Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59210 , 7 pages
10.12677/ACM.2022.12121624

MiR-21在托法替布治疗中重度活动性类风湿性关节炎中的作用研究

韩玲玲1,管春平2,周谦1,陈梦珂1,邢倩3*

1山东第一医科大学(山东省医学科学院)研究生部,山东 济南

2青岛大学附属青岛市市立医院,山东 青岛

3青岛大学附属青岛市市立医院风湿免疫科,山东 青岛

收稿日期:2022年11月14日;录用日期:2022年12月8日;发布日期:2022年12月16日

摘要

目的:探讨初发类风湿性关节炎(RA)患者应用托法替布前后患者外周血单个核细胞(PBMC)中miR-21、STAT3mRNA表达变化及其临床意义。方法:选择初发RA患者60例,健康体检者(HC) 40例。初发RA患者给予甲氨蝶呤(MTX)治疗3个月;3个月后单用MTX病情控制不佳的患者联合托法替布治疗,随访3个月。采用qRT-PCR法检测受试者服药前后PBMC中miR-21、STAT3mRNA表达。观察并记录两组试验研究对象实验室检查资料,包括血沉(ESR)、高敏C反应蛋白(CRP)、类风湿因子(RF)、抗环瓜氨酸肽抗体(CCP)、并进行疾病活动活度评分(DAS28)。结果:初发RA患者PBMC中miR-21与健康人相比表达显著降低,而STAT3mRNA表达显著升高(p均 < 0.01)。与单用MTX相比,病情控制不佳加用托法替布后PBMC中miR-21表达升高,而STAT3mRNA表达降低(p均 < 0.01)。Pearson相关分析示,初发RA患者PBMC中miR-21表达与CCP、DAS28评分呈负相关关系(p均 < 0.05)。初发RA患者PBMC中miR-21表达与STAT3mRNA表达呈负相关关系(p均 < 0.05)。ROC曲线分析显示,PBMC中miR-21、CCP表达诊断RA的曲线下面积(AUC)分别为0.7531、0.8338,二者联合诊断的AUC为0.8950。结论:RA患者PBMC miR-21表达降低,STAT3mRNA表达升高,两者可能参与RA发生、发展。RA患者CCP联合miR-21对RA发生有一定的临床诊断价值。

关键词

类风湿性关节炎,MiR-21,托法替布,ROC曲线

The Research of the Role of MiR-21 in the Treatment of Moderate and Severe Active Rheumatoid Arthritis with Tofacitinib

Lingling Han1, Chunping Guan2, Qian Zhou1, Mengke Chen1, Qian Xing3*

1Department of Graduate, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong

2Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao Shandong

3Department of Rheumatology and Immunology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao Shandong

Received: Nov. 14th, 2022; accepted: Dec. 8th, 2022; published: Dec. 16th, 2022

ABSTRACT

Objective: To investigate the changes of miR-21 and STAT3mRNA expression inperipheral blood mononuclear cells (PBMC) of patients with newly diagnosed rheumatoid arthritis (RA) before and after treatment with tofacitinib and their clinical significance. Methods: Sixty patients with newly diagnosed RA and 40 healthy controls (HC) were enrolled in this study. Patients with newly diagnosed RA were treated with methotrexate (MTX) for 3 months. After 3 months, the patients who were poorly controlled with MTX alone were treated with tofacitinib and followed up for 3 months. The expressions of miR-21 and STAT3mRNA in PBMC were detected by qRT-PCR. The laboratory examination data of the two groups were observed and recorded, including erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (CRP), rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (CCP), and disease activity score 28 (DAS28). Results: The expression of miR-21 in PBMC of RA patients was significantly lower than that of healthy people, while STAT3mRNA expression was significantly higher than that of healthy people (all p < 0.01). Compared with MTX alone, the expression of miR-21 in PBMC increased, while the expression of STAT3mRNA decreased in tofacitinib plus MTX group (all p < 0.01). Pearson correlation analysis showed that the expression of miR-21 in PBMC of RA patients was negatively correlated with CCP and DAS28 scores (all p < 0.05). There was a negative correlation between the expression of miR-21 and STAT3mRNA in PBMC of newly diagnosed RA patients (p < 0.05). ROC curve analysis showed that the area under the curve (AUC) of miR-21 and CCP expression in PBMC for the diagnosis of RA was 0.7531 and 0.8338, respectively, and the AUC of combined diagnosis of miR-21 and CCP was 0.8950. Conclusion: The expression of miR-21 in PBMC of RA patients is decreased, and the expression of STAT3mRNA is increased, which may be involved in the occurrence and development of RA. CCP combined with miR-21 has a certain clinical diagnostic value for the occurrence of RA.

Keywords:Rheumatoid Arthritis, MiR-21, Tofacitinib, ROC Curve

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

类风湿性关节炎(rheumatoid arthritis, RA)是一种慢性进行性自身免疫性疾病,其主要临床特征是对称性多发性关节炎。其基本病理改变为滑膜炎,可侵袭关节软骨、骨、关节囊,最终导致关节畸形和功能丧失。研究表明,遗传因素和环境因素在类风湿关节炎的病因中具有重要而复杂的作用 [1]。RA的具体发病机制尚不明确,目前认为RA的发病与细胞免疫功能紊乱,尤其是与JAK/STAT通路异常激活息息相关 [2]。JAK/STAT信号通路参与调控RA关节滑膜中细胞因子的产生和激活,调节该疾病的病理生理过程。托法替布(tofacitinib)是一种新型小分子靶向药,作为JAK抑制剂,通过选择性抑制细胞内JAK1和JAK3信号转导通路,抑制CD4+ T细胞增殖,减少IFN-γ、IL-9等炎性因子的产生。2017年3月被中国食品药品监督管理总局批准上市,在RA活动期的治疗中取得了良好疗效,得到中国、ACR、EULAR等国际各大指南的推荐。

非编码RNA占细胞总RNA含量的99%,与DNA甲基化和组蛋白修饰一起,在疾病的发生发展的遗传学机制中起着重要作用 [3]。非编码RNA可以由细胞以游离RNA分子的形式分泌,也可以被包裹到细胞外的囊泡中,如外周小体,并可以在包括血液、尿液和滑液 [4] [5] 在内的生物液中被识别。MicroRNA (miRNA)是一种多功能非编码RNA分子,具有18~25个核苷酸的长度 [6]。MicroRNA通过与靶mRNA的3’端非翻译区(3’untranslated region, 3’UTR)完全互补结合来调节mRNA的稳定性和翻译,导致靶向mRNA降解或抑制其翻译过程,调节下游途径,是细胞发育、细胞增殖、分化、凋亡等许多基本生物过程的重要调控器,从而参与癌症 [7] [8] [9] 及自身免疫病 [10] [11] [12] [13] 等疾病的发生和发展 [14] [15] [16] [17]。研究认为,它们与疾病活动性有关联,因此miRNA被认为是潜在的新型生物标志物 [18]。miRNA在RA患者滑膜成纤维细胞(Fibroblast-like synoviocytes, FLS)、外周血单个核细胞(peripheral blood mononuclear cells, PBMC)和T淋巴细胞(T lymphocytes)均有不同程度的表达差异,其中包括miR-21,miR-146,miR-155 [19],miR-125a,miR-223 [20],这些miRNA表达与免疫紊乱、炎症及细胞的分化有关。托法替布作为JAK抑制剂,抑制JAK/STAT通路发挥作用 [21],在RA成纤维样滑膜细胞中可影响细胞因子诱导的炎症通路的多个过程,发挥了抗炎的作用。课题组前期研究筛查RA患者血清miRNAs的表达发现,与健康人相比,初发RA患者血清miR-21表达有差异,生信分析预测STAT3是miR-21潜在靶点,因此本研究提出假说miR-21可能通过调控JAK/STAT通路参与RA的发病。同时探讨托法替布对RA患者PBMC中miR-21的影响,为RA的靶向治疗提供理论依据。

2. 资料与方法

2.1. 临床资料

选取2019年12月~2022年6月在我院接受治疗的RA患者60例纳入研究,纳入标准:① 符合美国风湿病学会(American College of Rheumatology, ACR)和欧洲抗风湿联盟(European League Against Rheumatism,EULAR) 2010年关于RA的分类诊断标准和评分系统;② 入院前未接受激素、免疫抑制剂及生物制剂的治疗;③ 年龄18~75岁;④ 所有患者DAS28-ESR评分均 > 3.2。同时纳入40例健康体检者作对照。排除标准:① 合并其他自身免疫系统疾病;② 有严重的心、肝、肾等疾病;③ 有细菌性、支原体、病毒性、真菌性、分枝杆菌性或其他感染的病史;④ 无法规律配合者。同时纳入40例健康人作对照。研究方案获得青岛市市立医院伦理委员会批准,受试对象均签署了书面知情同意书。

2.2. 治疗方法

MTX组:初发RA患者,给予甲氨蝶呤(methotrexate, MTX) 10 mg口服每周1次治疗12周;联合JAKi组:12周后单用MTX病情控制不佳的患者加用托法替布5 mgbid,继续服药12周。患者依从性良好,因不能耐受MTX恶心呕吐脱落2例。

2.3. 样本收集和检测

采集所有研究对象清晨空腹静脉血5 ml全血样本。收集后,立即通过梯度密度离心处理样品以分离外周血单核细胞(PBMC)。通过逆转录定量聚合酶链反应(RT-qPCR)检测PBMCs中miR-21和STAT3的表达。同理,采集病情控制不佳患者(DAS28评分 > 2.6)加用托法替布前后的清晨空腹静脉血5 ml,检测并通过RT-qPCR测定了RA患者PBMCs中miR-21和STAT3mRNA的表达。

2.4. RT-qPCR

总RNA由Trizol法提取,经分光光度仪鉴定,提取的总RNA浓度和纯度合格。以RNA为模板,反转录为cDNA。以cDNA为模板,进行qPCR反应。miR-21上游引物:5'-GGGGATTTCTTGGTTTGTGAA-3',下游引物为天根自带通用下游引物。扩增程序及定量如下:预变性(95℃ 15 min),扩增(94℃ 20 s、65℃ 30 s、72℃ 34 s) 5次循环,变性、退火、延伸(94℃ 20 s,60℃ 34 s) 40次循环。记录Ct值,U6作为miRNA计算的内部参考GAPDH用作STAT3计算的内部参考,采用2−ΔΔCt的方式分析基因表达。mRNA的引物来自生工生物技术,miRNA的引物来自天根。

2.5. 统计分析

GraphPad Prism应用于数据分析和图形构建。计量资料以 x ¯ ± s 表示,多组间比较采用方差分析,两两比较采用独立样本t检验。相关性分析采用Pearson相关分析法。采用ROC曲线评价miR-21对RA预后不佳的预测价值。p值 < 0.05表示差异有统计学意义。

3. 结果

3.1. 两组研究对象PBMC的miR-21及STAT3mRNA比较

初发RA患者外周血PBMC中miR-21与健康人相比表达显著降低,而STAT3mRNA表达显著升高(p均 < 0.01)。与MTX单药组(加药前)相比,联合托法替布组(加药后) PBMC中miR-21表达升高,而STAT3mRNA表达降低(p均 < 0.01)。见表1表2

Table 1. Relative expression of miR-21 and STAT3mRNA in PBMC of HC group and newly diagnosed RA group

表1. HC组与初发RA组PBMC中miR-21及STAT3mRNA相对表达量

注:与HC组相比,**p < 0.01。

Table 2. Relative expression of miR-21 and STAT3mRNA in PBMC of MTX group and combined JAKi group

表2. MTX组与联合JAKi组PBMC中miR-21及STAT3mRNA相对表达量

注:与联合JAKi组相比,ΔΔp < 0.01 (单用MTX组,即单用MTX3个月疾病活动度高,病情控制不佳组,联合JAKi组为前者联用托法替布组)。

3.2. MiR-21、STAT3mRNA与初发RA患者疾病活动度及炎性指标的相关性分析

Pearson相关分析显示,初发RA患者PBMC中miR-21的相对表达水平与血清CCP水平及DAS28评分呈负相关(r分别为−0.6763、−0.7363,p均 < 0.05),与CRP、ESR、RF无显著相关性(r分别为−0.3723、−0.4632、−0.3561,p < 0.05)。RA患者PBMC中miR-21表达与STAT3mRNA表达呈负相关关系(r为−0.7390,p < 0.05)。

3.3. MiR-21、CCP对初发RA的诊断价值

PBMC中miR-21相对表达量诊断RA的曲线下面积(AUC)为0.7531 (95% CI: 0.6317~0.8745)其cutoff值为0.5,此时诊断RA的灵敏度为95%,特异性为55%;CCP诊断RA的曲线下面积(AUC)为0.8338 (95% CI: 0.7332~0.9343)其cutoff值为0.55,此时诊断RA的灵敏度为75%,特异性为80%;两者联合诊断RA的曲线下面积(AUC)为0.8950 (95% CI: 0.8177~0.9723)其cutoff值为0.675,此时诊断RA的灵敏度为90%,特异性为77.5%。见图1

Figure 1. ROC curves of miR-21 and CCP levels in PBMC for diagnosis of RA

图1. PBMC中miR-21、CCP水平诊断RA的ROC曲线

4. 讨论

RA疾病早期病理表现为滑膜组织间质出现炎症细胞浸润,为细胞浸润性和渗出性,炎症因子水平增加 [22]。RA疾病发生时患者关节已经出现一定程度损伤,是导致残疾的关节疾病之一,但其发病机制尚不明确。近来已有许多研究表明miRNAs与RA疾病发生发展密切相关。

已有学者在人的外周血T细胞、外周血PBMC细胞、以及滑膜细胞中做出研究,结果表明,miR-21参与炎症的发展。Shengwei Jin的研究表明 [23],miR-21在调节Th17/Treg平衡中发挥作用。在RA患者中,miR-21与Treg/Th17比值呈正相关。miR-21可以上调FoxP3的表达以促进Treg的分化。转染miR-21的初始CD4+ T细胞倾向于分化为Treg细胞,而不是Th17细胞。也有研究证明,在Th17细胞分化过程中,miR-21的表达明显低于对照组,这表明miR-21可能是炎症消退的一个重要因素,对炎症过程有负面调节作用 [24]。Hua-Song Zeng等在幼年特发性关节炎(JIA)患者PBMC中的研究显示,miR-21的表达明显低于健康对照组 [25]。本研究通过比较健康人与初发RA患者外周血PBMC中miR-21表达水平表明,miR-21在RA患者PBMC中的表达显著低于健康对照组(p < 0.05),这与前述研究得出的结论一致。同时,我们发现RA患者PBMC中STAT3 mRNA的表达显著高于健康对照组(p < 0.05),并与miR-21呈负相关,结合生物信息预测软件及前人RASF中荧光素酶报告基因实验 [26] 示miR-21靶向STAT3,我们猜测miR-21可能通过抑制STAT3的表达和STAT3的磷酸化来影响JAK/STAT信号通路,进而抑制炎症反应。而单用MTX病情控制不佳的患者加用托法替布后外周血PBMC中miR-21较加药前上升,提示托法替布作为JAK抑制剂,通过阻断JAK/STAT通路治疗类风湿性关节炎,还可能通过升高miR-21水平达到治疗效果。ROC分析发现,PBMC中miR-21表达及CCP对RA疾病的诊断的有一定价值,二者联合时诊断价值更高。提示miR-21水平检测弥补CCP高特异度,低灵敏度的不足,对于早发现早治疗RA,早期应用新型小分子靶向药等改善预后具有指导意义。

目前临床上衡量RA疾病活动的指标可分为客观指标、主观指标及综合性指标,客观指标包括压痛关节数、肿胀关节数、ESR、CRP等,主观指标包括疼痛关节数、晨僵时间等,综合指标包括DAS28、慢性关节炎系统性指数(CASI)等。ESR测定对疾病的诊断和鉴别、病情发展变化、疗效和预后都有明显意义。CRP是对RA急性期诊断及疗效观察有重要参考价值。一般在炎症反应组织损伤程度成正比,当病理状态恢复时含量下降,病情好转后,回复到正常水平的速度都比其它指标要快,但和ESR一样,CRP受多种因素的影响,只作为病情活动性的参考指标。miR-21表达水平与CCP及DAS28评分呈负相关,这提示miR-21的表达下调与RA病情活动性相关。

综上,本研究发现miR-21在RA患者外周血PBMC中表达下调可能与RA的发病有关,miR-21表达水平可作为RA疾病诊断的参考指标,CCP作为公认的特异性诊断指标,联合miR-21时诊断价值更高。本研究表明,托法替布作为JAK抑制剂,除了调节JAK/STAT通路,还可能通过调节miR-21发挥治疗作用。随着对miRNAs研究的深入,将使我们充分了解miRNAs在免疫系统及自身免疫性疾病复杂的基因表达调控中的作用,这不仅有助于我们理解免疫系统的平衡,更有助于我们利用miRNAs的作用靶点来调控免疫反应,为精准治疗类风湿关节炎提供新的治疗靶点。

基金项目

北京白求恩医学科学研究基金。

文章引用

韩玲玲,管春平,周 谦,陈梦珂,邢 倩. MiR-21在托法替布治疗中重度活动性类风湿性关节炎中的作用研究
The Research of the Role of MiR-21 in the Treatment of Moderate and Severe Active Rheumatoid Arthritis with Tofacitinib[J]. 临床医学进展, 2022, 12(12): 11269-11275. https://doi.org/10.12677/ACM.2022.12121624

参考文献

  1. 1. Scott, D.L., Wolfe, F. and Huizinga, T.W. (2010) Rheumatoid Arthritis. Lancet, 376, 1094-1108. https://doi.org/10.1016/S0140-6736(10)60826-4

  2. 2. Baldini, C., Moriconi, F.R., Galimberti, S., Libby, P. and De Caterina, R. (2021) The JAK-STAT Pathway: An Emerging Target for Cardiovascular Disease in Rheumatoid Arthritis and Myeloproliferative Neoplasms. European Heart Journal, 42, 4389-4400. https://doi.org/10.1093/eurheartj/ehab447

  3. 3. Palazzo, A.F. and Lee, E.S. (2015) Non-Coding RNA: What Is Functional and What Is Junk? Frontiers in Genetics, 6, Article 2. https://doi.org/10.3389/fgene.2015.00002

  4. 4. Jin, Z., Ren, J. and Qi, S. (2020) Human Bone Mesenchymal Stem Cells-Derived Exosomes Overexpressing MicroRNA-26a-5p Alleviate Osteoarthritis via Down-Regulation of PTGS2. International Immunopharmacology, 78, Article ID: 105946. https://doi.org/10.1016/j.intimp.2019.105946

  5. 5. Xie, F., Liu, Y.L., Chen, X.Y., et al. (2020) Role of MicroRNA, LncRNA, and Exosomes in the Progression of Osteoarthritis: A Review of Recent Literature. Orthopaedic Surgery, 12, 708-716. https://doi.org/10.1111/os.12690

  6. 6. Tavasolian, F., Abdollahi, E., Rezaei, R., et al. (2018) Altered Expression of MicroRNAs in Rheumatoid Arthritis. Journal of Cellular Biochemistry, 119, 478-487. https://doi.org/10.1002/jcb.26205

  7. 7. Fan, L., Chen, L., Ni, X., et al. (2017) Genetic Variant of miR-4293 rs12220909 Is Associated with Susceptibility to Non-Small Cell Lung Cancer in a Chinese Han Population. PLOS ONE, 12, e0175666. https://doi.org/10.1371/journal.pone.0175666

  8. 8. He, Y., Cui, Y., Wang, W., et al. (2011) Hypomethylation of the hsa-miR-191 Locus Causes High Expression of hsa-miR-191 and Promotes the Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma. Neoplasia, 13, 841-853. https://doi.org/10.1593/neo.11698

  9. 9. Lin, S., Pan, L., Guo, S., et al. (2013) Prognostic Role of microRNA-181a/b in Hematological Malignancies: A Meta-Analysis. PLOS ONE, 8, e59532. https://doi.org/10.1371/journal.pone.0059532

  10. 10. Xie, L. and Xu, J. (2018) Role of MiR-98 and Its Underlying Mechanisms in Systemic Lupus Erythematosus. The Journal of Rheumatology, 45, 1397-1405. https://doi.org/10.3899/jrheum.171290

  11. 11. Senousy, M.A., Helmy, H.S., Fathy, N., Shaker, O.G. and Ayeldeen, G.M. (2019) Association of MTMR3 rs12537 at miR-181a Binding Site with Rheumatoid Arthritis and Systemic Lupus Erythematosus Risk in Egyptian Patients. Scientific Reports, 9, Article No. 12299. https://doi.org/10.1038/s41598-019-48770-5

  12. 12. Jang, S.I., Tandon, M., Teos, L., et al. (2019) Dual Function of miR-1248 Links Interferon Induction and Calcium Signaling Defects in Sjögren’s Syndrome. EBioMedicine, 48, 526-538. https://doi.org/10.1016/j.ebiom.2019.09.010

  13. 13. Iwamoto, N., Vettori, S., Maurer, B., et al. (2016) Downregulation of miR-193b in Systemic Sclerosis Regulates the Proliferative Vasculopathy by Urokinase-Type Plasminogen Activator Expression. Annals of the Rheumatic Diseases, 75, 303-310. https://doi.org/10.1136/annrheumdis-2014-205326

  14. 14. Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002

  15. 15. Mo, Y.Y. (2012) MicroRNA Regulatory Networks and Human Disease. Cellular and Molecular Life Sciences, 69, 3529-3531. https://doi.org/10.1007/s00018-012-1123-1

  16. 16. Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Hamidollah Ghaffari, S. (2019) An Overview of microRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. https://doi.org/10.1002/jcp.27486

  17. 17. Ding, H., Gao, G., Zhang, L., et al. (2016) The Protective Effects of Curculigoside A on Adjuvant-Induced Arthritis by Inhibiting NF-κB/NLRP3 Activation in Rats. International Immunopharmacology, 30, 43-49. https://doi.org/10.1016/j.intimp.2015.11.026

  18. 18. Alevizos, I. and Illei, G.G. (2010) MicroRNAs as Biomarkers in Rheumatic Diseases. Nature Reviews Rheumatology, 6, 391-398. https://doi.org/10.1038/nrrheum.2010.81

  19. 19. Tavasolian, F., Hosseini, A.Z., Soudi, S. and Naderi, M. (2020) miRNA-146a Improves Immunomodulatory Effects of MSC-Derived Exosomes in Rheumatoid Arthritis. Current Gene Therapy, 20, 297-312. https://doi.org/10.2174/1566523220666200916120708

  20. 20. Evangelatos, G., Fragoulis, G.E., Koulouri, V. and Lambrou, G.I. (2019) MicroRNAs in Rheumatoid Arthritis: From Pathogenesis to Clinical Impact. Autoimmunity Re-views, 18, Article ID: 102391. https://doi.org/10.1016/j.autrev.2019.102391

  21. 21. Boyle, D.L., Soma, K., Hodge, J., et al. (2015) The JAK Inhib-itor Tofacitinib Suppresses Synovial JAK1-STAT Signalling in Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 74, 1311-1316. https://doi.org/10.1136/annrheumdis-2014-206028

  22. 22. Innala, L., Sjöberg, C., Möller, B., et al. (2016) Co-Morbidity in Patients with Early Rheumatoid Arthritis-Inflammation Matters. Arthritis Research & Therapy, 18, Ar-ticle No. 33. https://doi.org/10.1186/s13075-016-0928-y

  23. 23. Jin, S., Chen, H., Li, Y., et al. (2018) Maresin 1 Improves the Treg/Th17 Imbalance in Rheumatoid Arthritis through miR-21. Annals of the Rheumatic Diseases, 77, 1644-1652. https://doi.org/10.1136/annrheumdis-2018-213511

  24. 24. Sheedy, F.J. (2015) Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Frontiers in Immunology, 6, Article 19. https://doi.org/10.3389/fimmu.2015.00019

  25. 25. Li, H.W., Xie, Y., Li, F., et al. (2016) Effect of miR-19a and miR-21 on the JAK/STAT Signaling Pathway in the Peripheral Blood Mononuclear Cells of Patients with Systemic Juvenile Idiopathic Arthritis. Experimental and Therapeutic Medicine, 11, 2531-2536. https://doi.org/10.3892/etm.2016.3188

  26. 26. Li, H.W. and Zeng, H.S. (2020) Regulation of JAK/STAT Signal Pathway by miR-21 in the Pathogenesis of Juvenile Idiopathic Arthritis. World Journal of Pediatrics, 16, 502-513. https://doi.org/10.1007/s12519-019-00268-w

  27. NOTES

    *通讯作者。

期刊菜单