Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61173 , 8 pages
10.12677/ACM.2023.132212

2型糖尿病患者血清FNDC5水平与左室 舒张功能参数的关系

杨苏林1,2*,戴红艳2,管军3#

1青岛大学,山东 青岛

2青岛市市立医院保健四科,山东 青岛

3青岛市市立医院心内科,山东 青岛

收稿日期:2023年1月8日;录用日期:2023年1月28日;发布日期:2023年2月9日

摘要

目的:观察2型糖尿病(T2DM)患者血清III型纤维蛋白结构域结合蛋白5 (FNDC5)水平与正常组的差异,以及T2DM患者血清FNDC5水平与左心室舒张功能的关系,探讨其临床应用价值。方法:选取T2DM患者158例作为实验组,非2型糖尿病患者作为对照组37例。采用酶联免疫吸附试验(ELISA)检验患者血清FNDC5水平。结果:T2DM患者血清FNDC5水平较正常组血清FNDC5水平明显降低(P < 0.001)。相关系数分析显示,2型糖尿病患者中血清FNDC5浓度与E峰呈正相关(r = 0.363, P = 0.005),与E/A呈正相关(r = 0.291, P = 0.006),与E/二尖瓣瓣环间隔e’呈负相关(r = −0.495, P = 0.000),与E/二尖瓣瓣环侧壁e’呈负相关(r = −0.595, P = 0.000),与E/平均e’呈负相关(r = −0.610, P = 0.000),与左房前后径呈负相关(r = −0.304, P = 0.002)。多元有序Logistic回归分析,结果显示年龄及FNDC5水平为影响左室充盈压的独立影响因素(P < 0.05)。结论:2型糖尿病患者血清FNDC5水平显著降低,低水平FNDC5可能与2型糖尿病患者早期左室舒张功能障碍有关。

关键词

2型糖尿病,左室舒张功能,FNDC5

Relationship between Left Ventricular Diastolic Function and Serum Fibronectin Type III-Domain Containing Protein 5 (FNDC5) in Type 2 Diabetes Mellitus

Sulin Yang1,2*, Hongyan Dai2, Jun Guan3#

1Qingdao University, Qingdao Shandong

2Department of Healthcare IV, Qingdao Municipal Hospital, Qingdao Shandong

3Department of Cardiology, Qingdao Municipal Hospital, Qingdao Shandong

Received: Jan. 8th, 2023; accepted: Jan. 28th, 2023; published: Feb. 9th, 2023

ABSTRACT

Objective: To observe the difference of the serum fibronectin type III-domain containing protein 5 (FNDC5) level between T2DM patients and normal group, and the relationship between the serum FNDC5 level and left ventricular diastolic function in T2DM patients and assess its clinical application. Method: A total of 158 T2DM patients were selected as experimental group. 37 non-T2DM patients were selected as control group. Serum FNDC5 levels were detected by enzyme-linked immunosorbent assay (ELISA). Result: The Serum FNDC5 levels in T2DM patients were significantly lower than that in control group (P < 0.001). There was a positive correlation between the serum FNDC5 level and the E peak (r = 0.363, P = 0.005) in patients with type 2 diabetes. There was a positive correlation between the serum FNDC5 level and the E/A (r = 0.291, P = 0.006) in patients with type 2 diabetes. There was a negative correlation between the serum FNDC5 level and the E/mitral annulus septum e’ (r = -0.495, P = 0.000), a negative correlation between the serum FNDC5 level and the E/lateral wall of mitral annulus e’ (r = -0.595, P = 0.000), a negative correlation between the serum FNDC5 level and the E/e’ (r = -0.610, P = 0.000), and a negative correlation between the serum FNDC5 level and the diameter of the left atriumin (r = -0.304, P = 0.002) in the patients with type 2 diabetes. The multiple ordered Logistic regression analysis shows that age and the serum FNDC5 level are independent influencing factors for left ventricular filling pressure (P < 0.05). Conclusions: The serum FNDC5 levels are significantly decreased in patients with type 2 diabetes mellitus, and the low levels of serum FNDC5 may be associated with early left ventricular diastolic dysfunction in patients with type 2 diabetes mellitus.

Keywords:Type 2 Diabetes Mellitus, Left Ventricular Diastolic Function, FNDC5

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

2型糖尿病(T2DM)是一种发病率上升迅速的全球健康疾病,是种常见的代谢疾病。在一项对中国大陆的横断面研究中,糖尿病的总体患病率为12.4%,糖尿病前期总体患病率为38.1% [1] ,其所导致的机体内炎性介质的过度表达分泌和血管内皮细胞损伤等在心血管病变中起到非常重要的作用 [2] 。T2DM患者常出现心肌损伤,进而导致心功能不全,是T2DM的常见并发症。早期诊断以及合理的干预可以有效降低T2DM患者后期严重心血管不良事件(Major Adverse Cardiovascular Events, MACE)发生率。研究表明,T2DM患者心功能异常初期常表现为左室舒张功能障碍 [3] 。目前,早期发现T2DM患者舒张功能异常主要依靠心脏超声,缺乏血清生物学标志物,用来早期发现心功能障碍,以便早期启动相应治疗。

Irisin是近年来新发现的肌肉子,其是在运动、冷刺激或甲状腺激素等作用诱导下,骨骼肌过氧化物酶体增殖物激活受体γ共激活因子1α (peroxisome proliferator-activated receptor γ coactivator-1α, PGC-1α)的表达上调,介导Ⅲ型纤维蛋白结构域结合蛋白5 (fibronectin type III-domain containing protein 5, FNDC5)的裂解、剪切、修饰生成而来。Irisin通过作用于白色脂肪,诱导其向棕色脂肪转换,改善葡萄糖代谢和胰岛素抵抗 [4] [5] 。越来越多的证据表明,冠状动脉粥样硬化型心脏病(Coronary atherosclerotic heart disease, CAD)患者血清FNDC5的含量明显低于正常对照组 [6] [7] [8] [9] 。有研究发现,血清FNDC5浓度水平联合其他相关基础临床资料对亚临床型糖尿病心肌病(diabetic cardiomyopathy, DCM)具有较好的诊断价值 [10] 。本研究旨在观察2型糖尿病(T2DM)患者血清Ⅲ型纤维蛋白结构域结合蛋白5 (FNDC5)水平与正常组的差异,以及T2DM患者血清FNDC5水平与左心室舒张功能的关系,探讨其临床价值。

2. 对象与方法

2.1. 对象

选取2021年11月至2022年6月在青岛市市立医院内分泌科及保健科收入院的2型糖尿病(Type 2 diabetes)患者158例及非2型糖尿病患者作为对照组37例。所有2型糖尿病患者均符合《中国2型糖尿病防治指南(2020年版)》 [11] 诊断标准,排除标准如下:1) 1型糖尿病,妊娠期糖尿病;2) 合并急性冠脉综合征个人史,及任何原因所致的心力衰竭(冠心病、高血压、瓣膜性心脏病、先心病、心肌炎、心律失常、甲状腺功能亢进等疾病所致的心力衰竭)者;3) 合并肾功能不全(估测eGFR < 30 ml/min/1.73m2);4) 合并严重的肝功能不全(天门冬氨酸氨基转移酶 > 正常上限3倍,和/或丙氨酸氨基转移酶 > 正常上限3倍,和/或总胆红素 > 2.0 mg/dL)者;5) 呼吸功能不全或有临床显著呼吸疾病史(慢性阻塞性肺疾病、严重的支气管哮喘等);6) 合并感染性疾病、恶性肿瘤、血液系统疾病者;7) 超声声窗差或超声心动图成像质量差。本研究经医院伦理委员会审批通过,所有受试者均之情同意本研究。

2.2. 方法

收集患者的年龄、性别、身高、体重、体重指数(BMI)、心率、血压、烟酒史、高血压等病史;其中高血压的诊断是根据高血压诊断和治疗指南(ESC指南)来判定的。收集患者实验室检查结果:总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)、低密度脂蛋白(low-density lipoprotein, LDL)、高密度脂蛋白(high-density lipoprotein, HDL)、肌酐(creatinine, CRE)并计算肾小球滤过率(glomerular filtration rate, GFR)、尿酸(Uric Acid, UA)、丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天门冬氨酸转移酶(aspartate aminotransferase, AST);空腹血糖(fasting blood-glucose, FBG)、糖化血红蛋白(glycosylated hemoglobin, HBALC)等。所有指标均为禁食8 h以上空腹血测得。

住院后行超声心动图检查,测量以下超声心动图指标:左心室射血分数(LVEF),右房左右径、右室左右径;左心室舒张功能指标:二尖瓣瓣环间隔e′波速度、侧壁e′波速度,左心室舒张早期二尖瓣血流速度峰值(E)、二尖瓣心房收缩期血流速度峰值(A),并计算E/A比值、E/二尖瓣瓣环间隔e′波速度比值,E/侧壁e′波速度比值、e′平均值、平均E/e′比值。以上指标由我院2名不参与试验设计的心脏超声科医生进行测量,并客观记录结果。

血清FNDC5检测:所有患者禁食12 h后采用真空采血管取静脉血,抽取待检者清晨空腹静脉血5 mL,室温3 h内分离血清(3000 r/min,离心15 min),零下−80℃冻存。采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测血清FNDC5水平,试剂盒购自武汉云克隆公司,严格按照说明书操作。

2.3. 统计学方法

采用SPSS 22.0统计学软件进行数据分析。正态分布的连续变量以 x ¯ ± s 表示,组间比较采用独立样本t检验。非正态分布的连续变量以M (P25, P75)表示,组间比较采用Mann-Whitney U检验。分类变量以频数(%)表示,组间比较采用卡方检验。采用相关分析分析血清FNDC5水平与T2DM的左心室舒张功能相关指标的相关性,连续性变量关系分析符合正态分布采用Pearman相关系数分析,非正态分布采用Spearman相关系数分析;有序Logistic回归分析E/e′升高的独立影响因素。

3. 结果

3.1. 2型糖尿病组与正常组基本资料比较

与正常组比较,2型糖尿病患者平均动脉压较高,糖化血红蛋白、空腹血糖更高,高密度脂蛋白胆固醇含量更低,差异有统计学意义(P均<0.05)。FNDC5比较:2型糖尿病患者血清FNDC5水平[486.02 (359.33, 685.12)] pg/ml较正常组血清FNDC5水平[807.21 (543.33, 1092.08)] pg/ml明显降低(P = 0.000)。见表1

Table 1. Comparison of general clinical data between control group and diabetic patients

表1. 对照组患者与糖尿病患者的一般临床资料对比

3.2. 2型糖尿病组与正常组超声心动图检测资料比较

与正常组比较,2型糖尿病患者心功能指标二尖瓣瓣环间隔e′波速度、二尖瓣瓣环侧壁e′波速度、E/A比值较低;二尖瓣舒张期A峰、E/二尖瓣瓣环间隔e′波速度比值,E/侧壁e′波速度比值、平均E/e′比值及室间隔厚度较高,差异有统计学意义(P均 < 0.05)。见表2

Table 2. Echocardiogram results of control patients and diabetic patients

表2. 对照组患者与糖尿病患者的超声心动图检查结果

3.3. 2型糖尿病患者FNDC5浓度与心脏超声指标相关性分析

相关系数分析显示,2型糖尿病患者中血清FNDC5浓度与E峰呈正相关(r = 0.363, P = 0.005),与E/A呈正相关(r = 0.291, P = 0.006),与E/二尖瓣瓣环间隔e′呈负相关(r = −0.495, P = 0.000),与E/二尖瓣瓣环侧壁e′呈负相关(r = −0.595, P = 0.000),与E/平均e′呈负相关(r = −0.610, P = 0.000),与左房前后径呈负相关(r = −0.304, P = 0.002)。见表3

Table 3. Correlation between FNDC5 concentration and cardiac index in diabetic patients

表3. FNDC5浓度与糖尿病患者心超指标相关性

3.4. 2型糖尿病患者左室充盈压的影响因素分析

依据2016年ASE/SCAI指南 [12] ,根据平均E/e′水平,将T2DM患者分为左室充盈压正常组(E/e′ < 8, n = 42),左室充盈压不能评估组(8 ≤ E/e′ ≤ 14, n = 92)及左室充盈压升高组(E/e′ > 14, n = 24),将年龄、糖尿病病程、有无高血压、冠心病、糖化血红蛋白水平、FNDC5浓度纳入多元有序Logistic回归分析,结果显示年龄及FNDC5水平为影响左室充盈压的独立影响因素(P < 0.01)。见表4

Table 4. Multiple ordered Logistic regression

表4. 多元有序Logistic回归

4. 讨论

FNDC5的蛋白质序列是由1个信号肽 [13] ,1个疏水的跨膜结构域及1个III型纤维蛋白结构域(细胞外鸢尾素的主要部分)和细胞质中的羧基端结构域构成。Irisin在内质网中的两个潜在位点Asn7和Asn52 [14] 被n-糖基化后,被分解素和金属肽酶结构域(ADAM)家族蛋白切割,分泌到血液循环中,发挥其生理作用 [15] 。Irisin在体内主要通过诱导p38和ERK1/2介导发挥生理功能。研究表明,重组Irisin治疗可以提高p38和ERK1/2的磷酸化水平,进而升高UCP1的表达水平 [14] 。进而促进白色脂肪褐变及肌肉的葡萄糖摄取 [16] 。此外,另一项研究表明,Irisin可以诱导脂肪细胞中棕色脂肪特异性蛋白如HO-1 (血红素加氧酶1)、胞质p62和核因子E2相关因子2 (Nrf2)的上调;而经过HO-1抑制剂SnPP或p62 siRNA处理后,脂肪的褐变效应减弱,这表明Irisin诱导的褐变效应可能通过p62/Nrf2/HO-1信号通路实现 [17] 。

Irsin具有改善胰岛素抵抗(insulin resistance, IR)的作用,可通过直接及间接促进胰岛素的合成和释放,提高胰岛素敏感性及改善肝内糖代谢等途径实现。研究证实,Irsin能在胰岛β细胞中以蛋白激酶a (PKA)依赖性的方式刺激胰岛素的合成及加速葡萄糖刺激的胰岛素分泌。在高糖或高脂环境下,Irsin可增加胰岛内β细胞的分布面积,减少α细胞的面积 [18] ,通过减少β细胞凋亡,刺激β细胞增殖,促进胰岛素的合成和分泌 [19] 。此外,鸢尾素可以调节胰岛素信号。例如,在小鼠C2C12成肌细胞中,Irsin的过表达增强了细胞中葡萄糖摄取、糖原积累和AMPKα/胰岛素受体β-亚基/ERK1/2的磷酸化水平 [20] 。另一项研究表明,Irsin可以通过减弱棕榈酸(palmitic acid)诱导,来增强大鼠心肌细胞胰岛素的信号传导。他们发现Irsin通过激活磷脂酰肌醇3激酶Akt(蛋白激酶B)通路增加胰岛素刺激下的葡萄糖消耗 [21] 。肝脏是糖异生和糖生成的主要部位,Irisin可以通过激活肝脏中的PI3K/Akt/GSK3-GS途径,来促进肝糖原合成。而向DIO小鼠注射r-Irisin 2周后,腺苷5’-单磷酸(AMP)激活蛋白激酶(AMPK, Thr172)和抑制固醇调节元件结合转录因子2 (SREBP2)的表达增加,从而抑制了肝脏内胆固醇的合成 [22] 。

综上所述,Irsin可以通过诱导白色脂肪褐变、增加肌肉的葡萄糖摄取、调节胰岛功能而改善胰岛素抵抗及调节肝脏中的葡萄糖和脂质合成代谢起到抗肥胖和抗糖尿病作用。在本实验中,与非T2DM患者相比,T2DM患者血清FNDC5水平明显降低,这可能是因为T2DM患者骨骼肌中PGC-1α的表达及其活性明显降低,进而导致其下游因子FNDC5/Irisin的水平降低 [23] 。Irisin水平降低促进了T2DM患者并发高糖血症、游离脂肪酸增加及胰岛素抵抗。长期高糖血症通过电子链传递,生成大量的活性氧(reactive oxygen species, ROS),诱导心肌细胞凋亡 [24] 。ROS还通过诱导生成晚期糖基化终产物,后者可以通过促进胶原的表达和堆积,导致心肌纤维化,进而导致DCM [25] 。在T2DM引起的心肌细胞代谢障碍中,IR是糖尿病心血管并发症的重要危险因素。IR可能导致游离脂肪酸过度生成,进而抑制胰岛素受体底物1 (insulin receptor substrate-1, IRS-1)通路及丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路,前者与心肌细胞代谢有关,后者则心肌细胞的重构、纤维化及细胞凋亡有关 [26] 。IR除了会导致心肌细胞代谢障碍外,还会直接对心肌细胞造成结构和功能损伤。IR与高糖血症还会导致全身代谢紊乱,激活交感系统和RAAS系统,促进氧化应激、影响线粒体功能、促进内质网应激与钙稳态失衡,促成心肌细胞纤维化,心室重构,心肌细胞凋亡和冠状动脉微循环障碍,进而引起心功能障碍 [27] 。最新的研究表明,Irisin的降低还可以直接导致心功能的障碍,Irisin降低可以抑制整合素αV/β5-AKT信号传导的激活,还可以促进氧化/亚硝化应激,导致心肌细胞的重构、纤维化及细胞凋亡 [28] 。

在本实验中,T2DM患者血清FNDC5浓度与左室舒张功能参数E/A呈正相关,与E/e′呈负相关,且血清FNDC5水平是左室充盈压升高的独立影响因素。以上信息说明低水平的循环FNDC5浓度与T2DM患者左室舒张功能下降有关。Alexander等研究显示,高循环Irisin水平的T2DM合并心力衰竭患者,MACE发生率更低 [29] 。其他研究表明,循环FNDC5浓度水平在亚临床型糖尿病心肌病患者中较低 [10] 。通过以上内容可以推测,低水平循环FNDC5水平可能预示着T2DM患者早期心肌的损害,且PGC-1α/FNDC5/Irisin通路可能是未来治疗T2DM合并心力衰竭患者的潜在靶点。

5. 结论

综上所述,T2DM患者血清FNDC5水平明显降低,且低FNDC5水平与2型糖尿病患者早期左心室舒张功能异常有关。本研究为单中心、横断面研究,样本量有限,存在一定的局限性。有待开展多中心前瞻性研究来研究FNDC5在2型糖尿病导致心功能障碍的作用机制,为诊治提供新靶点。

声明

本文无利益冲突。

文章引用

杨苏林,戴红艳,管 军. 2型糖尿病患者血清FNDC5水平与左室舒张功能参数的关系
Relationship between Left Ventricular Diastolic Function and Serum Fibronectin Type III-Domain Containing Protein 5 (FNDC5) in Type 2 Diabetes Mellitus[J]. 临床医学进展, 2023, 13(02): 1538-1545. https://doi.org/10.12677/ACM.2023.132212

参考文献

  1. 1. Wang, L., et al. (2021) Prevalence and Treatment of Diabetes in China, 2013-2018. JAMA, 326, 2498-2506. https://doi.org/10.1001/jama.2021.22208

  2. 2. Mansor, L.S., et al. (2016) Increased Oxidative Metabolism Follow-ing Hypoxia in the Type 2 Diabetic Heart, Despite Normal Hypoxia Signalling and Metabolic Adaptation. The Journal of Physiology, 594, 307-320. https://doi.org/10.1113/JP271242

  3. 3. Hughes, W.J., et al. (2008) Role of Copper and Homocysteine in Pressure Overload Heart Failure. Cardiovascular Toxicology, 8, 137-144. https://doi.org/10.1007/s12012-008-9021-3

  4. 4. Xiong, Y., et al. (2019) Fndc5 Loss-of-Function Attenuates Exer-cise-Induced Browning of White Adipose Tissue in Mice. FASEB Journal, 33, 5876-5886. https://doi.org/10.1096/fj.201801754RR

  5. 5. Sahin-Efe, A., et al. (2018) Irisin and Leptin Concentrations in Rela-tion to Obesity, and Developing Type 2 Diabetes: A Cross Sectional and a Prospective Case-Control Study Nested in the Normative Aging Study. Metabolism, 79, 24-32. https://doi.org/10.1016/j.metabol.2017.10.011

  6. 6. El-Lebedy, D.H., Ibrahim, A.A. and Ashmawy, I.O. (2018) Novel Adipokines Vaspin and Irisin as Risk Biomarkers for Cardiovascular Diseases in Type 2 Diabetes Mellitus. Dia-betology & Metabolic Syndrome, 12, 643-648. https://doi.org/10.1016/j.dsx.2018.04.025

  7. 7. Yin, C., et al. (2020) Irisin as a Mediator between obesity and Vas-cular Inflammation in Chinese Children and Adolescents. Nutrition, Metabolism & Cardiovascular Diseases, 30, 320-329. https://doi.org/10.1016/j.numecd.2019.09.025

  8. 8. Dong, X., et al. (2021) Lower Serum Irisin Levels Are Associ-ated with the Increasing Mortality of Cardiovascular and Cerebrovascular Diseases in Hemodialysis Patients. Annals of Palliative Medicine, 10, 6052-6061. https://doi.org/10.21037/apm-21-406

  9. 9. Bi, J., et al. (2020) Exercise Hormone Irisin Mitigates Endothelial Barri-er Dysfunction and Microvascular Leakage-Related Diseases. JCI Insight, 5, e136277. https://doi.org/10.1172/jci.insight.136277

  10. 10. 秦子涵, 等. FNDC5对亚临床型糖尿病心肌病的诊断价值[J]. 中华心血管病杂志, 2021(7): 687-693.

  11. 11. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 国际内分泌代谢杂志, 2021(5): 482-548.

  12. 12. Nagueh, S.F., et al. (2016) Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 29, 277-314. https://doi.org/10.1016/j.echo.2016.01.011

  13. 13. Nie, Y., et al. (2020) Cleavage of FNDC5 and Insights into Its Maturation Process. Molecular and Cellular Endocrinology, 510, Article ID: 110840. https://doi.org/10.1016/j.mce.2020.110840

  14. 14. Zhang, Y., et al. (2014) Irisin Stimulates Browning of White Adi-pocytes through Mitogen-Activated Protein Kinase p38 MAP Kinase and ERK MAP Kinase Signaling. Diabetes, 63, 514-525. https://doi.org/10.2337/db13-1106

  15. 15. Yu, Q., et al. (2019) FNDC5/Irisin Inhibits Pathological Cardiac Hypertrophy. Clinical Science (London), 133, 611-627. https://doi.org/10.1042/CS20190016

  16. 16. Rabiee, F., et al. (2020) New Insights into the Cellular Activities of Fndc5/Irisin and Its Signaling Pathways. Cell & Bioscience, 10, 51. https://doi.org/10.1186/s13578-020-00413-3

  17. 17. Tsai, Y.C., et al. (2020) Involvement of the p62/Nrf2/HO-1 Pathway in the Browning Effect of Irisin in 3T3-L1 Adipocytes. Molecular and Cellular Endocrinology, 514, Article ID: 110915. https://doi.org/10.1016/j.mce.2020.110915

  18. 18. Streese, L., et al. (2020) Physical Activity and Exercise Improve Retinal Microvascular Health as a Biomarker of Cardiovascular Risk: A Systematic Review. Atherosclerosis, 315, 33-42. https://doi.org/10.1016/j.atherosclerosis.2020.09.017

  19. 19. Park, K.H., et al. (2013) Circulating Irisin in Relation to Insulin Resistance and the Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, 98, 4899-4907. https://doi.org/10.1210/jc.2013-2373

  20. 20. Yano, N., et al. (2020) Irisin Counteracts High Glucose and Fatty Ac-id-Induced Cytotoxicity by Preserving the AMPK-Insulin Receptor Signaling Axis in C2C12 Myoblasts. American Journal of Physiology-Endocrinology and Metabolism, 318, E791-E805. https://doi.org/10.1152/ajpendo.00219.2019

  21. 21. Song, R., et al. (2021) Irisin Improves Insulin Resistance by In-hibiting Autophagy through the PI3K/Akt Pathway in H9c2 Cells. Gene, 769, Article ID: 145209. https://doi.org/10.1016/j.gene.2020.145209

  22. 22. Liu, T.Y., et al. (2015) Irisin Inhibits Hepatic Gluconeogenesis and Increases Glycogen Synthesis via the PI3K/Akt Pathway in Type 2 Diabetic Mice and Hepatocytes. Clinical Science (London), 129, 839-850. https://doi.org/10.1042/CS20150009

  23. 23. 路文盛, 等. PGC-1α基因MEF2C结构域482G/A变异参与2型糖尿病发病的机制研究[J]. 中华医学遗传学杂志, 2008(6): 616-623.

  24. 24. DeMarco, V.G., Aroor, A.R. and Sowers, J.R. (2014) The Pathophysiology of Hypertension in Patients with Obesity. Nature Reviews Endocrinology, 10, 364-376. https://doi.org/10.1038/nrendo.2014.44

  25. 25. 潘利亚, 张晓卉, 尹新华. 糖尿病心肌病发病机制的研究进展[J]. 中国心血管杂志, 2017(2): 143-146.

  26. 26. 赖纪英, 等. 慢性心力衰竭患者胰岛素抵抗与认知功能障碍相关性的研究进展[J]. 中国心血管杂志, 2015(2): 155-157.

  27. 27. Jia, G., DeMarco, V.G. and Sowers, J.R. (2016) Insulin Re-sistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nature Reviews Endocrinology, 12, 144-153. https://doi.org/10.1038/nrendo.2015.216

  28. 28. Lin, C., et al. (2021) FNDC5/Irisin Attenuates Diabetic Cardiomyo-pathy in a Type 2 Diabetes Mouse Model by Activation of Integrin αV/β5-AKT Signaling and Reduction of Oxida-tive/Nitrosative Stress. The Journal of Molecular and Cellular Cardiology, 160, 27-41. https://doi.org/10.1016/j.yjmcc.2021.06.013

  29. 29. Berezin, A.A., et al. (2022) Predictive Value of Serum Irisin for Chronic Heart Failure in Patients with Type 2 Diabetes Mellitus. Molecular Biomedicine, 3, 34. https://doi.org/10.1186/s43556-022-00096-x

  30. NOTES

    *第一作者。

    #通讯作者。

期刊菜单