑橘采后病害的发生,但是一般拮抗酵母菌的抑菌谱较窄,抗菌效果没有化学杀菌剂强,而且拮抗酵母菌是活体,易受环境条件的影响,在使用过程中不宜调控。拮抗酵母菌与其他抗菌方法相结合可以有效提高拮抗效力,并延长使用期限。

3.2.1. 拮抗酵母与其他拮抗菌混合使用

由于拮抗微生物的抑菌谱较窄,施用单一拮抗微生物很难防治果实上的所有病原菌。所以可以将拮抗酵母菌与其他拮抗微生物混合,从而防治果实采后的多种病害。将细菌(Rahnella aquatilis)与酵母(Rhodotorula glutinis)混合来研究其对苹果采后病原菌P. expansum和B. cinerea的拮抗活性。在冷藏条件下,R. aquatilis-R. glutinis的混合物能抑制苹果采后灰霉菌和扩展青霉生长,其发病率降低到几乎为零。但并不是任何两种拮抗微生物都可以混合,要保证混和的拮抗微生物彼此无影响,且相容 [60]。

3.2.2. 拮抗酵母与化学物质混合使用

拮抗酵母菌可以与化学物质混合用于柑橘采后病害的防治,一方面可以提高拮抗酵母对环境的耐受性,另一方面可以提高其生防效力。研究结果表明,膜醭毕赤酵母(Pichia membranaefaciens)与壳聚糖复合处理可通过增强柑橘的抗病性来提高拮抗酵母对柑橘炭疽病的防治效果 [61]。将葡萄汁有孢汉逊酵母(H. uvarum)与卵磷脂(1.5% w/v)结合使用后显著增强了拮抗酵母对柑橘采后绿霉病引起的腐烂的抑制作用 [53]。研究结果表明肉桂酸可以破坏指状青霉的细胞膜,导致膜完整性的丧失和细胞质内容物的泄漏。将肉桂酸与罗隐球酵母C. laurentii结合使用,提高了拮抗酵母对柑橘果实上由意大利青霉(P. italicum)引起的青霉病的防治效果 [62]。

3.2.3. 拮抗酵母与物理方法结合

许多研究都证实了拮抗酵母菌与物理方法,例如:热处理、紫外线照射、微波处理等相结合可以提高其生防效力。研究酵母P. guilliermondii结合热空气处理对桃采后病害(Rhizopus stolonifer and P. expansum)的防治效果,结果表明热空气和毕赤酵母结合处理后抑制病害发生的效果最好,并延缓桃果实品质和抗氧化参数的下降,达到桃果采后保鲜的目的 [63]。研究表明,紫外线照射处理(UV-C)与拮抗酵母菌株(Candida tropicalis)结合使用对菠萝黑腐病的防治效果明显增强 [64]。

3.2.4. 拮抗酵母遗传体系建立

随着人们对拮抗微生物分子机理研究的不断深入,利用基因工程,转化体系来构建生防效力更高的拮抗酵母已成为现在的趋势。将细菌的鞭毛蛋白基因转入拮抗菌酿酒酵母(S. cerevisiae EBY100)体内表达,可以增强该酵母对番茄灰霉病的拮抗效率 [65]。

4. 前景及展望

拮抗酵母菌生物防治是利用酵母菌在同真菌互相竞争、协同进化过程中形成的抑制真菌生长的能力,且酵母菌不具有致病能力。生物防治最大的优势是真菌病原和生防菌是协同进化的,无法形成有效的抗性。因此,今后我们应该关注如何通过人工筛选或环境控制等加快生防菌的进化速度,使生防菌在协同进化中时刻保持优势。通过前人的研究可以知道拮抗酵母菌是防治柑橘采后病害绿色、有效的方法,至今也分离筛选出了许多株可用于柑橘采后病害防治的拮抗酵母。但由于果实在贮藏运输中的环境与试验条件有差别,再加上拮抗酵母菌的抑菌谱较窄且效果不稳定,真正投入到市场中进行商业化使用的拮抗酵母还很少。相比化学杀菌剂,生防制剂的价格也较高。目前只有国外几种生防酵母制剂投放到了市场,如:ShemerTM,拮抗酵母为Metschnikowia fructicola、CandifruitTM,拮抗酵母为Candida sake以及Boni- ProtectTM,拮抗酵母A. pullulans [48]。

为了使生防酵母制剂投入市场,还需进一步在以下几个方面进行研究:1) 从分子层面深挖拮抗酵母的抗菌机制。2) 寻找抑菌谱广,拮抗效力高的拮抗酵母菌。3) 提高拮抗酵母菌的环境耐受性,延长使用期。4) 利用基因工程的手段对拮抗酵母进行遗传改良,以期构建抗菌谱广、抑菌效果更好的拮抗酵母菌用于柑橘采后病害的防治。

基金项目

国家自然科学基金(31972122),中央高校基本科研业务费专项资金资助项目(2662020YLPY008)和现代农业产业技术体系建设专项资金资助(CARS-26)。

文章引用

刘书琪,张德遥,杨 凡,赵 娟,王 澜,龙超安. 柑橘主要采后真菌病害及拮抗酵母的应用研究进展
Research Progress on Main Postharvest Fungal Diseases of Citrus and Application of Antagonistic Yeasts[J]. 植物学研究, 2020, 09(06): 561-572. https://doi.org/10.12677/BR.2020.96069

参考文献

  1. 1. 王士刚. 柑橘贮藏保鲜技术[J]. 湖北农业科学, 1989(10): 33-34.

  2. 2. 邓雨艳, 曾凯芳. 柑橘果实采后侵染性病害防治技术研究进展[J]. 食品科技, 2008, 33(4): 211-214.

  3. 3. Berk, Z. (2006) Citrus Fruit Processing, Postharvest Changes. Academic Press, San Diego, 95-105. https://doi.org/10.1016/B978-0-12-803133-9.00006-0

  4. 4. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016) Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4, 148. https://doi.org/10.3389/fpubh.2016.00148

  5. 5. 田世平, 范青. 控制果蔬采后病害的生物学技术[J]. 植物学通报, 2000, 17(3): 211-217.

  6. 6. Jhalegar, M.J., Sharma, R.R. and Singh, D. (2015) In Vitro and in Vivo Activity of Es-sential Oils against Major Postharvest Pathogens of Kinnow (Citrus nobilis x C. deliciosa) Mandarin. Journal of Food Science & Technology, 52, 2229-2237. https://doi.org/10.1007/s13197-014-1281-2

  7. 7. 刘霞, 方伟文, 李祎晨, 余挺, 郑晓冬. 百里香精油与碳酸钠结合对桠柑酸腐病的防治效果及品质的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(2): 187-191.

  8. 8. 黄振东, 陈国庆, 浦占清, 严得胜. 柑橘贮藏过程主要病害的发生规律及防治对策[J]. 浙江柑橘, 2006, 23(3): 20-23.

  9. 9. 冷飞凡, 姜倩, 曾慧, 李淑惠, 淳炯, 钟八莲, 杨文侠. 脐橙酸腐菌分离鉴定及抑菌研究[J]. 食品科技, 2017, 42(9): 8-12.

  10. 10. Lafuente, M.T., Alférez, F. and González, C.L. (2015) Effect of LED Blue Light on Penicillium digitatum and Penicillium italicum Strains. Photochemistry and Photobiology, 91, 1412-1421. https://doi.org/10.1111/php.12519

  11. 11. 孙建城. 单色可见光抑制柑橘酸腐病菌的生长研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2019.

  12. 12. 郭娟华, 涂起红, 陈楚英, 陈金印. 拮抗微生物防治柑橘采后病害研究进展[J]. 食品科学, 2013, 34(23): 351-356.

  13. 13. 张红印, 郑晓冬, 孙萍. 提高生防菌对水果采后病害防治能力的研究进展[J]. 食品科学, 2006, 27(4): 247-251.

  14. 14. Marcet, H.M., Ballester, A.R., Fuente, B., Harries, E., Marcos, J.F., González, C.L. and Gabaldón, T. (2012) Genome Sequence of the Necrotrophic Fungus Penicillium di-gitatum, the Main Postharvest Pathogen of Citrus. BMC Genomics, 13, 646. https://doi.org/10.1186/1471-2164-13-646

  15. 15. Papoutsis, K., Mathioudakisc, M.M., Hasperuéd, J.H. and Ziogase, V. (2019) Non-Chemical Treatments for Preventing the Postharvest Fungal Rotting of Citrus Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Trends in Food Science & Technology, 86, 479-491. https://doi.org/10.1016/j.tifs.2019.02.053

  16. 16. 孔华忠. 中国真菌志第三十五卷青霉属及其相关有性型属[M]. 北京: 科学出版社, 2007: 39.

  17. 17. 邓秀新, 彭抒昂. 柑橘学[M]. 北京: 中国农业出版社, 2013: 381-382.

  18. 18. 张志芳. 柑橘绿霉病菌对喀菌醋的敏感基线、抗性分子机制和分子检测技术研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2008.

  19. 19. 闵晓芳. 柑橘采后致病青霉的分离鉴定及其生物学特性研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2007.

  20. 20. Vilanovaa, L., López, P.M., Ballester, A.R., Teixidóa, N., Usalla, J., Larac, I., Viñas, I., Torres, R. and González, C.L. (2018) Differential Contribution of the Two Major Polygalacturonases from Penicillium digitatum to Virulence towards Citrus Fruit. International Journal of Food Microbiology, 282, 16-23. https://doi.org/10.1016/j.ijfoodmicro.2018.05.031

  21. 21. Droby, S., Eick, A., Macarisin, D., Cohen, L., Rafael, G. and Stange, R. (2008) Role of Citrus Volatiles in Host Recognition, Germination and Growth of Penicillium digitatum and Penicillium italicum. Postharvest Biology and Technology, 49, 386-396. https://doi.org/10.1016/j.postharvbio.2008.01.016

  22. 22. 郑凤. 柑橘酸腐病菌遗传转化体系的建立[D]: [硕士学位论文]. 武汉: 华中农业大学, 2017.

  23. 23. 朱丽华. 柑橘类水果采后病害及其防治[J]. 世界农药, 2005, 27(2): 18-21.

  24. 24. Brown, G. (1988) Efficacy of Guazatine and Iminoctadine for Control of Postharvest Decays of Oranges. Plant Diseases, 72, 906-908. https://doi.org/10.1094/PD-72-0906

  25. 25. Eckert, J.W. (1959) Lemon Sour Rot. Calif. Citrogr, 45, 30-36.

  26. 26. Feng, L., Wu, F., Li, J., Jiang, Y. and Duan, X. (2011) Antifungal Activities of Polyhex-amethylene Biguanide and Polyhexamethylene Guanide against the Citrus Sour Rot Pathogen Geotrichum Citri-Aurantii in Vitro, and in Vivo. Postharvest Biology and Technology, 61, 160-164. https://doi.org/10.1016/j.postharvbio.2011.03.002

  27. 27. 王哲. 柑橘酸腐病菌的致病机理及其拮抗酵母的研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2012.

  28. 28. Long, C.A., Wu, Z. and Deng, B.X. (2005) Biological Con-trol of Penicillium italicum of Citrus and Botrytis cinerea of Grape by Strain 34-9 of Kloeckera apiculata. European Food Research and Technology, 221, 197-201. https://doi.org/10.1007/s00217-005-1199-z

  29. 29. Zhu, H.M., Zhao, L.N., Zhang, X.Y., Foku, J.M., Li, J., Hu, W.C. and Zhang, H.Y. (2019) Efficacy of Yarrowia Lipolytica in the Biocontrol of Green Mold and Blue Mold in Citrus re-ticulata and the Mechanisms Involved. Biological Control, 139, Article ID: 104096. https://doi.org/10.1016/j.biocontrol.2019.104096

  30. 30. Lahlali, R., Hamadi, Y., El guilli, M. and Jijakli, M.H. (2010) Efficacy Assessment of Pichia guilliermondii Strain Z1, a New Biocontrol Agent, against Citrus Blue Mould in Morocco under the Influence of Temperature and Relative Humidity. Biological Control, 56, 217-224. https://doi.org/10.1016/j.biocontrol.2010.12.001

  31. 31. Leelasuphakul, W., et al. (2018) The Use of Aloe vera Gel Coating Supplemented with Pichia guilliermondii BCC5389 for Enhancement of Defense-Related Gene Expression and Secondary Metabolism in Mandarins to Prevent Postharvest Losses from Green Mold Rot. Biological Control, 117, 43-51. https://doi.org/10.1016/j.biocontrol.2017.08.023

  32. 32. Terao, D., de Lima Nechet, K., Ponte, M.S., de Ho-landa Nunes Maia, A., de Almeida Anjos, V.D. and de Almeida Halfeld-Vieira, B. (2017) Physical Postharvest Treat-ments Combined with Antagonistic Yeast on the Control of Orange Green Mold. Scientia Horticulturae, 224, 317-323. https://doi.org/10.1016/j.scienta.2017.06.038

  33. 33. da Cunha, T., Pompeo Ferraz, L., Wehr, P.P. and Kupper, K.C. (2018) Antifungal Activity and Action Mechanisms of Yeasts Isolates from Citrus against Penicillium italicum. Inter-national Journal of Food Microbiology, 276, 20-27. https://doi.org/10.1016/j.ijfoodmicro.2018.03.019

  34. 34. Lu, L.F., Ye, C.Z., Guo, S.H., Sheng, K., Shao, L.X., Zhou, T., Yu, T. and Zheng, X.D. (2013) Preharvest Application of Antagonistic Yeast Rhodosporidium paludigenum Induced Resistance against Postharvest Diseases in Mandarin Orange. Biological Control, 67, 130-136. https://doi.org/10.1016/j.biocontrol.2013.07.016

  35. 35. Ferraz, L.P., da Cunha, T., e da Silva, A.C. and Kupper, K.C. (2016) Biocontrol Ability and Putative Mode of Action of Yeasts against Geotrichum citri-aurantii in Citrus Fruit. Microbiological Research, 188-189, 72-79. https://doi.org/10.1016/j.micres.2016.04.012

  36. 36. Wang, S.P., Ruan, C.Q., Yi, L.H., Deng, L.L., Yao, S.X. and Zeng, K.F. (2020) Biocontrol Ability and Action Mechanism of Metschnikowia citriensis against Geotrichum ci-tri-aurantii Causing Sour Rot of Postharvest Citrus Fruit. Food Microbiology, 87, Article ID: 103375. https://doi.org/10.1016/j.fm.2019.103375

  37. 37. Liu, Y., Wang, W.H., Zhou, Y.H., Yao, S.X., Deng, L.L. and Zeng, K.F. (2017) Isolation, Identification and in Vitro Screening of Chongqing Orangery Yeasts for the Biocontrol of Peni-cillium digitatum on Citrus Fruit. Biological Control, 110, 18-24. https://doi.org/10.1016/j.biocontrol.2017.04.002

  38. 38. Wilson, C.L. and Chalutz, E. (1989) Postharvest Biological Control of Penicillium Rots of Citrus with Antagonistic Yeasts and Bacteria. Scientia Horticulturae, 40, 105-112. https://doi.org/10.1016/0304-4238(89)90092-7

  39. 39. Perez, M.F., Ibarreche, J.P., Isas, A.S., Sepulveda, M., Ra-mallo, J. and Dib, J.R. (2017) Antagonistic Yeasts for the Biological Control of Penicillium digitatum on Lemons Stored under Export Conditions. Biological Control, 115, 135- 140. https://doi.org/10.1016/j.biocontrol.2017.10.006

  40. 40. Zhang, H., Zheng, X. and Xi, Y. (2005) Biological Control of Postharvest Blue Mold of Oranges by Cryptococcus laurentii (Kufferath) Skinner. Biocontrol, 50, 331-342. https://doi.org/10.1007/s10526-004-0452-x

  41. 41. Liu, X., Fang, W., Liu, L., Yu, T., Lou, B. and Zheng, X. (2010) Biological Control of Postharvest Sour Rot of Citrus by Two Antagonistic Yeasts. Letters in Applied Microbiology, 51, 30-35. https://doi.org/10.1111/j.1472-765X.2010.02851.x

  42. 42. Bilal, A. and Huseyin, E. (2020) Biocontrol Ability and Action Mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digi-tatum DSM2750 and Penicillium expansum DSM62841 Causing Postharvest Diseases. Yeast (Chichester, England), 37, 437-448.

  43. 43. Droby, S., Chalutz, E., Wilson, C.L. and Wisniewski, M. (1989) Characterization of the Biocontrol Ac-tivity of Debaryomyces hansenii in the Control of Penicillium digitatum on Grapefruit. Canadian Journal of Microbi-ology, 35, 794- 800. https://doi.org/10.1139/m89-132

  44. 44. Nadjara, K.M. and Cristina, K.K. (2018) Biofilm Pro-duction by Aureobasidium pullulans Improves Biocontrol against Sour Rot in Citrus. Food Microbiology, 69, 1-10. https://doi.org/10.1016/j.fm.2017.07.008

  45. 45. 王瑶, 姜冬梅, 王刘庆, 韦迪哲, 王蒙. 拮抗酵母控制果蔬采后真菌病害研究进展[J]. 食品工业科技, 2018, 39(8): 309-317.

  46. 46. 张岳, 杨俊颖, 王旭东, 宋海慧, 张莉莉, 石玉莹, 陈秀玲, 王傲雪. 2株浅白隐球酵母对葡萄灰霉病和柑橘青霉病采后防治效果的研究[J]. 江苏农业科学, 2017, 45(2): 96-100.

  47. 47. Lahlali, R., Serrhini, M.N. and Jijakli, M.H. (2004) Efficacy Assessment of Candida oleo-phila (Strain O) and Pichia anomala (Strain K) against Major Postharvest Diseases of Citrus Fruits in Morocco. Com-munications in Agricultural and Applied Biological Sciences, 69, 601.

  48. 48. Nunes, C.A. (2012) Biological Control of Postharvest Diseases of Fruit. European Journal of Plant Pathology, 133, 181-196. https://doi.org/10.1007/s10658-011-9919-7

  49. 49. 龙超安, 邓伯勋, 何秀娟. 柑橘青、绿霉病高效拮抗菌34-9的筛选及其特性研究[J]. 中国农业科学, 2005(12): 2434-2439.

  50. 50. 刘椰. 拮抗酵母新种鉴定及其对柑橘果实采后主要病害的防治机理研究[D]: [硕士学位论文]. 重庆: 西南大学, 2019.

  51. 51. Liu, P., Chen, K., Li, G.F., Yang, X.P. and Long, C.-A. (2016) Comparative Transcriptional Profiling of Orange Fruit in Response to the Biocontrol Yeast Kloeckera apiculata and Its Active Compounds. BMC Genomics, 17, 17. https://doi.org/10.1186/s12864-015-2333-3

  52. 52. Chen, O., Yi, L.H., Deng, L.L., Ruan, C.Q. and Zeng, K.F. (2020) Screening Antagonistic Yeasts against Citrus Green Mold and the Possible Biocontrol Mechanisms of Pichia galeiformis (BAF03). Journal of the Science of Food and Agriculture, 100, 3812.

  53. 53. 李万海. 葡萄汁有孢汉逊酵母结合卵磷脂对柑橘采后绿霉病的生物防治及其机制研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2016.

  54. 54. 卢黄娉, 郑晓冬. 几丁质对海洋拮抗酵母防治梨果实采后青霉病的影响[J]. 中国食品学报, 2016, 16(2): 151-158.

  55. 55. Parafati, L., Vitale, A., Restuccia, C., et al. (2017) Performance Evaluation of Volatile Organic Compounds by Antagonistic Yeasts Immobilized on Hydrogel Spheres against Gray, Green and Blue Postharvest Decays. Food Microbiology, 63, 191-198. https://doi.org/10.1016/j.fm.2016.11.021

  56. 56. Wang, Y., Luo, Y., Sui, Y., Xie, Z., Liu, Y., Jiang, M., et al. (2018) Exposure of Candida oleophila to Sublethal Salt Stress Induces an Antioxidant Response and Improves Biocontrol Efficacy. Biological Control, 132, 23-28. https://doi.org/10.1016/j.biocontrol.2018.09.002

  57. 57. Wisniewski, M., Droby, S., et al. (2004) Characterization of Extracellular Lytic Enzymes Produced by the Yeast Biocontrol Agent Candida oleophila. Current Genetics, 45, 140-148. https://doi.org/10.1007/s00294-003-0471-7

  58. 58. Cengiz, Ç. and Uçar, F.B. (2018) Purification, Characterization and in Vivo Biocontrol Efficiency of Killer Toxins from Debaryomyces hansenii Strains. International Journal of Biological Macromolecules, 119, 1077-1082. https://doi.org/10.1016/j.ijbiomac.2018.07.121

  59. 59. Lahlali, R., Hamadi, Y., Drider, R., Misson, C., El Guilli, M. and Jijakli, M.H. (2014) Control of Citrus Blue Mold by the Antagonist Yeast Pichia guilliermondii Z1: Compatibility with Commercial Fruit Waxes and Putative Mechanisms of Action. Food Control, 45, 8-15. https://doi.org/10.1016/j.foodcont.2014.04.014

  60. 60. Calvo, J., Calvente, V., Orellano, M.E., Benuzzi, D. and Sanz, M.I. (2010) Control of Penicillium expansum and Botrytis cinerea on Apple Fruit by Mixtures of Bacteria and Yeast. Food and Bioprocess Technology, 3, 644-650. https://doi.org/10.1007/s11947-008-0139-x

  61. 61. 田理刚, 彭茹, 姚世响, 邓丽莉, 曾凯芳. 膜醭毕赤酵母和壳聚糖复合处理对柑橘果实炭疽病的诱导抗病性[J]. 食品科学, 2019, 40(7): 228-237.

  62. 62. Li, J.K., Li, H., Ji, S.F., Chen, T., Tian, S.P. and Qin, G.Z. (2019) Enhancement of Biocontrol Efficacy of Cryptococcus laurentii by Cinnamic Acid against Penicillium italicum in Citrus Fruit. Postharvest Biology and Technology, 149, 42-49. https://doi.org/10.1016/j.postharvbio.2018.11.018

  63. 63. Zhao, Y., Li, Y.F. and Yin, J.J. (2019) Effects of Hot Air Treatment in Combination with Pichia guilliermondii on Postharvest Preservation of Peach Fruit. Journal of the Science of Food and Agriculture, 99, 647-655. https://doi.org/10.1002/jsfa.9229

  64. 64. Ou, C., Liu, Y., Wang, W., et al. (2016) Integration of UV-C with Antago-nistic Yeast Treatment for Controlling Post- Harvest Disease and Maintaining Fruit Quality of Ananas comosus. Bio-control, 61, 591-603. https://doi.org/10.1007/s10526-016-9740-5

  65. 65. Zhao, S.X., Guo, Y.H., Wang, Q.N., Luo, H.L., He, C.Z. and An, B. (2020) Expression of Flagellin at Yeast Surface Increases Biocontrol Efficiency of Yeast Cells against Postharvest Disease of Tomato Caused by Botrytis cinerea. Postharvest Biology and Technology, 162, Article ID: 111112. https://doi.org/10.1016/j.postharvbio.2019.111112

期刊菜单