Advances in Clinical Medicine
Vol. 13  No. 12 ( 2023 ), Article ID: 76817 , 8 pages
10.12677/ACM.2023.13122657

脂蛋白(a):急性ST段抬高型心肌梗死的 潜在新靶点

郝贝贝1,2,崔明亮2,杨禹娟2,刘新宏2

1西安医学院临床医学系,陕西 西安

2陕西省人民医院心血管内三科,陕西 西安

收稿日期:2023年11月7日;录用日期:2023年12月1日;发布日期:2023年12月11日

摘要

动脉粥样硬化性心血管疾病(Atherosclerotic Cardiovascular Disease, ASCVD)居全球心血管疾病(Cardiovascular Disease, CVD)首位,并成为当今全球人类死亡的首要原因,ST段抬高型心肌梗死(ST-segment Elevation Myocardial Infarction, STEMI)作为其最急性的临床表现,严重威胁人类的健康和生存质量。而血脂异常加速动脉粥样硬化(Atherosclerosis, AS)的形成,是ASCVD发生的核心机制。其中低密度脂蛋白胆固醇(Low-density Lipoproteins Cholesterol, LDL-C)作为重要的血脂指标,其水平控制在当今指南理想范围之内仍存在心血管事件(Cardiovascular Events, CVE)残余风险,这强调寻找新型潜在脂质生物标志物作为ASCVD发展风险预测因子的必要性。脂蛋白(a) [Lipoprotein a, Lp (a)]已被证明在AS中起因果作用,同时也是CVD患者中最佳降脂治疗后残余风险的主要贡献者。本综述旨在讲述Lp (a)致STEMI的发生机制,两者之间的相关性及治疗。

关键词

脂蛋白(a),ST段抬高型心肌梗死

Lipoprotein (a): A Potential New Target for Acute ST-Segment Elevation Myocardial Infarction

Beibei Hao1,2, Mingliang Cui2, Yujuan Yang2, Xinhong Liu2

1Department of Clinical Medicine, Xi’an Medical University, Xi’an Shaanxi

2Department III of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an Shaanxi

Received: Nov. 7th, 2023; accepted: Dec. 1st, 2023; published: Dec. 11th, 2023

ABSTRACT

Atherosclerotic Cardiovascular Disease ranks first in the global cardiovascular disease. ST-segment elevation myocardial infarction as its most acute clinical manifestation is a serious threat to human health and quality of life. And dyslipidemia accelerates the formation of atherosclerosis, which is the core mechanism of the occurrence of atherosclerotic cardiovascular disease. Among them, LDL cholesterol as an important lipid index, still has residual risk of cardiovascular events within the ideal range of the current guidelines, which emphasizes the need to find novel potential lipid biomarkers as predictors of risk for the development of atherosclerotic cardiovascular disease. Lipoprotein (a) has been shown to play a causal role in atherosclerosis and is also a major contributor to residual risk after optimal lipid-lowering therapy in patients with cardiovascular disease worldwide. The purpose of this review is to describe the pathogenesis, correlation and treatment of ST-elevation myocardial infarction induced by lipoprotein (a).

Keywords:Lipoprotein (a), ST-Segment Elevation Myocardial Infarction

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 背景

心肌梗死(Myocardial Infarction, MI)的发病率随着年龄的增长而逐渐增加,75岁或以上的人群约占所有MI的1/3,占所有MI死亡的60% [1] 。因此,寻找预测AMI患者心血管死亡的独立危险因子具有重要的临床意义。Van Peet等人表明传统的风险标志物对确诊CVD的心血管事件和心血管死亡复发没有预测价值 [2] 。因此,需要找寻实用的、容易测量的标志物预测MI患者的预后。众多证据明确表明,Lp (a)水平升高与冠状动脉疾病、外周动脉疾病和主动脉瓣狭窄的风险密切相关,与心血管死亡、合并冠心病和中风死亡率风险、全因死亡率风险显著相关 [3] 。Lp (a)具有促动脉粥样硬化、促血栓、促炎症和促氧化等特性 [4] ,被认为是ASCVD的独立危险因素,且相关系列研究发现,尚存新的血脂指标与CVE残余风险相关,Lp (a)便是近年来证据较多且备受关注的血脂干预潜在新靶点之一。

2. Lp (a)结构及理化特征

Lp (a)被广泛认为是一种LDL变异颗粒,于1963年被Berg1首次提出 [5] 。2016年欧洲心脏病学会指南建议,在CVD患者中至少检测一次Lp (a)水平,建议将Lp (a) > 50 mg/dL作为CVD风险的临界值 [6] ,我国Lp (a)的推荐阈值为30 mg/dL。

Lp (a)由一个类似LDL样颗粒和载脂蛋白(a) [Apolipoprotein, Apo (a)]组成,它通过二硫桥与载脂蛋白(B) [(Apo B)]共价结合。与低密度脂蛋白胆固醇(LDL-C)类似,Lp (a)分子被一层简单的磷脂、游离胆固醇和载脂蛋白包裹,其核心由甘油三酯和酯化胆固醇组成 [7] 。Apo (a)由位于6q26染色体上的LPA基因编码 [8] ,是一个高度多态基因。Lp (a)水平由LPA基因上kringle IV 2型(KIV-2)重复拷贝数的变化和各种单核苷酸多态性遗传决定,个体差异显著 [9] 。其中KIV-2型重复序列的数量高度可变,可导致不同亚型,大亚型比小亚型更少发生AS [10] 。

3. Lp (a)与急性ST段抬高型心肌梗死

研究证实,LDL-C和Lp (a)与CVD风险各自独立相关,肝细胞内前蛋白转化酶枯草杆菌蛋白酶/克辛9 (PCSK9)和新兴的反义寡核苷酸可进一步降低Lp (a)介导CVE的残余风险 [1] 。在AMI期间,Lp (a)作为一种急性期脂质蛋白,其水平急剧性增加 [11] 。Mitsuda T等人为期3年的观察性研究(纳入176例STEMI患者)提示:血清Lp (a)水平是STEMI患者继发心血管事件发生的独立预测指标,可能为STEMI患者提供预防策略 [12] 。一项基于100例在症状出现后12小时内提示AMI患者的研究结论表明:STEMI患者的标志物是Lp (a)水平的升高 [13] 。Galasso G等人在一个观察性、单中心的当代STEMI患者队列研究中提示,Lp (a)水平与再狭窄病变及长期MI复发独立相关,Lp (a)水平 ≥ 30 mg/dL显示出一种增量的风险分层能力,致复发性MI风险显著增加,尤其支持在STEMI高危临床环境中实施长期预后评估 [14] 。张萌等人对年龄大于80岁的AMI患者的前瞻性队列研究中,Lp (a)水平较高的患者心血管死亡发生率最高。此外,在完全调整的Cox比例风险模型中,Lp (a) > 30 mg/dL的受试者比Lp (a) ≤ 10 mg/dL患者患心血管死亡的风险高1.5倍。Lp (a)和Apo (a)在STEMI患者中的存在提示,Lp (a)水平升高可能在促进AS发生、AS斑块负荷增加、血栓形成和促炎反应中发挥病理生理作用 [10] [15] [16] 。

3.1. Lp (a)致动脉粥样硬化

3.1.1. Lp (a)附着在动脉壁上

Lp (a)已在人类血管中检测到,主要集中在细胞外和内膜下,在从循环转移到动脉壁时发挥致AS作用。细胞外基质(Extracellular Matrix, ECM)具有重要的生物活性,参与AS的细胞成分的行为调节。

Lp (a)的配体是α-防御素,与Lp(a)聚集在一起形成的稳定复合物不会穿过内皮细胞的质膜以及Apo (a)的赖氨酸结合位点有助于Lp (a)挂接在ECM,从而使Lp (a)集中在细胞外,高度保留在动脉壁中以及存在于人类动脉粥样硬化斑块中,这是维持Lp (a)于细胞外的两种机制 [17] 。其次,因Apo (a)和Apo B-100的相对量 [18] ,这些均导致Lp (a)比LDL的动脉壁亲和力高,在血管壁优先聚集附着,在STEMI患者中具有更高的致病力,增加AS的发生风险。值得注意的是,Lp (a)也被吞噬到巨噬细胞中形成泡沫细胞,增强脂质驱动的AS形成 [8] 。

3.1.2. Lp (a)对粘附分子、细胞因子以及趋化因子表达的影响

Lp (a)上调粘附分子、血管细胞粘附分子-1的表达 [19] ,激活核转录因子,与β2-整合素及巨噬细胞-1抗原共同促进单核细胞的附着和浸润,证实炎症因子参与AS形成 [20] 。Apo (a)的C末端区域诱导人髓系白血病单核细胞、巨噬细胞释放白细胞介素-8,促进中性粒细胞浸润 [21] 。除白细胞介素-8,Lp (a)也可增加巨噬细胞白细胞介素-1β和肿瘤坏死因子-α的表达,致动脉壁炎症 [22] 。上述表明Lp (a)可通过调节血管壁炎症细胞的募集启动AS。

3.1.3. Lp (a)对血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)的影响

转化生长因子-β是VSMCs生长的自分泌抑制剂,Lp (a)抑制转化生长因子-β活化,通过阻断纤溶酶原转化为纤溶酶来促进人培养的VSMCs的增殖 [23] 。VSMCs的结构以及功能改变与AS的发生紧密相连,可诱导AS斑块不稳定,促进AS斑块的形成。新出现的证据及一系列分子生物学实验证实:VSMCs分泌的细胞外囊泡通过直接靶向BCL2、MCL1、TIMP3、BCL6,激活NF-κB通路,介导miR-155诱导内皮细胞功能障碍,促进斑块的形成并触发血管内皮损伤,可影响AS和AS血栓 [24] 。另外,血小板衍生的外泌体(被邻近的VSMCs吸收)也在止血和AS血栓形成中发挥关键作用 [25] 。

3.1.4. Lp (a)影响动脉粥样硬化斑块的稳定

基质金属蛋白酶可在AS部位检测到,通过参与ECM降解,SMC移行及血管炎症反应影响AS。基质金属蛋白酶负责将Lp (a)分裂为F1和F2两个片段,F2是参与Lp (a)致AS作用的关键分子 [26] 。Lp (a)增加玻连蛋白和纤维蛋白原受体的表达,增强单核细胞与ECM的联系。Lp (a)还上调单核细胞上尿激酶和尿激酶受体的表达,激活纤溶酶促进ECM收缩 [27] 。

因此,Lp (a)在AS早期阶段以及后期AS不稳定的事件中发挥关键作用。

3.2. Lp (a)致ST段抬高型心肌梗死的动脉粥样硬化斑块负荷增加

一项针对83名患者的单中心研究首次报道 [28] ,Lp (a)水平升高与STEMI患者罪犯血管中的中度或大规模血栓负荷增加相关。本研究支持了STEMI患者中斑块破裂后动脉血栓形成受Lp (a)影响的假说。

Gensini评分是使用最广泛的血管造影评分系统,与血管内超声确定的平均斑块负荷和斑块面积显著相关,是公认的AS斑块负荷的预测指标 [29] 。一项前瞻性单中心研究(1359名因STEMI接受PCI的患者)中 [30] :(1) 比较不同Lp (a)类别STEMI患者的全因死亡率时,Lp (a)水平升高患者的全因死亡率最高;(2) 无论性别或年龄如何,应用分层分析评估发现Lp (a)水平升高患者的长期预后最差;(3) 调整后的多变量线性回归分析显示,Lp (a)水平升高与冠状AS斑块负荷之间相关,Lp (a)水平升高和Gensini评分之间存在很强的正相关,无复流的风险往往随着Lp (a)水平的增加而急剧增加;(4) 比较不同CAD类别的LPA表达水平,心功能较低的STEMI患者的LPA mRNA表达水平高于其他组,AS斑块负担最严重的患者LPA水平最高。

这项研究证明了在接受PCI治疗的STEMI患者中,Lp (a)与AS负荷独立相关。此外,高水平Lp (a)与高Gensini评分有关,这种关系在STEMI患者中得以保留。研究表明Lp (a)水平升高与AS和冠状动脉斑块负荷程度密切相关,Lp (a)水平升高与AS的快速进展高度相关,是不良结局的强力预测因子 [10] 。

3.3. Lp (a)致血栓形成

3.3.1. Lp (a)与组织因子(Tissuefactor, TF)的相互作用

向单核细胞施用Lp (a)或重组Apo (a)可上调TF的产生及其在细胞膜中的存在 [31] 。TF普遍存在于AS斑块的细胞和非细胞成分中,斑块破裂使有活性的TF显露于血液循环,驱动凝血过程致凝血酶和纤维蛋白形成,致血栓形成。此外,组织因子途径抑制物(Tissue factor pathway inhibitor, TFPI)主要来源于内皮细胞,已与人类AS斑块的血管SMC以及Apo (a)共定位,Lp (a)能够在体外损害TFPI活性和内皮细胞表面TFPI活性,诱发血栓形成 [32] 。

3.3.2. Lp (a)与纤溶酶原

纤溶酶的前体是纤溶酶原,纤溶酶是一种降解纤维蛋白的酶。在凝血纤溶系统中,由于Lp (a)和纤溶酶原的结构相似,Lp (a)与纤溶酶原竞争内皮细胞上的结合位点,阻断纤溶酶的发展 [33] ,发挥抗纤溶作用,导致纤维蛋白溶解延迟,引发血栓形成。Apo (a)和纤维蛋白共同定位于动脉壁,两者相互作用,Apo (a)亚型的大小与Lp (a)对纤维蛋白的亲和力成反比,即较小的亚型更易引发血栓 [10] 。高水平Lp (a)与Apo (a)和纤溶酶原序列同源性相关,具有致AS和血栓形成前的特性,使血栓形成风险增加 [34] 。其次,纤溶酶原对内皮细胞和血小板粘附性的降低部分可归因于Lp (a) [35] 。Lp (a)削弱了纤溶酶原与膜联蛋白的连接,膜联蛋白是血小板和内皮细胞的纤溶酶原受体,因此阻止了这些细胞表面纤溶酶原的激活 [22] ,进一步引发血栓形成。

综上所述,Lp (a)在纤溶酶原激活中的抑制作用是导致STEMI血栓形成的一种机制。

3.4. Lp (a)致ST段抬高型心肌梗死的促炎反应

过去大量的实验和临床证据表明:与LDL相比,Lp (a)被认为更易被氧化,可被AS壁中的炎症细胞识别,也被确定为是血浆中含有氧化磷脂(Oxidized phospholipids, Ox-PLs)的磷酸胆碱的主要脂蛋白载体,对内皮细胞表面表达的蛋白多糖和纤维连接蛋白有更高的亲和力,被认为是促炎和促AS生物标志物的优先载体,具有触发多种促炎途径的能力 [36] 。

Lp (a)介导STEMI风险的主要组成部分是Ox-PLs的含量。Ox-PLs被先天免疫细胞上的模式识别受体识别为危险相关分子模式,致广泛的促动脉炎症和斑块不稳定过程,同时介导Ox-LDL被摄取到巨噬细胞中产生泡沫细胞,释放促炎细胞因子,进一步促进Lp (a)在动脉壁中的累积,导致AS [37] 。研究表明,Lp (a)颗粒的Ox-PLs成分也促进化学引诱剂和细胞因子的分泌、粘附分子的上调以及单核细胞的跨内皮迁移。在高Lp (a)患者中,免疫细胞表现出AS斑块迁移增加,Lp (a)通过运输Ox-PLs引起SMC的增殖 [13] 。

一项单中心研究表明,Lp (a)升高的受试者中,Lp (a)的Apo (a)成分能够激活内皮细胞,单核细胞表现出增强的粘附和迁移内皮的能力,表明单核细胞和内皮细胞都易增加动脉壁炎症,在受试者单核细胞上测量的许多炎症标志物也表明与Lp (a)水平成正比 [36] 。

Wang Y等人回顾性的研究(招募了2318例STEMI-PCI患者)发现,当hsCRP ≥ 为2 mg/L时,高Lp (a)水平与不良预后相关,这意味着全身炎症可调节STEMI-PCI患者中Lp (a)相关的主要心血管不良事件风险。在具有高炎症风险的患者中测量Lp (a)可以识别具有高心血管风险的个体 [38] 。

总的来说,这些数据均表明Lp (a)在内膜下空间积累,促进炎症、泡沫细胞形成、平滑肌细胞增殖、炎症基因上调、诱导下空间的单核细胞趋化活性促进AS [8] ,并通过其OxPL含量介导STEMI的促炎反应。

4. Lp (a)的治疗

高Lp (a)水平患者管理的核心原则是降低总体ASCVD风险,降低有临床意义的高血脂,对ASCVD中、高危人群,除了加强生活方式干预,更需要强化降Lp (a)治疗:(1) Inclisiran,一种针对PCSK9mRNA的siRNA治疗,代表肝细胞中PSCK9蛋白抑制的全新机制。ORION-1 II期试验中,与安慰剂组相比,200 mg单剂量组Lp (a)降低14%~18%,300 mg双剂量组降低15%~26% (180天随访中),III实验中随机接受inclisiran治疗组Lp (a)降低24.3%,无严重不良事件的报告 [39] 。Inclisiran具有良好的药代动力学,需要每3~6个月给药一次,长期治疗期间可能导致依从性降低的风险。临床前研究以及I期和II期临床试验中证明,inclisiran在促进PCSK9蛋白和LDL-C水平的长期降低方面具有耐受性和有效性,有效性和安全性在针对更大的患者组的试验中将继续评估 [40] 。(2) PCSK9抑制剂可增强LDL-R的表达,通过抑制Lp (a)的合成和增加其分解代谢,降低Lp (a)水平近25%~30% [41] 。PCSK9抑制剂相关药剂包括 evelocumab和alirocumab,被美国食品和药物管理局批准临床使用,将LDL-C降低60%,Lp (a)降低30%。在Lp (a)的初始值较高的情况下,无法合理预期不良事件的发生,药物管理局尚未扩大PCSK9的应用降低Lp (a) [42] 。(3) 反义寡核苷酸(Antisense Oligonucleotides, ASO)是核苷酸的合成类似物,选择性地与靶mRNA结合,阻断其翻译和分泌,通过Watson-Crick碱基配对与靶RNA结合,沉默致病基因。临床药理学研究中心证实,第二代ASO药物ISIS-APO(a)Rx在II期临床试验显示降低Lp (a)和OxPLs 78%~90%,无明显不良反应,ISIS-APO(a)Rx的安全性和耐受性支持其作为一种潜在的治疗药物的持续临床开发,降低高Lp (a)患者CVD风险 [43] 。目前,AKCEA-APO(a)-LRx正在进行III期临床试验。

高强度他汀类药物,依折麦布,脂蛋白单采,阿利罗库单抗,烟酸也可不同程度影响Lp (a)水平,Lp (a)水平的降低被发现与主要心血管事件风险降低显著相关以及CVE的绝对降低独立相关,被证实有效减少CVE风险。

然而,很少有研究调查STEMI患者的Lp (a)降低疗法。一项第一个确定LPA水平与AS负荷以及心脏功能之间正相关关系的研究结果表明,尤其在STEMI患者中,有利于ASO的进一步临床应用 [44] 。在未来指南及共识中,建议高水平Lp (a)的STEMI患者推荐药物治疗,改善心血管疾病预后。

5. 小结

本综述主要强调STEMI的机制、Lp (a)的结构及理化特征以及Lp (a)与STEMI的相关性及治疗。大规模临床试验表明,Lp (a)是CVD的独立危险因素,可反映STEMI患者的预后,其影响性在年轻个体中研究已被证实,而老年个体中缺乏临床研究。这表明Lp (a)与STEMI之间的相关性仍需大量研究证实,未来应重点监测Lp (a),明确Lp (a)作为STEMI患者的治疗靶点,评估Lp (a)在STEMI患者中的预后价值。

文章引用

郝贝贝,崔明亮,杨禹娟,刘新宏. 脂蛋白(a):急性ST段抬高型心肌梗死的潜在新靶点
Lipoprotein (a): A Potential New Target for Acute ST-Segment Elevation Myocardial Infarction[J]. 临床医学进展, 2023, 13(12): 18890-18897. https://doi.org/10.12677/ACM.2023.13122657

参考文献

  1. 1. Rich, M.W. (2006) Epidemiology, Clinical Features, and Prognosis of Acute Myocardial Infarction in the Elderly. The American Journal of Geriatric Cardiology, 15, 7-13. https://doi.org/10.1111/j.1076-7460.2006.05273.x

  2. 2. van Peet, P.G., Drewes, Y.M., de Craen, A.J., Gussekloo, J. and de Ruijter, W. (2013) NT-proBNP Best Predictor of Car-diovascular Events and Cardiovascular Mortality in Secondary Prevention in Very Old Age: The Leiden 85-Plus Study. PLOS ONE, 8, e81400. https://doi.org/10.1371/journal.pone.0081400

  3. 3. Zhang, M., Liu, H.H., Jin, J.L., et al. (2020) Lipoprotein (a) and Cardiovascular Death in Oldest-Old (≥ 80 Years) Patients with Acute Myocardial Infarction: A Prospective Cohort Study. Atherosclerosis, 312, 54-59. https://doi.org/10.1016/j.atherosclerosis.2020.08.033

  4. 4. Tsimikas, S., Fazio, S., Ferdinand, K.C., et al. (2018) NHLBI Working Group Recommendations to Reduce Lipoprotein (a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. Journal of the American College of Cardiology, 71, 177-192. https://doi.org/10.1016/j.jacc.2017.11.014

  5. 5. Berg, K. (1963) A New Serum Type System in Man—The Lp Sys-tem. Acta Pathologica Microbiologica Scandinavica, 59, 369-382. https://doi.org/10.1111/j.1699-0463.1963.tb01808.x

  6. 6. Catapano, A.L., Graham, I., De Backer, G., et al. (2016) 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidae-mias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the Special Contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Athero-sclerosis, 253, 281-344.

  7. 7. Gencer, B., Kronenberg, F., Stroes, E.S. and Mach, F. (2017) Lipoprotein (a): The Reve-nant. European Heart Journal, 38, 1553-1560. https://doi.org/10.1093/eurheartj/ehx033

  8. 8. Schmidt, K., Noureen, A., Kronenberg, F. and Utermann, G. (2016) Structure, Function, and Genetics of Lipoprotein (a). Journal of Lipid Re-search, 57, 1339-1359. https://doi.org/10.1194/jlr.R067314

  9. 9. Nordestgaard, B.G. and Langsted, A. (2016) Lipoprotein (a) as a Cause of Cardiovascular Disease: Insights from Epidemiology, Genetics, and Biology. Journal of Li-pid Research, 57, 1953-1975. https://doi.org/10.1194/jlr.R071233

  10. 10. Cesaro, A., Schiavo, A., Moscarella, E., et al. (2021) Lipoprotein (a): A Genetic Marker for Cardiovascular Disease and Target for Emerging Therapies. Journal of Cardiovascular Medicine, 22, 151-161. https://doi.org/10.2459/JCM.0000000000001077

  11. 11. Vavuranakis, M.A., Jones, S.R., Ziogos, E., et al. (2022) The Trajectory of Lipoprotein (a) during the Peri- and Early Postinfarction Period and the Impact of Proprotein Convert-ase Subtilisin/Kexin Type 9 Inhibition. The American Journal of Cardiology, 171, 1-6. https://doi.org/10.1016/j.amjcard.2022.01.058

  12. 12. Mitsuda, T., Uemura, Y., Ishii, H., et al. (2016) Lipoprotein (a) Levels Predict Adverse Vascular Events after Acute Myocardial Infarction. Heart and Vessels, 31, 1923-1929. https://doi.org/10.1007/s00380-016-0823-0

  13. 13. Rashid, S., Khurshid, R., Amir, U.F., et al. (2017) A Novel Link between Adipokines and Lipoprotein (A) to Contemplate Their Diagnostic Role in Patients with Stemi and Nstemi. Journal of Ayub Medical College Abbottabad, 29, 112-117.

  14. 14. Galasso, G., De Angelis, E., Silverio, A., et al. (2021) Predictors of Recurrent Ischemic Events in Patients with ST- Segment Elevation Myocardial Infarction. The American Journal of Cardiology, 159, 44-51. https://doi.org/10.1016/j.amjcard.2021.08.019

  15. 15. Kronenberg, F., Mora, S., Stroes, E., et al. (2022) Lipoprotein (a) in Atherosclerotic Cardiovascular Disease and Aortic Stenosis: A European Atherosclerosis Society Consensus Statement. European Heart Journal, 43, 3925-3946. https://doi.org/10.1093/eurheartj/ehac361

  16. 16. Ruscica, M., Sirtori, C.R., Corsini, A., et al. (2021) Lipoprotein (a): Knowns, Unknowns and Uncertainties. Pharmacological Research, 173, Article ID: 105812. https://doi.org/10.1016/j.phrs.2021.105812

  17. 17. Bdeir, K., Cane, W., Canziani, G., et al. (1999) Defensin Promotes the Binding of Lipoprotein (a) to Vascular Matrix. Blood, 94, 2007-2019.

  18. 18. Kreuzer, J., Lloyd, M.B., Bok, D., et al. (1994) Lipoprotein (a) Displays Increased Accumulation Compared with Low- Density Lipoprotein in the Murine Arteri-al Wall. Chemistry and Physics of Lipids, 67-68, 175-190. https://doi.org/10.1016/0009-3084(94)90137-6

  19. 19. Oikonomou, E., Souvaliotis, N., Lampsas, S., et al. (2022) Endothelial Dysfunction in Acute and Long Standing COVID-19: A Prospective Cohort Study. Vascular Pharmacology, 144, Article ID: 106975. https://doi.org/10.1016/j.vph.2022.106975

  20. 20. Sotiriou, S.N., Orlova, V.V., Al-Fakhri, N., et al. (2006) Lipopro-tein (a) in Atherosclerotic Plaques Recruits Inflammatory Cells through Interaction with Mac-1 Integrin. The FASEB Journal, 20, 559-561. https://doi.org/10.1096/fj.05-4857fje

  21. 21. Klezovitch, O., Edelstein, C. and Scanu, A.M. (2001) Stimulation of In-terleukin-8 Production in Human THP-1 Macrophages by Apolipoprotein (a). Evidence for a Critical Involvement of Elements in Its C-Terminal Domain. Journal of Biological Chemistry, 276, 46864-46869. https://doi.org/10.1074/jbc.M107943200

  22. 22. Labudovic, D., Kostovska, I., Tosheska, T.K., et al. (2019) Lipopro-tein (a)—Link between Atherogenesis and Thrombosis. Prague Medical Report, 120, 39-51. https://doi.org/10.14712/23362936.2019.9

  23. 23. Grainger, D.J., Kemp, P.R., Liu, A.C., Lawn, R.M. and Metcalfe, J.C. (1994) Activation of Transforming Growth Factor-β Is Inhibited in Transgenic Apolipoprotein(a) Mice. Nature, 370, 460-462. https://doi.org/10.1038/370460a0

  24. 24. Badimon, L., Padro, T., Arderiu, G., et al. (2022) Extracellular Vesicles in Atherothrombosis: From Biomarkers and Precision Medicine to Therapeutic Targets. Immunological Reviews, 312, 6-19. https://doi.org/10.1111/imr.13127

  25. 25. Wang, C., Liu, C., Shi, J., et al. (2023) Nicotine Exacerbates Endothelial Dysfunction and Drives Atherosclerosis via Extracellular Vesicle-miRNA. Cardiovascular Research, 119, 729-742. https://doi.org/10.1093/cvr/cvac140

  26. 26. Klezovitch, O., Edelstein, C., Zhu, L.Y. and Scanu, A.M. (1998) Apolipoprotein (a) Binds via Its C-Terminal Domain to the Protein Core of the Proteoglycan Decorin. Implications for the Retention of Lipoprotein (a) in Atherosclerotic Lesions. Journal of Biological Chemistry, 273, 23856-23865. https://doi.org/10.1074/jbc.273.37.23856

  27. 27. Ganne, F., Vasse, M., Beaudeux, J.L., et al. (1999) Increased Ex-pression of u-PA and u-PAR on Monocytes by LDL and Lp(a) Lipoproteins—Consequences for Plasmin Generation and Monocyte Adhesion. Thrombosis and Haemostasis, 81, 594-600. https://doi.org/10.1055/s-0037-1614531

  28. 28. Sankhesara, D.M., Lan, N., Gilfillan, P., et al. (2023) Lipoprotein (a) Is Associated with Thrombus Burden in Culprit Arteries of Younger Patients with ST-Segment Elevation Myocardial In-farction. Cardiology, 148, 98-102. https://doi.org/10.1159/000529600

  29. 29. Neeland, I.J., Patel, R.S., Eshtehardi, P., et al. (2012) Coronary Angio-graphic Scoring Systems: An Evaluation of Their Equivalence and Validity. American Heart Journal, 164, 547-552. https://doi.org/10.1016/j.ahj.2012.07.007

  30. 30. Xue, Y., Jian, S., Zhou, W., et al. (2021) Associations of Lipopro-tein(a) with Coronary Atherosclerotic Burden and All-Cause Mortality in Patients with ST-Segment Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. Frontiers in Cardiovascular Medicine, 8, Article 638679. https://doi.org/10.3389/fcvm.2021.638679

  31. 31. Ferretti, G., Bacchetti, T., Johnston, T.P., et al. (2018) Lipoprotein (a): A Missing Culprit in the Management of Athero-Thrombosis? Journal of Cellular Physiology, 233, 2966-2981. https://doi.org/10.1002/jcp.26050

  32. 32. Caplice, N.M., Panetta, C., Peterson, T.E., et al. (2001) Lipoprotein (a) Binds and Inactivates Tissue Factor Pathway Inhibitor: A Novel Link between Lipoproteins and Thrombosis. Blood, 98, 2980-2987. https://doi.org/10.1182/blood.V98.10.2980

  33. 33. Scanu, A.M. (2003) Lipoprotein (a) and the Atherothrombotic Process: Mechanistic Insights and Clinical Implications. Current Atherosclerosis Reports, 5, 106-113. https://doi.org/10.1007/s11883-003-0081-3

  34. 34. Boffa, M.B. and Koschinsky, M.L. (2016) Lipoprotein (a): Truly a Direct Prothrombotic Factor in Cardiovascular Disease? Journal of Lipid Research, 57, 745-757. https://doi.org/10.1194/jlr.R060582

  35. 35. Ezratty, A., Simon, D.I. and Loscalzo, J. (1993) Lipoprotein (a) Binds to Human Platelets and Attenuates Plasminogen Binding and Activation. Biochemistry, 32, 4628-4633. https://doi.org/10.1021/bi00068a021

  36. 36. van der Valk, F.M., Bekkering, S., Kroon, J., et al. (2016) Oxidized Phospholipids on Lipoprotein (a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation, 134, 611-624. https://doi.org/10.1161/CIRCULATIONAHA.116.020838

  37. 37. Lee, S., Birukov, K.G., Romanoski, C.E., et al. (2012) Role of Phospholipid Oxidation Products in Atherosclerosis. Circulation Research, 111, 778-799. https://doi.org/10.1161/CIRCRESAHA.111.256859

  38. 38. Wang, Y., Zhao, X., Zhou, P., et al. (2021) Impact of Postprocedural High-Sensitivity C-Reactive Protein on Lipoprotein (a)-Associated Cardiovascular Risk with ST-Segment Elevation Myocardial Infarction with Percutaneous Coronary Intervention. The American Journal of Cardiology, 150, 8-14. https://doi.org/10.1016/j.amjcard.2021.03.038

  39. 39. Ray, K.K., Stoekenbroek, R.M., Kallend, D., et al. (2018) Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins: Prespecified Secondary End Points in ORION 1. Circulation, 138, 1304-1316. https://doi.org/10.1161/CIRCULATIONAHA.118.034710

  40. 40. Dyrbus, K., Gasior, M., Penson, P., Ray, K.K. and Banach, M. (2020) Inclisiran-New Hope in the Management of Lipid Disorders? Journal of Clinical Lipidology, 14, 16-27. https://doi.org/10.1016/j.jacl.2019.11.001

  41. 41. Raal, F.J., Giugliano, R.P., Sabatine, M.S., et al. (2016) PCSK9 Inhibition-Mediated Reduction in Lp (a) with Evolocumab: An Analysis of 10 Clinical Trials and the LDL Re-ceptor’s Role. Journal of Lipid Research, 57, 1086-1096. https://doi.org/10.1194/jlr.P065334

  42. 42. Enas, E.A., Varkey, B., Dharmarajan, T.S., Pare, G. and Bahl, V.K. (2019) Lipoprotein (a): An Independent, Genetic, and Causal Factor for Cardiovascular Disease and Acute Myocardial Infarction. Indian Heart Journal, 71, 99-112. https://doi.org/10.1016/j.ihj.2019.03.004

  43. 43. Tsimikas, S., Viney, N.J., Hughes, S.G., et al. (2015) Antisense Therapy Targeting Apolipoprotein (a): A Randomised, Double-Blind, Placebo-Controlled Phase 1 Study. The Lancet, 386, 1472-1483. https://doi.org/10.1016/S0140-6736(15)61252-1

  44. 44. Xue, Y., Shen, J., Hong, W., et al. (2021) Risk Stratification of ST-Segment Elevation Myocardial Infarction (STEMI) Patients Using Machine Learning Based on Lipid Profiles. Li-pids in Health and Disease, 20, Article No. 48. https://doi.org/10.1186/s12944-021-01475-z

期刊菜单