Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 66888 , 6 pages
10.12677/ACM.2023.1361286

NR4A1在肥胖相关炎症反应中的研究进展

信立霞1,何天阳1,张玉超2,左丹2,王延淼2,刘元涛3*

1大连医科大学研究生院,辽宁 大连

2青岛市市立医院内分泌科,山东 青岛

3山东大学齐鲁医院(青岛)内分泌科,山东 青岛

收稿日期:2023年5月9日;录用日期:2023年6月2日;发布日期:2023年6月12日

摘要

孤核受体NR4A1作为转录调节因子,它可识别特异性受体并在转录水平调控线粒体自噬和细胞凋亡等生物学过程的基因表达,在物质代谢、能量平衡、炎症反应等机体活动中发挥重要作用。肥胖是导致胰岛素抵抗和2型糖尿病等代谢性疾病的重要危险因素,它的主要特征是脂肪组织低度慢性炎症和巨噬细胞浸润。肥胖的发展过程中,营养过剩产生的危险分子信号会激活核苷酸结合寡聚化结构域样受体蛋白3 (nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)炎症小体信号通路,导致炎症反应和细胞焦亡。本文旨在阐述肥胖与炎症反应的联系、NR4A1在炎症反应中的应用,为治疗肥胖及预防相关炎症性疾病提供新的思路。

关键词

NR4A1,肥胖,炎症反应,NLRP3炎症小体信号通路,细胞焦亡

Research Progress of NR4A1 in Obesity-Related Inflammatory Response

Lixia Xin1, Tianyang He1, Yuchao Zhang2, Dan Zuo2, Yanmiao Wang2, Yuantao Liu3*

1Graduate School of Dalian Medical University, Dalian Liaoning

2Department of Endocrinology, Qingdao Municipal Hospital, Qingdao Shandong

3Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao), Qingdao Shandong

Received: May 9th, 2023; accepted: Jun. 2nd, 2023; published: Jun. 12th, 2023

ABSTRACT

As a transcriptional regulator, orphan nuclear receptor NR4A1 can identify specific receptors and regulate gene expression in biological processes such as mitochondrial autophagy and apoptosis at the transcriptional level, and play an important role in body activities such as material metabolism, energy balance and inflammation. Obesity is an important risk factor for metabolic diseases such as insulin resistance and type 2 diabetes. It is characterized by low-grade chronic inflammation of adipose tissue and macrophage infiltration. In the development of obesity, the risk molecular signal produced by over nutrition will activate the NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammatory body signal pathway, leading to inflammatory response and pyroptosis. The purpose of this article is to explain the relationship between obesity and inflammation and the application of NR4A1 in inflammation, and to provide new ideas for the treatment of obesity and prevention of related inflammatory diseases.

Keywords:NR4A1, Obesity, Inflammatory Response, NLRP3 Inflammasome Signaling Pathway, Pyroptosis

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

肥胖主要是由于能量摄入过多,导致脂肪堆积而导致的慢性代谢性疾病。随着社会经济水平的提高,居民肥胖和超重的患病率在全球范围内急剧增加,而中国超重和肥胖人数居全球首位,严峻的形势已成为中国亟待解决的重大公共卫生问题 [1] [2] 。多项研究显示,肥胖可导致全身慢性炎症状态及胰岛素抵抗、糖尿病等多种代谢相关的并发症,炎症因子以及炎症反应是肥胖等代谢性疾病的重要发病机制 [3] 。目前研究发现NLRP3炎症体与和巨噬细胞浸润与肥胖的发生、发展密切相关,慢性炎症反应使肥胖成为导致2型糖尿病、胰岛素抵抗的重要危险因素,通过抑制炎症反应将来有可能成为改善肥胖、糖尿病的有效策略之一。孤核受体NR4A1是一种参与调控细胞生长分化、物质代谢、炎症反应等生命活动的基因表达的转录调节因子,NR4A1及其家族已经成为一项重要的潜在治疗靶点。

2. NR4A1的结构与功能

核受体NR4A是一类由配体(如脂类激素)激活的转录因子,主要存在于细胞质或细胞核内。核受体参与了几乎所有生物过程的基因表达,包括细胞增殖和分化、细胞凋亡、新陈代谢和肿瘤发生等过程 [4] 。孤核受体NR4A1属于核受体NR4A (包含NR4A1, NR4A2, NR4A3)超家族,可在人体内如卵巢、输卵管、肾上腺、脑垂体等多处器官组织表达,参与了肥胖等代谢性疾病、炎症反应、肿瘤等疾病的发生发展 [5] 。

孤核受体NR4A1主要在细胞质或细胞核内发挥转录调节作用,在细胞质中通过结合靶基因的DNA调节转录水平;在细胞核中,核受体可通过与核质靶基因结合以实现转录翻译 [6] 。NR4A1存在于人类的第12号染色体上,其蛋白质结构由598个氨基酸组成,包含六个功能域构成:DNA结合域(含锌指结构)、转录激活域(氨基酸长度可改变)、铰链区(构象可改变)、配体结合域(含二聚化位点)、转录激活域(识别配体)、可变羧基端结构域 [7] 。各个结构域共同作用,使NR4A1核受体能够识别并结合特异性的配体,具备转录活性 [8] 。孤核受体NR4A1参与细胞的许多过程,它们的活性主要通过基因表达 [9] 、翻译修饰以及通过蛋白质之间的相互作用来调节 [10] 。NR4A亚家族成员在代谢性疾病的调节中具有重要作用,NR4A1功能亢进或障碍可以影响很多代谢组织(如肝脏、脂肪组织、骨骼肌等)的代谢过程,比如脂质代谢、碳水化合物的代谢以及能量的平衡 [11] 等。

3. NR4A1在炎症性疾病中的应用

NR4A亚家族参与调控炎症反应平衡的负反馈机制,这种负反馈的机制可以使NR4A亚家族抵抗大部分的炎症反应 [12] 。NR4A亚家族的成员可以作为调控细胞炎症反应的抑制剂,他们参与了巨噬细胞、内皮细胞等多种细胞类型炎症反应的负反馈调节 [13] [14] 。在炎症反应条件下,存在于线粒体中泛素化的NR4A1对自噬敏感,并揭示了核受体NR4A1通过依赖性清除发炎线粒体的机制以减轻炎症反应 [15] 。有研究证明,NR4A1可以限制线粒体的代谢转录重编程,进而抵抗促炎性巨噬细胞中的炎症反应 [16] ,由于对巨噬细胞炎症反应的负反馈调节,NR4A1可作为关键靶点治疗动脉粥样硬化等炎症性疾病。有实验发现NR4A1在动脉粥样硬化病变的巨噬细胞中表达,也可减轻巨噬细胞的炎症反应 [17] 。转录因子NR4A1通过调节脑脊髓炎小鼠中巨噬细胞产生儿茶酚胺,限制神经炎症 [18] 。在脓毒症导致的全身多器官炎症反应中,NR4A1可抑制NF-κB活性及促炎细胞因子的释放来抵抗炎症反应,此研究中NR4A1被证明是NF-κB介导的炎症通路的关键制动器 [19] 。NR4A1可以靶向诱导线粒体凋亡,有研究证明雷公藤可以促进NR4A1从细胞核转运至线粒体发生泛素化,与p62相结合并对自噬敏感,清除炎症线粒体减轻炎症反应 [20] 。Qin Shao [21] 等人通过实验验证了NR4A1高表达可以通过抑制活化巨噬细胞的COX-2路径发挥抗炎作用。

虽然大量研究表明NR4A1具有抑制炎症反应的作用,但其在肥胖及代谢性疾病中的炎症反应作用仍需进一步证实。有研究表明,NR4A1在巨噬细胞逆转录病毒的表达,可诱导参与炎症和细胞基因的表达,NR4A1参与促进了巨噬细胞炎症反应的进展 [22] 。也有实验证明,在乳腺癌小鼠中,NR4A1过表达会增加小鼠的炎症反应和疾病转移风险 [23] 。NR4A1的过表达或基因敲低可通过靶向控制SerpinA3基因变化,调节炎症反应 [24] 。在动脉粥样硬化炎症刺激下的巨噬细胞中,NR4A1是高度诱导的,表明其在巨噬细胞炎症反应中发挥了作用 [25] 。由此可见NR4A1在炎症反应中具有双向调节机制,作为机体生物过程的关键调节因子,核受体的抗炎作用使他们成为治疗多种炎症性疾病(如代谢紊乱、心血管疾病、炎症性肠病)的潜在靶点。

4. NR4A1与肥胖相关炎症反应

诸多证据显示,肥胖的脂肪组织中有局部炎症反应,表现为全身炎症标志物增加 [3] 。肥胖以脂肪组织低度慢性炎症和脂肪组织中巨噬细胞浸润为主要特征 [1] 。炎症反应在肥胖引发的一系列代谢性疾病中发挥了重要作用,与2型糖尿病、胰岛素抵抗、动脉粥样硬化、脂肪肝、肿瘤等疾病密切相关 [26] [27] 。营养过度摄入导致肥胖,可以被先天的模式识别受体(pattern recognition receptors, PRRs)识别病原体并启动脂肪组织和细胞的炎症反应和应激反应,呈低度慢性炎症状态 [28] 。高脂肪饮食导致脂肪酸增加可以激活NLRP3炎性体及炎症反应 [29] ,导致肥胖的前提是会被PRRs识别,激活代谢组织的应激和炎症反应,导致低度慢性炎症。Casepase-1 (cysteinyl aspartate specific proteinase, Caspase-1)是启动或执行细胞炎症反应或细胞死亡程序的半胱氨酸蛋白酶,其催化活性受到NLRP3炎性体多蛋白复合物调节 [30] 。NLRP3炎症小体活化需要双重刺激,第一种刺激启动信号是通过LPS等激活TLRs信号通路,诱导NF-κB活化,刺激NLRP3炎症体,促进IL-1β和IL-18的激活;第二种刺激激活信号是通过ATP等激动剂使钾离子外流促进NLRP3炎症小体复合蛋白组装,剪切pro-Caspase-1活化为Caspase-1,Caspase-1再将IL-1β和IL-18的前体剪切为成熟形式并释放至细胞外 [31] [32] 。NLRP3炎症体与肥胖、2型糖尿病的代谢紊乱密切相关 [33] ,在肥胖的发病机制中,高脂肪饮食可以导致脂肪组织巨噬细胞浸润,NLRP3炎性体的参与起着关键的作用,在缺乏NLRP3炎性小体成分的小鼠实验组中,高脂肪饮食诱导后甘油三酯的含量、脂肪细胞浸润和脂肪组织中的巨噬细胞数量都明显减少 [34] 。

细胞焦亡与炎症反应密切关联,它的主要特征是质膜快速破裂和促炎性细胞因子的释放 [35] 。其发生过程主要是依赖Caspase-1机制调节,NLRP3是炎性体激活的关键环节,机体受到外来刺激时可激活NLRP3,促进Casepase-1活化,导致促炎细胞因子IL-1β、IL-18向细胞外释放,最终导致细胞焦亡 [36] ,产生炎症反应。有实验证明,缺乏脂多糖LPS受体CD14的肥胖小鼠组炎症标志物明显减少 [37] ,说明LPS参与肥胖的炎症反应和代谢紊乱的调节。在肥大的脂肪细胞中,NLRP3炎症小体及Caspase-1激活可能通过细胞焦亡诱导肥胖的脂肪细胞死亡,这是一种促炎性程序性细胞死亡 [38] 。由此可见,缺乏NLPR3炎症体可抵抗高脂肪饮食诱导的肥胖。机体摄入高热量食物时,会导致脂肪细胞中巨噬细胞浸润,危险信号刺激NLRP3炎症小体激活,可以影响脂肪细胞和脂肪组织生命周期中的状态和活性 [39] 。

目前已经提出了很多策略来改善代谢性疾病相关炎症反应,如抑制可导致肥胖的炎症体信号通路的表达及炎症因子的释放、抑制巨噬细胞浸润等来抵抗炎症反应进程。诸多研究表明,NR4A亚家族广泛参与代谢性疾病相关的生物过程,在细胞和组织的炎症反应中高度表达。NR4A1通过促进YAP的磷酸化抑制2型糖尿病胰岛β细胞脂毒性导致的细胞焦亡过程,过表达的NR4A1可以增加NLRP3炎症体的降解 [40] 。细胞焦亡可以作为肥胖及相关炎症反应的治疗靶点,针对焦亡的药物研制有利于延缓肥胖等代谢性疾病的炎症反应。尽管NR4A1在炎症刺激下会诱导表达,但该核受体往往对机体起保护作用。鉴于众多研究证明NR4A1在炎症性疾病中的作用及肥胖相关的炎症反应机制,NR4A1可能通过抑制NLRP3炎症体的活化及细胞焦亡过程、巨噬细胞浸润或其他炎症体信号通路抵抗肥胖相关的炎症反应,仍需要通过大量的实验来验证这一设想。

孤核受体NR4A1作为细胞增殖分化、血管重塑、代谢紊乱等生命活动的关键调控因子,可通过调控自噬实现机体自我保护机制。NR4A1在炎症性疾病中发挥了重要调节作用,NR4A1也可通过介导多种炎症因子和炎症体信号通路来调节炎症反应,其中调控的具体生物机制我们尚不清楚,未来需要深入的研究和探讨,将有可能作为肥胖等炎症性疾病的潜在药物治疗靶点,为基于NR4A1的分子结构研制出更加高效的靶向治疗药物提供了新的思路。

文章引用

信立霞,何天阳,张玉超,左 丹,王延淼,刘元涛. NR4A1在肥胖相关炎症反应中的研究进展
Research Progress of NR4A1 in Obesity-Related Inflammatory Response[J]. 临床医学进展, 2023, 13(06): 9182-9187. https://doi.org/10.12677/ACM.2023.1361286

参考文献

  1. 1. Selassie, M. and Sinha, A.C. (2011) The Epidemiology and Aetiology of Obesity: A Global Challenge. Best Practice & Research Clinical Anaesthesiology, 25, 1-9. https://doi.org/10.1016/j.bpa.2011.01.002

  2. 2. 曲伸, 陆灏, 宋勇峰. 基于临床的肥胖症多学科诊疗共识(2021年版) [J]. 中华肥胖与代谢病电子杂志, 2021, 7(4): 211-226.

  3. 3. Karczewski, J., Śledzińska, E., Baturo, A., et al. (2018) Obesity and Inflammation. European Cytokine Network, 29, 83-94. https://doi.org/10.1684/ecn.2018.0415

  4. 4. 袁亚慧, 袁蓉, 信琪琪, 等. NR4A1在动脉粥样硬化炎症和病理性血管新生中作用的研究进展[J]. 中西医结合心脑血管病杂志, 2022, 20(8): 1409-1412.

  5. 5. Mangelsdorf, D.J., Thummel, C., Beato, M., et al. (1995) The Nuclear Receptor Superfamily: The Second Decade. Cell, 83, 835-839. https://doi.org/10.1016/0092-8674(95)90199-X

  6. 6. 吴凌娟, 徐晓丽, 林峻, 等. 核受体参与调控细胞自噬的研究进展[J]. 生物医学工程学杂志, 2018, 35(5): 822-828.

  7. 7. Wu, L. and Chen, L. (2018) Characteristics of Nur77 and Its Ligands as Potential Anticancer Compounds (Review). Molecular Medicine Reports, 18, 4793-4801. https://doi.org/10.3892/mmr.2018.9515

  8. 8. 谷亚龙, 张新东, 金保方. 核受体NR4A1功能及调控的研究进展[J]. 中华临床医师杂志(电子版), 2014, 8(8): 1507-1511.

  9. 9. Nuclear Receptor 4A (NR4A) Family-Orphans No More.

  10. 10. Kurakula, K., Koenis, D.S., van Tiel, C.M., et al. (2014) NR4A Nuclear Receptors Are Orphans but Not Lonesome. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1843, 2543-2555. https://doi.org/10.1016/j.bbamcr.2014.06.010

  11. 11. Zhang, L., Wang, Q., Liu, W., et al. (2018) The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. Journal of Diabetes Research, 2018, Article ID: 9363461. https://doi.org/10.1155/2018/9363461

  12. 12. Rodríguez-Calvo, R., Tajes, M. and Vázquez-Carrera, M. (2017) The NR4A Subfamily of Nuclear Receptors: Potential New Therapeutic Targets for the Treatment of Inflammatory Diseases. Expert Opinion on Therapeutic Targets, 21, 291-304. https://doi.org/10.1080/14728222.2017.1279146

  13. 13. Hanna, R.N., Shaked, I., Hubbeling, H.G., et al. (2012) NR4A1 (Nur77) Deletion Polarizes Macrophages toward an Inflamma-tory Phenotype and Increases Atherosclerosis. Circulation Research, 110, 416-427. https://doi.org/10.1161/CIRCRESAHA.111.253377

  14. 14. You, B., Jiang, Y.-Y., Chen, S.P., et al. (2009) The Or-phan Nuclear Receptor Nur77 Suppresses Endothelial Cell Activation through Induction of IκBα Expression. Circulation Research, 104, 742-749. https://doi.org/10.1161/CIRCRESAHA.108.192286

  15. 15. Hu, M.J., Luo, Q., Alitongbieke, G., et al. (2017) Celas-trol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Molecular Cell, 66, 141-153.e6. https://doi.org/10.1016/j.molcel.2017.03.008

  16. 16. Koenis, D.S., Medzikovic, L., van Loenen, P.B., et al. (2018) Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Reports, 24, 2127- 2140.e7. https://doi.org/10.1016/j.celrep.2018.07.065

  17. 17. Bonta, P.I., van Tiel, C.M., Vos, M., et al. (2006) Nuclear Re-ceptors Nur77, Nurr1, and NOR-1 Expressed in Atherosclerotic Lesion Macrophages Reduce Lipid Loading and In-flammatory Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2288-2288. https://doi.org/10.1161/01.ATV.0000238346.84458.5d

  18. 18. Shaked, I., Hanna, R.N., Shaked, H., et al. (2015) Transcription Factor Nr4a1 Couples Sympathetic and Inflammatory Cues in CNS-Recruited Macrophages to Limit Neu-roinflammation. Nature Immunology, 16, 1228-1234. https://doi.org/10.1038/ni.3321

  19. 19. Li, L., Liu, Y., Chen, H., et al. (2015) Impeding the Interaction between Nur77 and p38 Reduces LPS-Induced Inflammation. Nature Chemical Biology, 11, 339-346. https://doi.org/10.1038/nchembio.1788

  20. 20. Hu, M., Luo, Q., Alitongbieke, G., et al. (2017) Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Molecular Cell, 66, 141-153.e6. https://doi.org/10.1016/j.molcel.2017.03.008

  21. 21. Shao, Q., Shen, L.-H., Hu, L.-H., et al. (2010) Nuclear Receptor Nur77 Suppresses Inflammatory Response Dependent on COX-2 in Macrophages Induced by oxLDL. Journal of Mo-lecular and Cellular Cardiology, 49, 304-311. https://doi.org/10.1016/j.yjmcc.2010.03.023

  22. 22. Pei, L.M., Castrillo, A. and Tontonoz, P. (2006) Regulation of Macrophage Inflammatory Gene Expression by the Orphan Nuclear Receptor Nur77. Molecular Endocrinology, 20, 786-794. https://doi.org/10.1210/me.2005-0331

  23. 23. Holmes, W.F., Soprano, D.R. and Soprano, K.J. (2003) Early Events in the Induction of Apoptosis in Ovarian Carcinoma Cells by CD437: Activation of the p38 MAP Kinase Signal Pathway. Oncogene, 22, 6377-6386. https://doi.org/10.1038/sj.onc.1206694

  24. 24. Zhao, Y., Liu, Y. and Zheng, D. (2008) Alpha 1-Antichymotrypsin/SerpinA3 Is a Novel Target of Orphan Nuclear Receptor Nur77: SerpinA3 Is a Novel Target of Nur77. FEBS Journal, 275, 1025-1038. https://doi.org/10.1111/j.1742-4658.2008.06269.x

  25. 25. Pei, L., Castrillo, A., Chen, M., et al. (2005) Induction of NR4A Orphan Nuclear Receptor Expression in Macrophages in Response to Inflammatory Stimuli. Journal of Biological Chemistry, 280, 29256-29262. https://doi.org/10.1074/jbc.M502606200

  26. 26. Hotamisligil, G.S. (2006) Inflammation and Metabolic Disorders. Nature, 444, 860-867. https://doi.org/10.1038/nature05485

  27. 27. Lumeng, C.N. and Saltiel, A.R. (2011) Inflammatory Links between Obesity and Metabolic Disease. Journal of Clinical Investigation, 121, 2111-2117. https://doi.org/10.1172/JCI57132

  28. 28. Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and In-flammation. Cell, 140, 805-820. https://doi.org/10.1016/j.cell.2010.01.022

  29. 29. Wen, H.T., Gris, D., Lei, Y., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415. https://doi.org/10.1038/ni.2022

  30. 30. Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040

  31. 31. Jo, E.-K., Kim, J.K., Shin, D.-M., et al. (2016) Molecular Mecha-nisms Regulating NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 13, 148-159. https://doi.org/10.1038/cmi.2015.95

  32. 32. Chen, S.Z. and Sun, B. (2013) Negative Regulation of NLRP3 Inflam-masome Signaling. Protein & Cell, 4, 251-258. https://doi.org/10.1007/s13238-013-2128-8

  33. 33. Vandanmagsar, B., Youm, Y.-H., Ravussin, A., et al. (2011) The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nature Medicine, 17, 179-188. https://doi.org/10.1038/nm.2279

  34. 34. Stienstra, R., van Diepen, J.A., Tack, C.J., et al. (2011) Inflammasome Is a Central Player in the Induction of Obesity and Insulin Resistance. Proceedings of the National Academy of Sciences, 108, 15324-15329. https://doi.org/10.1073/pnas.1100255108

  35. 35. Bergsbaken, T., Fink, S.L. and Cookson, B.T. (2009) Pyroptosis: Host Cell Death and Inflammation. Nature Reviews Microbiology, 7, 99-109. https://doi.org/10.1038/nrmicro2070

  36. 36. Shi, J.J., Gao, W.Q. and Shao, F. (2017) Pyroptosis: Gasder-min-Mediated Programmed Necrotic Cell Death. Trends in Biochemical Sciences, 42, 245-254. https://doi.org/10.1016/j.tibs.2016.10.004

  37. 37. Cani, P.D., Bibiloni, R., Knauf, C., et al. (2008) Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes, 57, 1470-1481. https://doi.org/10.2337/db07-1403

  38. 38. Giordano, A., Murano, I., Mondini, E., et al. (2013) Obese Adipocytes Show Ultrastructural Features of Stressed Cells and Die of Pyroptosis. Journal of Lipid Research, 54, 2423-2436. https://doi.org/10.1194/jlr.M038638

  39. 39. Sehgal, A., Behl, T., Kaur, I., et al. (2021) Targeting NLRP3 Inflam-masome as a Chief Instigator of Obesity, Contributing to Local Adipose Tissue Inflammation and Insulin Resistance. En-vironmental Science and Pollution Research, 28, 43102-43113. https://doi.org/10.1007/s11356-021-14904-4

  40. 40. 吴旭婷. NR4A1在2型糖尿病脂毒性诱导的胰岛β细胞焦亡中的作用研究[D]: [硕士学位论文]. 济南: 山东大学, 2022.

  41. NOTES

    *通讯作者。

期刊菜单