Advances in Clinical Medicine
Vol. 12  No. 03 ( 2022 ), Article ID: 49393 , 6 pages
10.12677/ACM.2022.123267

aSAH预后与相关生物学标志物的研究进展

王轩1,缪星宇2

1西安医学院,陕西 西安

2陕西省人民医院,陕西 西安

收稿日期:2022年2月14日;录用日期:2022年3月8日;发布日期:2022年3月17日

摘要

蛛网膜下腔出血作为一种有很高发病率及致死率的疾病,动脉瘤破裂是其发病的主要原因。当前虽然在治疗上取得了许多创新,但是对于其神经系统预后的方面仍无明显改善。目前多种生物标志物对于疾病的诊疗以及预后的判定是有很大帮助的。文章通过对相关生物标志物近年来在国内外的研究现状进行综述,阐明与aSAH预后的关系,希望能为临床诊疗提供新思路。

关键词

aSAH,生物标志物,预后

Advances in Prognosis and Related Biomarkers of aSAH

Xuan Wang1, Xingyu Miao2

1Xi’an Medical University, Xi’an Shaanxi

2Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Feb. 14th, 2022; accepted: Mar. 8th, 2022; published: Mar. 17th, 2022

ABSTRACT

As a disease with high morbidity and mortality, subarachnoid hemorrhage aneurysm rupture is the main cause of the disease. Although there have been many therapeutic innovations, there has been no significant improvement in neurological outcomes. At present, a variety of biomarkers for the diagnosis and treatment of disease and prognosis is very helpful. In this paper, we reviewed the current status of biomarkers at home and abroad in order to clarify the relationship between aSAH and prognosis, and to provide new ideas for clinical diagnosis and treatment.

Keywords:aSAH, Biomarkers, Prognosis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

动脉瘤性蛛网膜下腔出血(aneurysmal subarachnoid hemorrhage, aSAH)是一种中枢神经系统破坏性疾病,其发病率约占全部卒中的百分之五,病死率超过百分之四十 [1],是目前神经外科常见的危重症,具有突发、难以预测的特点。尽管目前对于aSAH的治疗随着诊断模式、医疗设施以及显微神经外科的发展,颇有进展,但是其预后仍然不佳 [2]。近年来,随着生物化学与分子生物学的发展,aSAH后各种复杂地损伤机制被一一发现,尽管不甚明确,但仍然发现越来越多的生化物质与疾病的发生、进展以及预后相关。生物标志物作为一种对aSAH患者预后评估的手段,具有方便、有效及无创等特点,因此引起了临床医生对相关生物标志物的密切关注。现对近年来与之相关的生物标志物进行综述。

2. S100钙结合蛋白β (S100 Calcium Binding Protein β, S100β)

S100β为S100家族成员之一,是一类主要产生于人类中枢神经系统的钙结合蛋白二聚体,在细胞炎症及氧化应激过程中,具有不同程度的调节功能。有文献报道,S100β主要表达于星形胶质细胞之中。生理状态下,S100β的分泌水平较低,但是当神经炎症发生时,会导致胶质细胞大量分泌S100β,使得其浓度升高 [3],在血脑屏障(blood-brain barrier, BBB)破坏之后,释放进入血液之中,从而导致血液之中的S100β浓度升高。最新研究发现 [4],不同浓度的S100β对神经元细胞的作用是不一样的,其通过不同的途径,介导截然相反的结果,对神经元细胞发挥着既保护又促进凋亡的作用。相当研究表明,对于aSAH患者来说,S100β的浓度与疾病的严重程度相关,但是对于aSAH后并发症的预测尚存争议。Jung [5] 等认为S100β水平的升高与蛛网膜下腔出血后的脑血管痉挛的发生无关。与此相反的是,另一项研究认为 [6] S100β对于患者6个月的预后有预测作用,并且其发病不同时间点的S100β浓度对预后预测作用的特异度也不同。此外,一项对照研究发现,当S100β的初始水平高于0.7 μg/dl时与严重神经创伤患者100%的死亡率有关联,这可能有助于临床医师优化对于神经重症患者的治疗策略 [7]。

3. 脂蛋白相关磷脂酶A2 (Lipoprotein-Associated Phospholipase A2, Lp-PLA2)

Lp-PLA2是一种非Ca2+依赖性磷脂酶,属于磷脂酶A2超家族 [8],其在机体中的主要来源是血管内膜中的炎症细胞。通过蛋白质间的交互作用研究 [9],约有80%的Lp-PLA2与低密度脂蛋白结合,余下的与脂蛋白a、高密度脂蛋白以及超低密度脂蛋白相结合。有实验进一步对Lp-PLA2与脂蛋白之间的作用关系进行研究发现,Lp-PLA2对于不同密度的脂蛋白具有正负相关性 [10]。在机体中,Lp-PLA2主要和低密度脂蛋白发生作用,对其氧化磷脂进行水解,生成2种中间体 [11],这些水解产物通过对一氧化氮(NO)合成及释放的下调,增强氧化应激反应,导致血管壁内皮细胞发生功能障碍,促进内皮细胞的凋亡 [12],同时诱导内皮细胞表达黏附分子,促进巨噬细胞、白细胞进入内膜,释放细胞因子如白细胞介素-6 (IL-6)、肿瘤坏死因子α (TNF-α)等,激活该区域的炎症反应,并通过趋化性炎性细胞产生自我增强循环,同时产生更多的促炎物质 [13],使得动脉粥样硬化斑块形成以及卒中发作 [14]。相对C反应蛋白而言,在预测血管炎症方面,Lp-PLA2更加具有临床特异性 [15]。大量临床研究表明,Lp-PLA2可以作为动脉粥样硬化性心血管疾病的生物标志物以及危险因素 [16] [17]。在2015年,我国学者发布了一篇关于Lp-PLA2在临床中的应用建议,推荐使用Lp-PLA2预测心脑血管疾病发生风险 [18]。一篇中文研究发现,脑出血患者入院后对其神志状态进行昏迷分级,发现血清中高水平地Lp-PLA2与之成正相关,提示Lp-PLA2可直接反应患者的病情危重程度 [19]。此外,在一项前瞻性队列研究中发现 [20],相比较于缺血性脑卒中,Lp-PLA2在出血性脑卒中急性期的水平明显高于缺血性脑卒中,且与患者的预后相关。有学者研究发现 [21],在aSAH患者中,相较于对照组,实验组中更高水平的Lp-PLA2与患者的预后密切相关,可以作为预测患者预后的生物学标志物,其发生机制可能:Lp-PLA2在水解脂蛋白以及胞膜上的氧化型磷脂之后,会生成相应物质,使得血管发生动脉粥样硬化,产生活化粒细胞,继而生成更多的Lp-PLA2,持续提高血清中地Lp-PLA2水平,最终导致促炎因子大量释放,诱发各类炎症反应,使得血液粘稠度增加,破坏斑块稳定性,从而动脉瘤破裂,终致蛛网膜下腔出血。

4. 胰岛素样生长因子-1 (Insulin-Like Growth Factor 1, IGF-1)

IGF-1是一种小肽生长因子,相对分子质量约为7500,与胰岛素具有显著地结构同源性,作为多功能细胞增殖调控因子,广泛分布于各个组织之中,与IGF-2、胰岛素及相关受体一起构成了胰岛素样生长因子家族 [22]。研究表明,IGF-1在机体生长、组织损伤修复以及三大能量代谢等方面有着重要的作用 [23] [24]。在过去的十数年中,许多研究发现IGF-1参与了诸多如心血管疾病、癌症等与年龄相关的疾病的发生及发展 [25]。近期大量的研究表明IGF-1在动脉粥样硬化、阿尔茨海默症、缺血缺氧性脑病等疾病中扮演者重要的角色 [26] [27] [28]。而在一项大规模地人群调查研究中发现 [29],血清中低水平地IGF-1与脑卒中、蛛网膜下腔出血以及男性阿尔茨海默症密切相关联。IGF-1作为细胞增殖调控因子,参与维持神经元活性和轴突生长功能,在神经内分泌地调节中发挥重大作用。近期研究 [30] 显示,创伤性脑损伤和蛛网膜下腔出血后垂体功能障碍对于患者预后的认知功能以及整体预后有着显著的影响。而在一项与此相关的研究中显示,发病后3个月时约有16.7%的创伤性脑损伤患者以及33.3%的蛛网膜下腔出血患者会出现不同程度地垂体功能障碍 [31]。另一项研究发现,作为生长激素调节蛋白的IGF-1,当其处于低水平时,对aSAH患者发病后的神经内分泌功能有严重的影响,直接影响患者的预后 [32]。这其中的可能机制为:aSAH后作为生长激素调节蛋白地IGF-1,由于各种原因导致了垂体功能障碍,从而影响其表达,使神经元细胞凋亡坏死,终致神经功能恶化,影响患者预后 [33] [34] [35]。此外,低水平的IGF-1会导致脑血管壁弹性降低,促进脑进一步出血的发生 [36]。

5. 半胱氨酸蛋白酶抑制剂C (Cystatin C, CysC)

CysC作为一种半胱氨酸蛋白酶抑制剂,在机体中主要表达于细胞外液,相较于血浆之中,脑脊液里的浓度几乎是其五至六倍,究其来源,主要是神经系统中的脉络丛分泌产生。目前研究发现,CysC对细胞内外蛋白酶的水解有着重要的调控作用,保护相关细胞活性,是至今为止发现的最强的内生性抑制物,当然,这仅仅针对组织蛋白酶B [37]。近年来,大量的研究表明,CysC作为一种神经保护因子,在脑血管疾病的发展过程中发挥着重要的作用。有学者发现一定浓度地外源性CysC可以通过mTOR信号转导通路,诱导自噬的发生,对神经元细胞具有很好的保护作用 [37]。而诸多关于大鼠aSAH模型的研究 [38] 中也指出,在疾病发生的早期,CysC可以作为一种自噬诱导剂,通过参与并延长自噬过程,改善aSAH后早期脑损伤的症状,对保护神经元细胞并促进损伤恢复具有良好的作用。目前关于CysC与aSAH患者预后的相关研究报道仍较少,最近的一项研究 [39] 指出,相比较正常人群,在aSAH患者的血清中发现,更低水平地CysC和疾病的发生具有密切的关系。综上所述,我们有理由相信,通过自噬通路减轻aSAH患者早期脑损伤以及血管痉挛的程度,CysC与患者的预后可能密切相关。

6. 高迁移率蛋白B1 (High-Mobilitygroupbox-1 Protein, HMGB1)

HMGB1是HMGB家族成员之一,含有特异的HMG盒结构域序列,几乎广泛表达于所有真核细胞的细胞核之中,识别并结合特定地DNA片段,具有可以修复重组DNA,稳定核小体以及促进细胞成熟分化地作用 [40],而胞外HMGB1的主要功能是参与介导炎症反应、免疫趋化作用以及组织地再生 [41]。生理条件的HMGB1维持在一个基础水平,而当机体处于病理情况时,HMGB1可经过主动分泌以及被动分泌两条路径,释放入胞外,在损伤部位处与多种炎性因子相结合,介导非感染性的炎症应答,并进一步促进炎性细胞的分泌 [41] [42] [43]。一项关于大鼠SAH模型的基础试验 [44] 发现,相比于对照组,实验组大鼠2小时时,即发现损伤部位神经元开始被动释放HMGB1,于1天后到达高峰,之后对于大鼠的解剖中发现,SAH后主要是小胶质细胞分泌并活化HMGB1。此外仍有大量的基础实验证实,SAH后损伤部位的胶质细胞参与主动分泌HMGB1的过程。多项临床研究表明 [45] [46],aSAH发生后,患者的脑脊液之中可以检测到大量的HMGB1,对出院患者进行神经功能评分发现其不良预后与之显著相关。以上皆提示HMGB1在aSAH疾病进程中以及预后发挥着重要作用。

7. 总结与展望

随着个体化医疗的发展,生物标志物的出现,对于许多疾病而言,使其治疗模式发生了改变,作为一种对疾病发生、发展以及预后有预测价值的因素,越来越受到临床医生的关注与肯定。对于蛛网膜下腔出血患者来说,利用生物学标志物监测病情变化,及时发现可能具有不良预后的高危人群,有助于临床医生的精准治疗,改善患者预后,提高其生活质量。目前与aSAH相关的生化标志物虽然众多,但对动脉瘤相关蛛网膜下腔出血的发生有潜在预测作用的生化标志物数量仍有限。并且目前发现的相关标志物,均非仅aSAH后特异性产生的物质,因此单独监测一种生物标志物对于患者预后的预测可能不太准确,这需要我们充分地使用多项标志物,结合患者实际情况,通过各类影像学检查,提高预测地精准性,从而进一步指导临床医生对该疾病的诊疗。

文章引用

王 轩,缪星宇. aSAH预后与相关生物学标志物的研究进展
Advances in Prognosis and Related Biomarkers of aSAH[J]. 临床医学进展, 2022, 12(03): 1855-1860. https://doi.org/10.12677/ACM.2022.123267

参考文献

  1. 1. Grasso, G., Alafaci, C. and Macdonald, R.L. (2017) Management of Aneurysmal Subarachnoid Hemorrhage: State of the Art and Future Perspectives. Surgical Neurology International, 8, 11. https://doi.org/10.4103/2152-7806.198738

  2. 2. Tewari, M., Aggarwal, A., Mathuriya, S. and Gupta, V. (2015) The Outcome after Aneurysmal Sub Arachnoid Hemorrhage: A Study of Various Factors. Annals of Neurosciences, 22, 78-80. https://doi.org/10.5214/ans.0972.7531.220205

  3. 3. Kabadi, S.V., Stoica, B.A., Zimmer, D.B., et al. (2015) S100B Inhibition Reduces Behavioral and Pathologic Changes in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow & Metabolism, 35, 2010-2020. https://doi.org/10.1038/jcbfm.2015.165

  4. 4. 王艳萍, 华颖, 徐晓华, 王健彪. miRNA-146a和Toll样受体2对幼鼠细菌性脑膜炎的影响[J]. 重庆医学, 2018, 47(10): 1398-1400.

  5. 5. Jung, C.S., Lange, B., Zimmermann, M. and Seifert, V. (2013) CSF and Serum Biomarkers Focusing on Cerebral Vasospasm and Ischemia after Subarachnoid Hemorrhage. Stroke Research and Treatment, 2013, Article ID: 560305. https://doi.org/10.1155/2013/560305

  6. 6. Abboud, T., Mende, K.C., Jung, R., et al. (2017) Prognostic Value of Early S100 Calcium Binding Protein B and Neuron-Specific Enolase in Patients with Poor-Grade Aneurysmal Subarachnoid Hemorrhage: A Pilot Study. World Neurosurgery, 108, 669-675. https://doi.org/10.1016/j.wneu.2017.09.074

  7. 7. Kellermann, I., Kleindienst, A., Hore, N., Buchfelder, M. and Brandner, S. (2016) Early CSF and Serum S100B Concentrations for Outcome Prediction in Traumatic Brain Injury and Subarachnoid Hemorrhage. Clinical Neurology and Neurosurgery, 145, 79-83. https://doi.org/10.1016/j.clineuro.2016.04.005

  8. 8. Burke, J.E. and Dennis, E.A. (2009) Phospholipase A2 Biochemistry. Cardiovascular Drugs and Therapy, 23, 49-59. https://doi.org/10.1007/s10557-008-6132-9

  9. 9. Tellis, C.C. and Tselepis, A.D. (2014) Pathophysiological Role and Clinical Significance of Lipoprotein-Associated Phospholipase A₂ (Lp-PLA₂) Bound to LDL and HDL. Current Pharmaceutical Design, 20, 6256-6269. https://doi.org/10.2174/1381612820666140622200916

  10. 10. Xu, R.X., Zhang, Y., Li, X.L., et al. (2015) Relationship between Plasma Phospholipase A2 Concentrations and Lipoprotein Subfractions in Patients with Stable Coronary Artery Disease. Clinica Chimica Acta, 446, 195-200. https://doi.org/10.1016/j.cca.2015.04.032

  11. 11. Maiolino, G., Pedon, L., Cesari, M., et al. (2012) Lipoprotein-Associated Phospholipase A2 Activity Predicts Cardiovascular Events in High Risk Coronary Artery Disease Patients. PLoS ONE, 7, e48171. https://doi.org/10.1371/journal.pone.0048171

  12. 12. Cai, A., Li, G., Chen, J., Li, X., Li, L. and Zhou, Y. (2015) Increased Serum Level of Lp-PLA2 Is Independently Associated with the Severity of Coronary Artery Diseases: A Cross-Sectional Study of Chinese Population. BMC Cardiovascular Disorders, 15, Article No. 14. https://doi.org/10.1186/s12872-015-0001-9

  13. 13. Silva, I.T., Mello, A.P. and Damasceno, N.R. (2011) Antioxidant and Inflammatory Aspects of Lipoprotein-Associated Phospholipase A₂ (Lp-PLA₂): A Review. Lipids in Health and Disease, 10, 170. https://doi.org/10.1186/1476-511X-10-170

  14. 14. Wang, Y., Hu, S., Ren, L., et al. (2019) Lp-PLA(2) as a Risk Factor of Early Neurological Deterioration in Acute Ischemic Stroke with TOAST Type of Large Arterial Atherosclerosis. Neurological Research, 41, 1-8. https://doi.org/10.1080/01616412.2018.1493850

  15. 15. 李丽娟. 同型半胱氨酸水平与脑梗死患者严重程度及神经缺损功能的关系研究[J]. 实验与检验医学, 2018, 36(6): 925-926+973.

  16. 16. Chung, H., Kwon, H.M., Kim, J.Y., et al. (2014) Lipoprotein-Associated Phospholipase A₂ Is Related to Plaque Stability and Is a Potential Biomarker for Acute Coronary Syndrome. Yonsei Medical Journal, 55, 1507-1515. https://doi.org/10.3349/ymj.2014.55.6.1507

  17. 17. Yang, F., Ma, L., Zhang, L., et al. (2019) Association between Serum Lipoprotein-Associated Phospholipase A2, Ischemic Modified Albumin and Acute Coronary Syndrome: A Cross-Sectional Study. Heart Vessels, 34, 1608-1614. https://doi.org/10.1007/s00380-019-01403-3

  18. 18. 《脂蛋白相关的磷脂酶A2临床应用中国专家建议》发布[J]. 中国医药导刊, 2015, 17(11): 1154.

  19. 19. 曹雄彬, 宫丽, 匡良洪, 等. 脑出血患者微创抽吸引流术前后白细胞介素-6、白细胞介素-10和磷脂酶A2水平变化及临床意义[J]. 微循环学杂志, 2016, 26(2): 46-48+52.

  20. 20. Rosso, C., Rosenbaum, D., Pires, C., et al. (2014) Lipoprotein-Associated Phospholipase A2 during the Hyperacute Stage of Ischemic and Hemorrhagic Strokes. Journal of Stroke and Cerebrovascular Diseases, 23, e277-e282. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.11.024

  21. 21. 孙锴, 王焱, 王大同, 杨龙, 程言博. Lp-PLA2、Hcy表达水平与动脉瘤性蛛网膜下腔出血预后的关系[J]. 热带医学杂志, 2019, 19(12): 1519-1523.

  22. 22. 吴凤娇, 母迷迷, 何晶, 马华, 郭术俊, 宋传旺. 胰岛素样生长因子1对小鼠肺泡上皮细胞吞噬功能和白细胞介素10产生的影响[J]. 上海交通大学学报(医学版), 2019, 39(3): 253-257.

  23. 23. Rotwein, P. (2017) Diversification of the Insulin-Like Growth Factor 1 Gene in Mammals. PLoS ONE, 12, e0189642. https://doi.org/10.1371/journal.pone.0189642

  24. 24. Gligorijevic, N., Robajac, D. and Nedic, O. (2019) Enhanced Platelet Sensitivity to IGF-1 in Patients with Type 2 Diabetes Mellitus. Biochemistry (Mosc), 84, 1213-1219. https://doi.org/10.1134/S0006297919100109

  25. 25. van Bunderen, C.C., van Nieuwpoort, I.C., van Schoor, N.M., Deeg, D.J., Lips, P. and Drent, M.L. (2010) The Association of Serum Insulin-Like Growth Factor-I with Mortality, Cardiovascular Disease, and Cancer in the Elderly: A Population-Based Study. The Journal of Clinical Endocrinology & Metabolism, 95, 4616-4624. https://doi.org/10.1210/jc.2010-0940

  26. 26. Zemva, J. and Schubert, M. (2011) Central Insulin and Insulin-Like Growth Factor-1 Signaling: Implications for Diabetes Associated Dementia. Current Diabetes Reviews, 7, 356-366. https://doi.org/10.2174/157339911797415594

  27. 27. Yeap, B.B., Paul Chubb, S.A., Lopez, D., Ho, K.K., Hankey, G.J. and Flicker, L. (2013) Associations of Insulin-Like Growth Factor-I and Its Binding Proteins and Testosterone with Frailty in Older Men. Clinical Endocrinology, 78, 752-759. https://doi.org/10.1111/cen.12052

  28. 28. Duron, E., Funalot, B., Brunel, N., et al. (2012) Insulin-Like Growth Factor-I and Insulin-Like Growth Factor Binding Protein-3 in Alzheimer’s Disease. The Journal of Clinical Endocrinology & Metabolism, 97, 4673-4681. https://doi.org/10.1210/jc.2012-2063

  29. 29. Godau, J., Herfurth, M., Kattner, B., Gasser, T. and Berg, D. (2010) Increased Serum Insulin-Like Growth Factor 1 in Early Idiopathic Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 81, 536-538. https://doi.org/10.1136/jnnp.2009.175752

  30. 30. Tölli, A., Höybye, C., Bellander, B.M. and Borg, J. (2019) Impact of Pituitary Dysfunction on Cognitive and Global Outcome after Traumatic Brain Injury and Aneurysmal Subarachnoid Haemorrhage. Journal of Rehabilitation Medicine, 51, 264-272. https://doi.org/10.2340/16501977-2531

  31. 31. Jonasdottir, A.D., Sigurjonsson, P., Olafsson, I.H., Karason, S., Sigthorsson, G. and Sigurjonsdottir, H.A. (2018) Hypopituitarism 3 and 12 Months after Traumatic Brain Injury and Subarachnoid Haemorrhage. Brain Injury, 32, 310-317. https://doi.org/10.1080/02699052.2017.1418906

  32. 32. Goto, Y., Oshino, S., Nishino, A., et al. (2016) Pituitary Dysfunction after Aneurysmal Subarachnoid Hemorrhage in Japanese Patients. Journal of Clinical Neuroscience, 34, 198-201. https://doi.org/10.1016/j.jocn.2016.07.003

  33. 33. Can, A., Gross, B.A., Smith, T.R., et al. (2016) Pituitary Dysfunction after Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Neurosurgery, 79, 253-264. https://doi.org/10.1227/NEU.0000000000001157

  34. 34. Bacigaluppi, S., Robba, C. and Bragazzi, N.L. (2021) Pituitary Dysfunction after Aneurysmal Subarachnoidal Hemorrhage. In: Handbook of Clinical Neurology, Vol. 181, Elsevier, Amsterdam, 41-49. https://doi.org/10.1016/B978-0-12-820683-6.00004-X

  35. 35. Giritharan, S., Cox, J., Heal, C.J., Hughes, D., Gnanalingham, K. and Kearney, T. (2017) The Prevalence of Growth Hormone Deficiency in Survivors of Subarachnoid Haemorrhage: Results from a Large Single Centre Study. Pituitary, 20, 624-634. https://doi.org/10.1007/s11102-017-0825-7

  36. 36. Nowrangi, D.S., McBride, D., Manaenko, A., Dixon, B., Tang, J. and Zhang, J.H. (2019) rhIGF-1 Reduces the Permeability of the Blood-Brain Barrier Following Intracerebral Hemorrhage in Mice. Experimental Neurology, 312, 72-81. https://doi.org/10.1016/j.expneurol.2018.11.009

  37. 37. Tizon, B., Sahoo, S., Yu, H., et al. (2010) Induction of Autophagy by Cystatin C: A Mechanism That Protects Murine Primary Cortical Neurons and Neuronal Cell Lines. PLoS ONE, 5, e9819. https://doi.org/10.1371/journal.pone.0009819

  38. 38. Liu, Y., Cai, H., Wang, Z., et al. (2013) Induction of Autophagy by Cystatin C: A Potential Mechanism for Prevention of Cerebral Vasospasm after Experimental Subarachnoid Hemorrhage. European Journal of Medical Research, 18, 21. https://doi.org/10.1186/2047-783X-18-21

  39. 39. 王雅楠, 王晓华, 吴洁, 徐亚男, 潘濛, 花放. 低水平的血清胱抑素C与脑动脉瘤关系密切[J]. 神经损伤与功能重建, 2017, 12(3): 206-208.

  40. 40. Zhang, D., Wu, W., Yan, H., et al. (2016) Upregulation of HMGB1 in Wall of Ruptured and Unruptured Human Cerebral Aneurysms: Preliminary Results. Neurological Sciences, 37, 219-226. https://doi.org/10.1007/s10072-015-2391-y

  41. 41. Tang, D., Kang, R., Zeh, H.J. and Lotze, M.T. (2011) High-Mobility Group Box 1, Oxidative Stress, and Disease. Antioxidants & Redox Signaling, 14, 1315-1335. https://doi.org/10.1089/ars.2010.3356

  42. 42. Venereau, E., De Leo, F., Mezzapelle, R., Careccia, G., Musco, G. and Bianchi, M.E. (2016) HMGB1 as Biomarker and Drug Target. Pharmacological Research, 111, 534-544. https://doi.org/10.1016/j.phrs.2016.06.031

  43. 43. Chen, Y., Li, G., Liu, Y., Werth, V.P., Williams, K.J. and Liu, M.L. (2016) Translocation of Endogenous Danger Signal HMGB1 from Nucleus to Membrane Microvesicles in Macrophages. Journal of Cellular Physiology, 231, 2319-2326. https://doi.org/10.1002/jcp.25352

  44. 44. Sun, Q., Wu, W., Hu, Y.C., et al. (2014) Early Release of High-Mobility Group Box 1 (HMGB1) from Neurons in Experimental Subarachnoid Hemorrhage in Vivo and in Vitro. Journal of Neuroinflammation, 11, 106. https://doi.org/10.1186/1742-2094-11-106

  45. 45. King, M.D., Laird, M.D., Ramesh, S.S., et al. (2010) Elucidating Novel Mechanisms of Brain Injury Following Subarachnoid Hemorrhage: An Emerging role for Neuroproteomics. Neurosurgical Focus, 28, E10. https://doi.org/10.3171/2009.10.FOCUS09223

  46. 46. Nakahara, T., Tsuruta, R., Kaneko, T., et al. (2009) High-Mobility Group Box 1 Protein in CSF of Patients with Subarachnoid Hemorrhage. Neurocritical Care, 11, 362-368. https://doi.org/10.1007/s12028-009-9276-y

期刊菜单