Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78956 , 9 pages
10.12677/ACM.2024.141054

卵巢储备功能减退相关研究进展

孙琛1,刘红连2*

1内蒙古医科大学研究生院,内蒙古 呼和浩特

2内蒙古自治区妇幼保健院生殖医学科,内蒙古 呼和浩特

收稿日期:2023年12月8日;录用日期:2024年1月2日;发布日期:2024年1月10日

摘要

随着晚婚、晚育女性人数逐年呈上升趋势,高龄女性妊娠比例及助孕需求也随之升高,即使个体间可能存在差异,但伴随的是卵巢储备功能大体呈下降趋势,导致女性生育力低下。卵巢储备功能减退(Diminished Ovarian Reserve, DOR)是一种强调卵巢储备的下降和对生育力的影响疾病,有8%~15%的女性受其影响。其病因复杂,包括社会人口危险因素、临床危险因素。目前国内外尚无统一诊断标准,但临床常将抗缪勒管激素、卵泡刺激素、窦卵泡数及年龄作为评估指标,具有生育能力下降,月经紊乱、性激素缺乏等表现。虽然国内外对DOR的治疗已进行大量探索和研究,但目前的治疗方式仍是以对症治疗、解决不孕需求为主。本文就卵巢储备功能减退相关背景对该病从定义、相关概念、临床表现、诊断及治疗进展进行概述,并从病理生理学、影响因素方面的研究进展展开综述,以期为DOR相关研究提供理论依据。

关键词

卵巢储备功能减退,卵巢功能,抗缪勒管激素,卵巢衰老,综述

Related Research Progress in Diminished Ovarian Reserve

Chen Sun1, Honglian Liu2*

1Graduate School of Inner Mongolia Medical University, Hohhot Inner Mongolia

2Department of Reproductive Medicine, Inner Mongolia Maternal and Child Health Hospital, Hohhot Inner Mongolia

Received: Dec. 8th, 2023; accepted: Jan. 2nd, 2024; published: Jan. 10th, 2024

ABSTRACT

As the number of women who marry late and have late childbirth increases year by year, the proportion of elderly women and the need for pregnancy assistance also increase. Even if there may be differences among individuals, the ovarian reserve is generally declining, leading to low fertility of women. Diminished Ovarian Reserve (DOR) is a disease that emphasizes the decline in ovarian reserve and the impact on fertility, affecting 8% to 15% of women. Its etiology is complex, including sociodemographic risk factors and clinical risk factors. At present, there is no unified diagnostic standard at home and abroad, Anti-Mullerian Hormone (AMH), Follicle-Stimulating Hormone (FSH), Antral Follicle Count (AFC) and age are often used as the evaluation indicators of DOR, which characterized with decreased fertility, menstrual disorders, and sex hormone deficiency. Although the treatment of DOR has been extensively explored and studied, the current treatment is still focuses on symptomatic treatment and solving the needs of infertility. In this paper, we summarize the definition, related concepts, clinical manifestations, diagnosis and treatment of the background of DOR, and summarize the progress of pathophysiology and influencing factors, in order to provide a theoretical basis for DOR.

Keywords:Diminished Ovarian Reserve, Ovarian Function, Anti-Mullerian Hormone, Ovarian Aging, Overview

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 概述

1.1. DOR的背景

DOR,即女性卵巢通常会有卵母细胞数量减少及质量下降,伴抗缪勒管激素(Anti-Mullerian Hormone, AMH)水平降低、窦卵泡计数(Antral Follicle Count, AFC)减少、卵泡刺激素(Follicle-Stimulating Hormone, FSH)升高,表现为生育能力下降,月经紊乱、性激素缺乏等 [1] 。DOR病因复杂,包括社会人口危险因素,如年龄、低教育水平和就业;以及临床危险因素,如月经周期不规则、月经血量少和流产等 [2] 。虽然随着女性年龄的增长,卵母细胞数量或质量下降是一种正常的生理现象:女婴出生时有50万至100万个卵母细胞,随着时间的推移,卵泡闭锁和排卵会使卵母细胞数量逐渐缓慢减少,随之出现更年期症状 [3] ,这说明卵巢储备功能会随年龄增长而衰退,但相同年龄的女性的卵巢储备有相当大的差异,一些女性可能比同龄女性提早发生卵巢储备功能减退,甚至导致过早不孕 [4] 。DOR是导致不孕症的主要原因之一 [5] ,在美国,某不孕症诊所就诊的女性中有10%被诊断为DOR,这些妇女使用辅助生殖技术(Assisted Reproductive Technology, ART)的成功率要低得多 [6] 。一项面向中国育龄期不孕夫妇的荟萃分析显示 [7] :1980年至2012年,新婚夫妇1年和2年不孕症的患病率分别为12.5%和6.6%,2018年,8个省市10,742名尝试怀孕的女性中,不孕率达到了25.0% [2] ;有研究表示DOR患病率在8%~15%,然而,40岁以上女性DOR患病率超过50% [8] ,这可能也与DOR定义不统一有关。

1.2. DOR的相关概念

由于对卵巢储备的诊断标准未达统一,因此,相关研究常存在冲突,同样使得患有相关疾病的女性患者不能得到及时治疗。与DOR相关的概念包括 [9] :早发性卵巢功能不全(Premature Ovarian Insufficiency, POI):以月经紊乱伴高促性腺激素和低雌激素为特征,是指年龄 < 40岁即出现月经紊乱(月经稀发或闭经超过4个月);连续2次且间隔时间超过4周的FSH > 25 U/L。卵巢早衰(Premature Ovarian Failure, POF)即卵巢功能衰竭,强调卵巢功能由减退至衰竭的进展过程,通常POF闭经时间 ≥ 4~6个月,与POI不同的是,其FSH > 40 U/L。卵巢低反应(Poor Ovarian Response, POR)是卵巢对促性腺激素刺激反应不良的一种病理状态,表现为:卵巢刺激周期发育卵泡较少,血雌激素水平低,导致获卵数少且临床妊娠率相对较低,并不完全依据年龄及FSH作为诊断标准。DOR强调的是卵巢储备的下降和对生育力的影响,其评估通常包括年龄、血FSH、AMH水平以及AFC目前没有准确可用于其诊断的单一因素,同时国内外关于DOR的诊断标准及治疗尚未统一,其相关研究相对较少,常发生DOR延迟诊断和治疗的情况,导致其患病率可能比实际更高,因此,有必要对DOR进行深入研究。

1.3. DOR的诊断

对于DOR的诊断,目前国内外没有统一的诊断标准 [9] [10] ,早期,辅助生殖技术协会(Society for Assisted Reproductive Technology, SART)根据国家ART监测系统指南所提出的定义进行筛选(与卵巢功能减退相关的生殖力降低;包括在卵泡早期或氯米芬激发试验期间测量的高FSH或高雌二醇;与先天性、医学、手术或其他原因相关的卵巢体积减小;或年龄 > 40岁的高龄产妇),并提出约32%的体外受精(In Vitro Fertilization, IVF)周期患者诊断为DOR。而《联邦公报》中DOR的定义是基于临床评估的与卵巢功能下降相关的生殖力下降的状态,通常用FSH > 10 mIU/mL或AMH < 1.0 ng/mL表示 [9] 。由于DOR目前没有统一的诊断标准,临床多以仍有规律月经的女性为研究对象,以各种异常卵巢储备测试结果用以临床辅助诊断(如未绝经患者基础FSH高,AMH低,AFC低,或是相对较少使用的柠檬酸氯米芬挑战试验失败)。现临床上多以2011年欧洲人类生殖与胚胎协会(European Society of Human Reproduction and Embryology, ESHRE)推出的博洛尼亚标准中关于卵巢储备功能的诊断标准为主:其一是AFC < 5~7个或AMH < 0.5~1.1 μg/L,其二是连续两个月经周期的基础FSH ≥ 10 IU/L [10] 。2022年中华预防医学会发布《卵巢功能减退临床诊治专家共识》 [1] 并推荐使用AMH、AFC、基础FSH并结合年龄因素对卵巢储备功能进行综合评估(AMH:AMH < 1.1 ng/ml;AFC:月经第2~4天的双侧卵巢的卵泡数(卵泡直径2~10 mm),两侧卵巢AFC < 5~7枚;基础FSH:连续两个月经周期的基础FSH ≥ 10 IU/L)。目前还没有评估卵巢储备的理想方法,卵巢储备试验中相互矛盾的结果也并不少见。因此,临床医师利用各种测试来评估卵巢储备。一项对全球796个生育中心的调查显示 [11] ,51%的人认为AMH是测量卵巢储备的最佳评估指标,而40%的报告认为AFC更具有评估卵巢功能价值,只有6%选择了基础FSH作为参考指标。

1.4. DOR的治疗

关于DOR的治疗,虽然目前为止西医(Western medicine, WM)和中医(Chinese medicine, CM)已经做了大量的探索,但是对于患有DOR的女性还没有最佳的治疗方案,仍是以对症治疗、解决不孕需求为主,所以DOR的治疗仍然是一个亟待解决的临床问题。首先,西医中常见的治疗方案包括:激素替代疗法 [12] (Hormone Replacement Therapy, HRT) (通过调节月经,改善低雌激素症状促进排卵);抗氧化疗法 [13] [14] (有研究发现抗氧化剂不仅能够改善卵母细胞数及质量,减少胚胎非整倍体的发生率,还能增强抗氧化免疫系统同时降低接受体外受精妊娠DOR女性的氧化应激反应);脱氢表雄酮治疗,但是其对卵巢功能的改善目前存在争议;生长激素治疗,伴有自身免疫性疾病和卵巢自身抗体阳性的DOR患者通常使用免疫抑制性皮质类固醇治疗,如泼尼松或地塞米松(临床研究报道 [15] ,通过糖皮质激素治疗可以恢复排卵和妊娠);对于有生育需求的女性可以选择药物促排卵或辅助生殖技术帮助受孕,如果卵巢功能严重退化,可选择卵母细胞捐赠 [16] 。中医认为,肾在女性卵巢储备功能中起着决定性作用,所以中医以治肾为主,从而调节激素水平达到改善卵巢功能目的,如左归丸辅以补肾益气活血方等 [17] ;由于月经周期受月经变化的规律性和阴、阳、气、血的生理节律的调节,也可通过根据不同月经周期患者的生理特征来确定治疗疗程;其他治疗包括口服中成药(定坤丹、坤泰胶囊等)、通过调节下丘脑垂体–卵巢(H-P-O)轴激活多巴胺系统的针灸疗法等。虽然目前以上治疗方案已应用于临床,但是不论是中医、西医还是中西医结合治疗,都仍需大量试验及研究探究药物作用机制并证明其长期有效性及安全性。

2. DOR病理生理学

自胚胎形成后,卵泡即开始进行自主发育,发育到一定程度后通过细胞凋亡机制自行退化,即闭锁,虽然原始卵泡激活机制尚不明确,但已有研究提出原始卵泡的激活可能通过抑制卵巢中原始卵泡的激活而继续生长。根据卵泡发育的不同时期及其对促性腺激素依赖情况Orisaka M [18] 等将卵泡发育分为3个阶段,其一是不依赖FSH和LH的促性腺激素独立阶段。磷脂酰肌醇3-激酶/蛋白激酶B (PI3K/Akt)信号通路是一种被认为参与了卵巢中原始卵泡的激活的细胞内信号转导通路,有研究者发现 [19] 当敲除小鼠内具有抑制PI3K/Akt信号通路的酶PTEN后,其卵巢内大多数原始卵泡被激活并同时开始生长,使卵巢卵泡早期即开始耗尽,说明PI3K/Akt信号通路参与了促性腺激素独立期的原始卵泡激活且与卵巢功能衰退有关,虽然其确切机制尚未明确,但推测Kit配体(KL)及其受体c-Kit可能参与其中。至胚胎6~8周,原始生殖细胞(Primordial Germ Cells, PGCs)开始不断进行有丝分裂并分化为卵原细胞,约60万个。胚胎11~12周开始,卵原细胞进入减数分裂并发育成初级卵母细胞。至妊娠16~20周,生殖细胞数达高峰,两侧卵巢共含600万~700万个。之后,单层梭形前颗粒细胞包裹初级卵母细胞形成始基卵泡,这是卵细胞储备的唯一形式。随后经过9个多月的时间,始基卵泡由初级卵泡到次级卵泡最后形成窦前卵泡 [20] 。在减数分裂期间,原始卵泡中的卵母细胞仍然停留在细胞分裂早期的二倍体阶段,直到青春期开始 [21] 。青春期后,在促性腺激素的刺激下卵泡逐渐发育,随着卵泡液增加融合形成卵泡腔,窦卵泡形成。在卵泡发育过程中,由于闭锁,胎儿出生时卵泡约剩200万个 [22] ,至青春期只剩下约30万个,随着年龄增长,女性在约49~52岁时 [23] ,当卵泡池中非生长卵泡数量下降到最低阈值以下(约1000~1100个)时,绝经期随之而来 [24] ,可见,卵母细胞数量下降的进程不是以一个恒定的速度,与之相反,卵泡数量下降的速度会随着年龄的增长而增加 [24] ,但消耗率是逐渐加速还是在特定年龄形成突然的变化还有待讨论。

3. DOR的影响因素

卵巢储备功能减退与卵母细胞数量和质量的逐渐损失相关。随着卵母细胞数量的减少,其质量也会下降,虽然关于卵母细胞质量下降的机制尚未明确,但有研究发现一些因素在调节过程中可能发挥了关键作用 [25] [26] [27] ,包括遗传因素、感染因素 [28] 、环境因素等都是可能对其产生影响的作用因子。

3.1. 遗传因素

DOR的遗传因素包括染色体异常、线粒体异常、脆性X智力迟钝蛋白1 (FMR1)等位基因相关的核苷酸序列重复长度异常等,这些因子参与了细胞功能调节,若出现异常则会导致细胞衰老甚至凋亡从而导致多种疾病。

3.1.1. 染色体

目前染色体传递保真度因子18 (Chromosome Transmission Fidelity Factor 18, CHTF18)是保守复制因子C样复合物的一个组成部分,已被证明在女性生育能力和保证卵巢储备的数量和质量中起着至关重要的作用,Holton等 [29] 利用小鼠实验发现:与野生型雌性小鼠相比,CHTF18/−雌性小鼠表现出年龄依赖性的低生育能力,其卵巢在卵泡形成的所有阶段卵泡都较少,在3个月龄和6个月龄时下降尤为显著,在6个月大时卵泡池几乎耗尽,质量较差的卵母细胞最终发育成非整倍体卵。

3.1.2. 线粒体

除此之外,线粒体内聚力减退和错误分离,减数分裂重组的错误,以及纺锤体组装检查点的严格性降低等也会影响卵泡质量及数量,有文章指出 [30] 由于在卵母细胞正常发育过程中,异常的减数分裂或染色体错误分离都可能会导致其发育成非整倍体卵,从而导致不良妊娠结局,而在有丝分裂和减数分裂期间具有介导姐妹染色单体臂之间和着丝粒之间内聚作用的内聚蛋白随着年龄的增加,其作用力会逐渐减弱,这也就导致染色体错误分离、染色单体过早分离和非整倍体增加使流产、不孕的风险增加。血管生成素样蛋白2 (Shugoshin-like protein 2, SGOL2),具有在有丝分裂和减数分裂过程中保护着丝粒的凝聚力不被降解的能力,其表达随着年龄增加而减少,Rattini等 [31] 在小鼠实验中发现,随着年龄增长,SGOL2蛋白表达降低,其缺失会导致着丝粒内聚力减弱,从而导致姐妹染色单体过早分离,这也表明在评估卵巢储备功能时参考年龄的重要性。除此之外,端粒长短的改变已提出与卵巢储备功能有关 [32] ,而端粒长度也许可用于选择卵母细胞和胚胎来提高体外受精的成功率,但仍需大量研究来证明端粒长度与胚胎质量间的相关性。

3.1.3. 遗传因子

Gleicher等 [33] 根据小鼠FMR1模型提出不同重复长度范围的CGGn与卵巢衰老和不孕症治疗结果的差异相关。通过前瞻性队列研究发现无论是单等位基因还是双等位基因,低FMR1等位基因(CGGn < 26)与卵巢功能储备的过早下降相关,即FMR1中重复长度少于26个的CGG三核苷酸序列可能对卵巢衰老和不孕症的影响相对较重:对年轻卵母细胞供体的分析表明,与拷贝数较多的女性相比,CGGn < 26的女性血清AMH水平加速降低,由此推测低FMR1等位基因可能代表了一种针对具有识别卵巢早衰遗传风险的女性的筛查工具。

3.2. 感染因素

随着年龄增长,修复DNA损伤的细胞机制效果变差从而产生质量差甚至凋亡的卵母细胞 [34] ,随之而来的就是不良妊娠结局的发生,说明DOR可能与DNA损伤有关。Rinaldi等 [35] 通过TRP53和TAp63通路发现在DNA损伤的情况下,细胞会激活一种称为DNA损伤反应(DNA Damage Response, DDR)的协调机制来修复损伤;纺锤体装配检查点(Spindle Assembly Checkpoint, SAC)功能是检测染色体与纺锤体的附着,附着错误会激活SAC,同时导致细胞周期阻滞使细胞发育不良,DDR修复的同时会与SAC协调识别更多DNA损伤部分。对于DNA损伤反应是如何变化的,仍有待探究。有趣的是,对长寿的艾姆斯矮鼠的研究 [36] [37] 阐明生长激素分泌和卵母细胞DNA完整性之间呈负相关,这似乎证明了下丘脑–垂体–卵巢(HPO)轴与卵巢本身的相互协调维持了卵巢的生殖健康。

有研究指出 [38] 活性氧与卵巢功能减退有关,活性氧(Reactive Oxygen Species, ROS)是含有氧的高活性化合物,当过度产生活性氧时,这些化合物会引起氧化应激和细胞损伤,细胞中高浓度的ROS会导致线粒体和核DNA损伤和凋亡 [39] ,从而对卵泡的发育和排卵产生不利影响。有学者认为在小鼠中,由ROS引起的长期氧化应激与卵母细胞质量下降有关,而不影响卵母细胞的数量,Shi等 [40] 将试验小鼠置于臭氧环境下进行对照试验发现臭氧环境下的雌性小鼠的产仔数更小、更少,而AMH表达水平及原始卵泡池大小并未见明显变化,此处推断AMH水平可能与卵母细胞数量更具有相关性。目前,关于影响卵巢中卵母细胞质量及数量的相关分子机制已被提出 [21] ,但是充满争议,同时,有关卵母细胞质量的因素的文章并不多,未来对于卵巢储备功能的相关研究可从此类方面入手。

3.3. 环境因素

近年来,随着社会工业的发展,人类暴露于各种现代工业及消费产品的机会越来越多,如:杀虫剂、厨具、家具、化妆品等,这些内分泌干扰化学物 [41] (Endocrine Disrupting Chemicals, EDCs)都有可能干扰激素的信号传导、代谢以及生理作用。双酚A (Bisphenol A, BPA)是最常见的EDCs之一,作为聚碳酸酯塑料和环氧树脂的原料,BPA广泛存在于各种日常消费品中,如塑料瓶、食品容器和热敏纸等 [42] 。双酚A易从聚合物中浸出,尤其是在温暖的环境中,因此人类不可避免地会通过饮食、饮用水和皮肤接触而暴露于双酚A中 [43] ,超过90%的普通人群在尿液中检测到BPA水平 [44] 。BPA会模拟17-雌二醇的活性,影响卵巢激素的分泌,改变下丘脑–垂体水平的性激素反馈作用,从而降低下丘脑–垂体–卵巢轴功能,进而破坏类固醇生成、抑制卵泡发育,对卵巢储备功能产生不利影响 [45] [46] ,一项研究表明,随着时间的推移,围产期暴露于与环境相关的剂量的BPA,会导致小鼠的生育能力和繁殖力显著下降 [47] 。

双酚F (Bisphenol F, BPF)和双酚S (Bisphenol S, BPS)在结构上与BPA高度相似,有研究发现 [48] 它们比BPA具有相似甚至更大的卵巢毒性,有学者对就诊某不孕诊所的111名患者进行研究并在探讨中国不孕症妇女尿双酚暴露与卵巢储备的关系时发现:尿BPS浓度与血清AMH呈负相关且BPS具有与BPA类似的卵巢毒性说明BPA和BPS暴露显著增加了DOR的风险。之前的一项针对307名韩国育龄妇女的研究报告称 [5] ,BPA和血清AMH之间呈负相关。但是由于年龄、种族、饮食习惯、样本量和测量方法等原因目前对于此结论仍具有争议 [49] 。

3.4. 其他因素

其他可能的影响因素包括:自身免疫因素、社会心理因素、医源性因素及其他未发现的潜在因素等。烷基化剂和涉及卵巢的盆腔放射治疗已被确定为性腺功能衰竭的主要危险因素之一 [50] 。一项关于儿童及青少年成神经管细胞瘤患者治疗后的下丘脑–垂体–性腺轴(Hypothalamic-pituitary-gonadal axis, HPGA)功能的研究发现 [51] 在接受了颅脊椎照射治疗(Craniospinal irradiation, CSI)和辅助化疗的患者中,患有HPGA功能障碍的女性患者相对男性患者来说更为常见(76% vs 34%),且在收集数据时,有13例(62%)女性患者的FSH水平升高,提示卵巢功能衰竭,其中,原发性闭经5例,继发性闭经3例;说明HPGA功能损伤和生育能力受损的风险通常与化疗药物或放疗的累积剂量有关,所以同时接受化疗和CSI的成神经管细胞瘤的女性患者发生HPGA损伤和直接性腺损伤的风险更高。但是该研究纳入的样本量较少,缺乏代表性。

4. 总结

由于国内外对DOR缺乏统一的诊疗共识,其患病率呈整体上升趋势,患者年龄亦有呈现年轻化趋势,对女性整个生命周期具有重大的健康和经济影响,包括生殖、代谢和心理特征等方面。卵泡自胚胎形成便开始发育,并呈下降趋势,目前只能控制促性腺激素依赖的窦卵泡生长 [18] ,而原始卵泡的激活、促性腺激素非依赖性生长及窦前卵泡仍然无法控制,使卵泡数量下降的机制仍需进一步探索,我们应该从动物模型研究中进一步研究这些方面,以开发促进不孕妇女早期卵泡形成的方法。影响DOR的因素包括遗传、感染、环境等因素,了解其中机制有助于制定更精确的诊疗计划。诊断和经验治疗对DOR患者来说并不理想,对于患有卵巢功能相关疾病的患者,临床医师应给予个体化治疗,加强与患者的沟通合作至关重要,这样才能更好地了解病因、完善诊断特征,并给予更具体化的治疗方案。

文章引用

孙 琛,刘红连. 卵巢储备功能减退相关研究进展
Related Research Progress in Diminished Ovarian Reserve[J]. 临床医学进展, 2024, 14(01): 373-381. https://doi.org/10.12677/ACM.2024.141054

参考文献

  1. 1. 卵巢储备功能减退临床诊治专家共识[J]. 生殖医学杂志, 2022, 31(4): 425-434.

  2. 2. Zhou, Z., Zhou, Z., Zhou, Z., Zheng, D. and Zheng, D. (2017) Epidemiology of Infertility in China: A Population-Based Study. BJOG: An Interna-tional Journal of Obstetrics and Gynaecology, 125, 432-441. https://doi.org/10.1111/1471-0528.14966

  3. 3. Harris, B.S., et al. (2023) Markers of Ovarian Reserve as Predictors of Future Fertility. Fertility and Sterility, 119, 99-106. https://doi.org/10.1016/j.fertnstert.2022.10.014

  4. 4. Wang, X.F., Wang, L.J. and Xiang, W.P. (2023) Mechanisms of Ovarian Aging in Women: A Review. Journal of Ovarian Re-search, 16, Article No. 67. https://doi.org/10.1186/s13048-023-01151-z

  5. 5. Park, S.Y., et al. (2021) The Associ-ation of Ovarian Reserve with Exposure to Bisphenol A and Phthalate in Reproductive-Aged Women. Journal of Korean Medical Science, 36, e1. https://doi.org/10.3346/jkms.2021.36.e1

  6. 6. Tal, R. and Seifer, D.B. (2017) Ovarian Re-serve Testing: A User’s Guide. American Journal of Obstetrics and Gynecology, 217, 129-140. https://doi.org/10.1016/j.ajog.2017.02.027

  7. 7. Meng, Q.-Q., et al. (2013) A Systematic Review of Infertility Rates among Couples of Childbearing Age in China. Chinese Journal of Epidemiology, 34, 826-831.

  8. 8. Dogan, S., et al. (2021) The Effect of Growth Hormone Adjuvant Therapy on Assisted Reproductive Technologies Outcomes in Patients with Diminished Ovarian Reserve or Poor Ovarian Response. Journal of Gynecology Obstetrics and Human Reproduc-tion, 50, Article ID: 101982. https://doi.org/10.1016/j.jogoh.2020.101982

  9. 9. Pastore, L.M., et al. (2018) Repro-ductive Ovarian Testing and the Alphabet Soup of Diagnoses: DOR, POI, POF, POR, and FOR. Journal of Assisted Reproduction and Genetics, 35, 17-23. https://doi.org/10.1007/s10815-017-1058-4

  10. 10. Ferraretti, A.P., et al. (2011) ESHRE Consensus on the Definition of “Poor Response” to Ovarian Stimulation for in Vitro Fertilization: The Bologna Criteria. Human Reproduction (Oxford, England), 26, 1616-1624. https://doi.org/10.1093/humrep/der092

  11. 11. Tobler, K.J., Shoham, G., Christianson, M.S., Zhao, Y.L. and Leong, M. (2015) Use of Anti-Mullerian Hormone for Testing Ovarian Reserve: A Survey of 796 Infertility Clinics Worldwide. Journal of Assisted Reproduction and Genetics, 32, 1441-1448. https://doi.org/10.1007/s10815-015-0562-7

  12. 12. Committee on Gynecologic Practice (2017) Committee Opinion No. 698: Hormone Therapy in Primary Ovarian Insufficiency. Obstetrics & Gynecology, 129, e134. https://doi.org/10.1097/AOG.0000000000002044

  13. 13. Tamura, H., Takasaki, A., Taketani, T., et al. (2012) The Role of Melatonin as an Antioxidant in the Follicle. Journal of Ovarian Research, 5, Article No. 5. https://doi.org/10.1186/1757-2215-5-5

  14. 14. Ozkaya, M.O. and Naziroglu, M. (2010) Multivitamin and Mineral Supplementation Modulates Oxidative Stress and Antioxidant Vitamin Levels in Serum and Follicular Fluid of Women Undergoing in Vitro Fertilization. Fertility and Sterility, 94, 2465-2466. https://doi.org/10.1016/j.fertnstert.2010.01.066

  15. 15. Silva, C.A., Yamakami, L.Y., Aikawa, N.E., et al. (2014) Au-toimmune Primary Ovarian Insufficiency. Autoimmunity Reviews, 13, 427-430. https://doi.org/10.1016/j.autrev.2014.01.003

  16. 16. Schwarze, J.E., Borda, P., Vásquez, P., et al. (2018) Is the Risk of Preeclampsia Higher in Donor Oocyte Pregnancies? A Systematic Review and Meta-Analysis. JBRA Assisted Repro-duction, 22, 15-19. https://doi.org/10.5935/1518-0557.20180001

  17. 17. Peng, Y.L. (2015) Clinical Study on Treatment of Diminished Ovarian Reserve by Nourishing Kidney and Essence Treatment. Journal of Traditional Chinese Medicine, 21, 70-72.

  18. 18. Orisaka, M., et al. (2021) The Role of Pituitary Gonadotropins and Intraovarian Regulators in Follicle De-velopment: A Mini-Review. Reproductive Medicine and Biology, 20, 169-175. https://doi.org/10.1002/rmb2.12371

  19. 19. Hsueh, A.J., Kawamura, K., Cheng, Y. and Fauser, B.C. (2015) In-traovarian Control of Early Folliculogenesis. Endocrine Reviews, 36, 1-24. https://doi.org/10.1210/er.2014-1020

  20. 20. Pepling, M.E. (2006) From Primordial Germ Cell to Primordial Follicle: Mammalian Female Germ Cell Development. Genesis (New York, N.Y.: 2000), 44, 622-632. https://doi.org/10.1002/dvg.20258

  21. 21. Park, S.U., et al. (2021) Mechanisms of Ovarian Aging. Reproduction (Cambridge, England), 162, R19-R33. https://doi.org/10.1530/REP-21-0022

  22. 22. Richardson, S.J. and Nelson, J.F. (1990) Follicular Depletion during the Menopausal Transition. Annals of the New York Academy of Sciences, 592, 13-20. https://doi.org/10.1111/j.1749-6632.1990.tb30312.x

  23. 23. Paauw, D.S. (2015) Foreword. Medical Clinics of North America, 99, 15. https://doi.org/10.1016/j.mcna.2014.12.002

  24. 24. Hansen, K.R., Knowlton, N.S., Thyer, A.C., Charleston, J.S., Soules, M.R. and Klein, N.A. (2008) A New Model of Reproductive Aging: The Decline in Ovarian Non-Growing Follicle Number from Birth to Menopause. Human Reproduction, 23, 699-708. https://doi.org/10.1093/humrep/dem408

  25. 25. Chiang, J.L., Shukla, P., Pagidas, K., Ahmed, N.S., Karri, S., Gunn, D.D., et al. (2020) Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Research Reviews, 63, Article ID: 101168. https://doi.org/10.1016/j.arr.2020.101168

  26. 26. Mikwar, M., MacFarlane, A.J. and Marchetti, F. (2020) Mecha-nisms of Oocyte Aneuploidy Associated with Advanced Maternal Age. Mutation Research-Reviews in Mutation Re-search, 785, Article ID: 108320. https://doi.org/10.1016/j.mrrev.2020.108320

  27. 27. Moghadam, A.R.E., Moghadam, M.T., Hemadi, M. and Saki, G. (2022) Oocyte Quality and Aging. JBRA Assisted Reproduction, 26, 105-122. https://doi.org/10.5935/1518-0557.20210026

  28. 28. Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L. and Mansell, A. (2021) Evaluation of Inflammation and Follicle Depletion during Ovarian Ageing in Mice. Scientific Reports, 11, Arti-cle No. 278. https://doi.org/10.1038/s41598-020-79488-4

  29. 29. Holton, R.A., Harris, A.M., Mukerji, B., Singh, T. and Dia, F. (2020) CHTF18 Ensures the Quantity and Quality of the Ovarian Reserve. Biology of Reproduction, 103, 24-35. https://doi.org/10.1093/biolre/ioaa036

  30. 30. Chiang, T., Schultz, R.M. and Lampson, M.A. (2011) Age-Dependent Susceptibility of Chromosome Cohesion to Premature Separase Activation in Mouse Oocytes. Biology of Reproduction, 85, 1279-1283. https://doi.org/10.1095/biolreprod.111.094094

  31. 31. Rattani, A., Wolna, M., Ploquin, M., Helmhart, W. and Mor-rone, S. (2013) Sgol2 Provides a Regulatory Platform That Coordinates Essential Cell Cycle Processes during Meiosis I in Oocytes. eLife, 2, e01133. https://doi.org/10.7554/eLife.01133

  32. 32. Treff, N.R., Su, J., Taylor, D. and Scott, R.T. (2011) Telomere DNA De-ficiency Is Associated with Development of Human Embryonic Aneuploidy. PLOS Genetics, 7, e1002161. https://doi.org/10.1371/journal.pgen.1002161

  33. 33. Gleicher, N., Yu, Y., Himaya, E., Barad, D.H. and Weghofer, A. (2015) Early Decline in Functional Ovarian Reserve in Young Women with Low (CGGn < 26) FMR1 Gene Alleles. Translational Research: The Journal of Laboratory and Clinical Medicine, 166, 502-507.e1-2. https://doi.org/10.1016/j.trsl.2015.06.014

  34. 34. Hua, K., Wang, L., Sun, J., Zhou, N., Zhang, Y., Ji, F., et al. (2020) Impairment of Pol Beta-Related DNA Base-Excision Repair Leads to Ovarian Aging in Mice. Aging (Albany NY), 12, 25207-25228. https://doi.org/10.18632/aging.104123

  35. 35. Rinaldi, V.D., Bloom, J.C., Bloom, J.C. and Schimenti, J.C. (2020) Oocyte Elimination through DNA Damage Signaling from CHK1/CHK2 to p53 and p63. Genetics, 215, 373-378. https://doi.org/10.1534/genetics.120.303182

  36. 36. Saccon, T.D., Rovani, M.T., Garcia, D.N., Mondadori, R.G., Cruz, L.A.X., Barros, C.C., et al. (2020) Primordial Follicle Reserve, DNA Damage and Macrophage Infiltration in the Ovaries of the Long-Living Ames Dwarf Mice. Experimental Gerontology, 132, Article ID: 110851. https://doi.org/10.1016/j.exger.2020.110851

  37. 37. Saccon, T.D., Rovani, M.T., Garcia, D.N., Pradiee, J., Mon-dadori, R.G., Cruz, L.A.X., et al. (2022) Growth Hormone Increases DNA Damage in Ovarian Follicles and Macro-phage Infiltration in the Ovaries. Geroscience, 44, 1071-1081. https://doi.org/10.1007/s11357-021-00380-8

  38. 38. Rizzo, A., Roscino, M.T., Binetti, F. and Sciorsci, R.L. (2011) Roles of Reactive Oxygen Species in Female Reproduction. Reproduction in Domestic Animals, 47, 344-352. https://doi.org/10.1111/j.1439-0531.2011.01891.x

  39. 39. Kim, J., Kim, J., Seli, E. and Seli, E. (2019) Mitochondria as a Biomarker for IVF Outcome. Reproduction (Cambridge, England), 157, R235-R242. https://doi.org/10.1530/REP-18-0580

  40. 40. Shi, L.Y., Zhang, J.J., Lai, Z.W., Tian, Y. and Fang, L. (2016) Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Pro-gesterone Production. PLOS ONE, 11, e0162194. https://doi.org/10.1371/journal.pone.0162194

  41. 41. Richardson, M.C., Guo, M., Fauser, B.C. and Macklon, N.S. (2013) Environmental and Developmental Origins of Ovarian Reserve. Human Reproduction Update, 20, 353-369. https://doi.org/10.1093/humupd/dmt057

  42. 42. Shen, J., et al. (2020) Urinary Bisphenol A Concentration Is Corre-lated with Poorer Oocyte Retrieval and Embryo Implantation Outcomes in Patients with Tubal Factor Infertility Under-going in Vitro Fertilisation. Ecotoxicology and Environmental Safety, 187, Article ID: 109816. https://doi.org/10.1016/j.ecoenv.2019.109816

  43. 43. Almeida, S., Raposo, A., Almeida-González, M. and Carrascosa, C. (2018) Bisphenol A: Food Exposure and Impact on Human Health. Comprehensive Reviews in Food Science and Food Safety, 17, 1503-1517. https://doi.org/10.1111/1541-4337.12388

  44. 44. Koch, H.M., Kolossa-Gehring, M., Schröter-Kermani, C., Angerer, J. and Brüning, T. (2012) Bisphenol A in 24 h Urine and Plasma Samples of the German Environmental Specimen Bank from 1995 to 2009: A Retrospective Exposure Evaluation. Journal of Exposure Science & Environmental Epidemiology, 22, 610-616. https://doi.org/10.1038/jes.2012.39

  45. 45. Cui, F.-P., Yang, P., Liu, C., Chen, P.-P. and Deng, Y.-L. (2021) Urinary Bisphenol A and Its Alternatives among Pregnant Women: Predictors and Risk Assessment. The Science of the Total En-vironment, 784, Article ID: 147184. https://doi.org/10.1016/j.scitotenv.2021.147184

  46. 46. Tang, C.F., Zhang, J., Liu, P.Y., Zhou, Y. and Hu, Q.Y. (2020) Chronic Exposure to Low Dose of Bisphenol A Causes Follicular Atresia by Inhibiting Kisspeptin Neurons in Anteroventral Periventricular Nucleus in Female Mice. Neurotoxicology, 79, 164-176. https://doi.org/10.1016/j.neuro.2020.04.011

  47. 47. Cabaton, N.J., Wadia, P.R., Rubin, B.S., Zalko, D. and Schaeberle, C.M. (2010) Perinatal Exposure to Environmentally Relevant Levels of Bisphenol A Decreases Fertility and Fecundity in CD-1 Mice. Environmental Health Perspectives, 119, 547-552. https://doi.org/10.1289/ehp.1002559

  48. 48. Huang, M.Q., Liu, S., Fu, L., Jiang, X. and Yang, M. (2020) Bisphenol A and Its Analogues Bisphenol S, Bisphenol F and Bisphenol AF Induce Oxidative Stress and Biomacromolecular Damage in Human Granulosa KGN Cells. Chemosphere, 253, Article ID: 126707. https://doi.org/10.1016/j.chemosphere.2020.126707

  49. 49. Zhang, N.X., Zhao, Y.N., Zhai, L.L., Bai, Y.L. and Jia, L.H. (2023) Urinary Bisphenol A and S Are Associated with Diminished Ovarian Reserve in Women from an Infertility Clinic in Northern China. Ecotoxicology and Environmental Safety, 256, Article ID: 114867. https://doi.org/10.1016/j.ecoenv.2023.114867

  50. 50. Gnaneswaran, S., Deans, R. and Cohn, R.J. (2012) Reproduc-tive Late Effects in Female Survivors of Childhood Cancer. Obstetrics and Gynecology International, 2012, Article ID: 564794. https://doi.org/10.1155/2012/564794

  51. 51. Stern, E., Stern, E., Ben-Ami, M., Ben-Ami, M. and Gruber, N. (2023) Hypothalamic-Pituitary-Gonadal Function, Pubertal Development, and Fertility Outcomes in Male and Female Medulloblastoma Survivors: A Single-Center Experience. Neuro-Oncology, 25, 1345-1354. https://doi.org/10.1093/neuonc/noad009

  52. NOTES

    *通讯作者。

期刊菜单