Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61200 , 6 pages
10.12677/ACM.2023.132215

CEA在结直肠癌中的研究进展

任广明1,刘嵩邈1,原居正1,郑建勇2*

1西安医学院,陕西 西安

2西京医院,陕西 西安

收稿日期:2023年1月8日;录用日期:2023年1月28日;发布日期:2023年2月10日

摘要

结直肠癌(CRC)目前是全球第三大癌症,也是全球第二大癌症相关死亡原因。肿瘤标记物在CRC患者的检测和治疗中发挥着重要作用,而CEA是CRC临床诊疗中最常用的肿瘤标记物之一。在这篇综述中,我们描述了CEA在CRC筛查、诊断中的进展,以及CEA肿瘤疫苗、CEA靶向给药系统和荧光抗CEA抗体在CRC治疗中的研究进展。这些新的研究为CRC的诊疗提供了新的思路。

关键词

癌胚抗原,CEA,CRC,肿瘤标记物

Research Progress of CEA in Colorectal Cancer

Guangming Ren1, Songmiao Liu1, Juzheng Yuan1, Jianyong Zheng2*

1Xi’an Medical University, Xi’an Shaanxi

2Xijing Hospital, Xi’an Shaanxi

Received: Jan. 8th, 2023; accepted: Jan. 28th, 2023; published: Feb. 10th, 2023

ABSTRACT

Colorectal cancer (CRC) is currently the third leading cancer and the second leading cause of cancer-related death worldwide. Tumor markers play an important role in the detection and treatment of colorectal cancer patients, and CEA is one of the most commonly used tumor markers in the clinical management of colorectal cancer. In this review, we describe advances in CEA in CRC screening and diagnosis, as well as research advances in CEA-based vaccines, CEA-targeted drug delivery systems, and anti-CEA fluorescent antibodies in CRC treatment. These new studies provide new ideas for the diagnosis and treatment of CRC.

Keywords:Carcinoembryonic Antigen, CEA, Colorectal Cancer, Tumor Markers

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

结直肠癌(CRC)目前是全球第三大癌症,也是全球第二大癌症相关死亡原因,全球185个国家或地区中,中国的恶性肿瘤发病率、死亡率位居中等偏上水平 [1] ,且我国CRC发病率及病死率均呈上升趋势,已成为危害人民健康的突出问题 [2] 。由于早期CRC无特异性症状,诊断率低,多数患者就诊时已属中晚期,失去了最佳的治疗时机,手术及化疗疗效往往不尽如人意 [3] 。据报道,早期诊断的CRC患者5年生存率约为90%,而晚期诊断的患者5年生存率下降至5%~10%,因此,早期诊断与治疗是改善预后、提高生存率的关键 [4] 。

肿瘤标志物是正常组织不存在或仅少量存在,或仅见于胚胎组织,因肿瘤相关基因表达上调或机体对肿瘤组织反应产生的,在肿瘤组织中大量存在的代谢产物。肿瘤标志物存在于细胞、组织、体液及排泄物中,可被定量或定性检测,提示肿瘤细胞的增殖分化。肿瘤标记物不仅指示癌症的存在,而且提供关于癌症进展或对治疗的反应的信息 [5] 。CEA是CRC临床诊疗中常用的糖基化肿瘤标志物,糖基化的改变是癌症的标志,导致肿瘤相关聚糖或糖蛋白的产生,这些分子随后被分泌或膜脱落到血流中,从而作为肿瘤相关标记物 [6] 。随着医学的发展,人们对CEA的研究越来越深入,发现了其新的应用场景,本文对CEA的临床应用的最新进展进行综述。

2. CEA的来源

1965年Gold和Freeman首次在结肠癌中发现了一种肿瘤特异性抗原 [7] ,并将其命名为“carcinoembryonic antigen (CEA)” [8] 。CEA是一种多糖蛋白复合物,属于糖蛋白家族,称为癌胚抗原细胞粘附分子(CEACAM),也称为CEACAM5和CD66 [9] 。CEA在胚胎和胎儿发育的早期阶段(9至14周)在胃肠道中产生,在妊娠中期其血清水平下降,在成年期保持非常低的水平 [10] [11] [12] 。在健康成年人中,仍有一些组织会产生CEA,其主要存在于结肠的杯状细胞和柱状上皮细胞,也存在于前列腺,宫颈,舌头,食道,胃和前列腺 [13] 。一个健康的成年人每天从成熟肠细胞的表面产生大约50~70毫克的CEA,并将其排入肠腔中,随着粪便排出体外 [12] 。在肿瘤患者中,CEA由肿瘤持续分泌到血液中,并在肝细胞中被受体介导的内吞作用清除。虽然CEA在超过80%的CRC中表达 [14] ,但当任何内胚层组织(包括胃肠道、肺组织、胰腺和乳腺 [15] [16] [17] [18] )出现肿瘤时,CEA都可能升高。包括憩室炎、胰腺炎、炎症性肠病、肝硬化、肝炎、糖尿病、慢性肾衰竭、肠易激综合征、胸膜炎和肺炎等良性疾病也都可引起CEA升高,且吸烟者CEA也可能升高 [19] [20] 。

3. CEA作为肿瘤标记物的应用

CEA是临床常用的肿瘤标记物,广泛用于预测CRC的发生、发展和转移 [21] [22] 。在首次诊断之前,CEA水平可能在癌症相关症状出现前4至8个月升高 [23] ,在随访期间,CEA似乎对检测肝和腹膜后转移最敏感,而对局部复发和腹膜或肺部疾病最不敏感 [22] 。早些时候,美国癌症联合委员会的CRC工作组建议将CEA基线浓度纳入传统的TNM分类,即所谓的C期。C期可分为Cx、C0 (CEA < 5 ng/m L)和C 1 (CEA > 5 ng/m L) 3个亚期 [24] 。一些回顾性分析也证实了CEA是CRC的独立预后因素 [25] 。已知CEA半衰期为3~5天,在R0切除手术后,CEA水平应在2至4周内恢复正常 [26] 。持续升高的CEA水平可预示肿瘤的浸润或转移,术后CEA浓度缓慢升高是局部复发的典型迹象,而动态升高的CEA浓度可能是转移的症状,最有可能发生在肝脏 [5] [23] 。化疗也可能导致CEA浓度的暂时性升高,这一点也应考虑在内,因此不建议在化疗后2周内检测CEA水平。而对于接受奥沙利铂治疗的患者,可以在4至6周后进行检测。

有研究认为,仅使用CEA预测CRC患者的复发或者生存期不够准确,当如CEA与CA125、CA19-9、CA72-4、D-二聚体、Ki67、P53、血浆循环游离DNA和血浆Septin9甲基化等联合检测的研究表明,CEA与其它多种指标联合检测可提高诊断及预测效率 [27] [28] [29] [30] [31] 。龙华婧等发现CEA + CT + 肠镜三项联合检查能明显提高CRC诊断准确率 [32] 。

虽然CEA对于CRC患者的评估很重要,但是CEA仅应被视为一种预警指标,其升高应进行进一步检查,而不是立即开始治疗,因为它不能提供准确的肿瘤发生或者复发的位置和程度 [5] 。

4. CEA肿瘤疫苗

癌症免疫治疗的目标是破坏对肿瘤特异性抗原(TSAs)和肿瘤相关抗原(TAAs)的免疫耐受,从而诱导对癌细胞表达的这些抗原产生强烈的免疫应答。使用CEA为基础的疫苗被认为是临床治疗CRC患者的一种有前途的工具,一些研究表明,CEA可以作为癌症免疫治疗的靶点 [33] 。

动物模型在理解肿瘤免疫机制方面发挥了至关重要的作用,在过去的几十年里,不同的免疫模式和实验模型被用于确定CEA免疫是否能诱导免疫反应,从而抑制表达CEA的肿瘤的生长。已有实验证实,用表达CEA的病毒或酵母载体、CEA多肽、CEA plasmid DNA脉冲的树突状细胞或重组CEA接种疫苗已被证明在动物模型中成功诱导有效的抗肿瘤免疫 [34] [35] 。从动物模型中获得的有希望的结果为使用不同的免疫策略治疗人类表达CEA的肿瘤提供了动力。

在临床实验中,在结肠癌患者中获得的初步结果表明,重组CEA单独免疫或GM-CSF免疫、模拟CEA的抗独特型抗体或重组载体疫苗如ALVAC-CEA [36] 、RV-CEA [37] 和ALVAC-CEA B7.1 [38] 均可诱导对CEA的细胞免疫和体液免疫,这些疫苗接种方案对癌症患者具有良好的耐受性,并且是安全的,接种疫苗可诱导对CEA产生强烈的免疫反应,使一些癌症患者的肿瘤进展延缓和延长生存期,因此CEA可作为CRC患者的疫苗。但目前CEA疫苗不能根除肿瘤。

总的来说,尽管CEA等TAAs在肿瘤细胞表面大量表达,但对这些抗原的免疫反应较弱,这一现象是开发高效癌症疫苗的主要障碍之一。事实上,肿瘤微环境对免疫反应的负面影响大大降低了癌症疫苗的功效。克服这一缺陷最有希望的临床方法之一是使用基于CEA的疫苗与免疫抑制细胞抑制剂联合使用。例如,当CEA-TRICOM重组痘病毒与抗CTLA-4的完全人源单克隆抗体Ipilimumab联合使用时,观察到这些疫苗的抗肿瘤效果增强 [39] 。因此,需要进一步的研究来更好地阐明癌症疫苗对先天免疫和适应性免疫的影响,以开发新的疫苗调度,并提高免疫治疗在临床实践中的应用。为了开发出更高效、更有效的癌症疫苗,有必要设计新的临床试验,将癌症疫苗与常规疗法(如化疗、放疗和药物)结合起来,以那些负责免疫细胞免疫抑制的因素为靶点,以更好地预防和治疗CEA+肿瘤。

5. CEA靶向给药系统

目前用于临床的标准化疗都不能区分正常细胞和癌细胞,这导致了严重的副作用,如脱发、免疫系统衰竭和感染等 [40] 。用于药物递送的靶向纳米载体能够特异性识别细胞表面过表达的分子 [41] ,而CEA在大多数CRC患者中是过表达蛋白,也是临床推荐用于CRC患者管理的细胞表面分子 [42] 。这些原因促使人们选择CEA作为一种有前途的分子用于CRC的纳米靶向系统。

有报道将CEA用于药物输送,由于大多数CRC患者肿瘤细胞表面过表达CEA,多种具有CEA靶向抗体的表面修饰的纳米颗粒作为纳米载体用于药物输送,其中聚乳酸共乙醇酸(PLGA)由于其生物降解性和低细胞毒性 [43] ,已被临床引入用于提高CRC治疗的靶向系统的能力 [44] 。另有报道使用双功能复合纳米球用于CEA传感和靶向药物传递,在小鼠实验中加载阿霉素后实现了有效的细胞毒作用 [45] 。

6. 荧光抗CEA抗体

CEA是肿瘤荧光标记中最常研究的生物标志物之一,通过让“看不见的”疾病变得可见,癌症的诊断和治疗可以得到极大的改善。对于CRC,已有的临床前研究明确表明荧光抗CEA抗体可以特异性清晰地标记肿瘤。SGM-101是III期试验中唯一的抗CEA抗体-荧光染料偶联物,目前有研究使用SGM-101在CRC患者中进行了临床试验。2018年,Boogerd等人首次提出了结肠直肠癌CEA靶向检测的临床应用,并证明SGM-101的安全性和有效性,可以帮助实现R0切除和识别转移病灶 [46] 。2021年,de Valk等人在37名CRC患者中重复了该实验,也证明了SGM-101的潜力 [47] 。

虽然已经有上述SGM-101的临床研究,但是仍需要更大规模的临床研究来证明荧光抗CEA抗体的安全性及有效性。

7. 总结及展望

CEA是临床常用的肿瘤标记物之一,广泛应用于CRC中,对肿瘤的诊断、监测和预后预测具有重要作用。目前的研究利用CEA的特性进行了更深入的探索:与其它检测项目的联合检测提高了对肿瘤的诊断及预测预后的能力;CEA肿瘤疫苗和CEA靶向给药系统为肿瘤治疗提供了新思路;荧光抗CEA抗体为外科手术提供了新的视野,可以更精确地切除肿瘤,从而提高R0切除并减少手术损伤。这些新手段、新技术是有很好的临床应用前景,但距离临床应用仍有距离,未来需进一步证实其疗效和安全性,以推动CRC的诊疗。

文章引用

任广明,刘嵩邈,原居正,郑建勇. CEA在结直肠癌中的研究进展
Research Progress of CEA in Colorectal Cancer[J]. 临床医学进展, 2023, 13(02): 1561-1566. https://doi.org/10.12677/ACM.2023.132215

参考文献

  1. 1. Sung, H., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  2. 2. 孙可欣, 等. 2015年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2019, 28(1): 1-11.

  3. 3. Zhang, Y., Chen, Z. and Li, J. (2017) The Current Status of Treatment for Colorectal Cancer in China: A Systematic Review. Medicine, 96, e8242. https://doi.org/10.1097/MD.0000000000008242

  4. 4. Van Cutsem, E., Cervantes, A., Nordlinger, B. and Arnold, D. (2014) Metastatic Colorectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Annals of Oncology, 25, iii1-iii9. https://doi.org/10.1093/annonc/mdu260

  5. 5. Duffy, M.J., et al. (2014) Tumor Markers in Colorectal Cancer, Gas-tric Cancer and Gastrointestinal Stromal Cancers: European Group on Tumor Markers 2014 Guidelines Update. Interna-tional Journal of Cancer, 134, 2513-2522. https://doi.org/10.1002/ijc.28384

  6. 6. Silsirivanit, A. (2019) Chapter Five-Glycosylation Markers in Cancer. In: Makowski, G.S., Ed., Advances in Clinical Chemistry, 89, Academic Press, Cambridge, 189-213. https://doi.org/10.1016/bs.acc.2018.12.005

  7. 7. Gold, P. and Freedman, S.O. (1965) Demonstration of Tu-mor-Specific Antigens in Human Colonic Carcinomata by Immunological Tolerance and Absorption Techniques. Journal of Experimental Medicine, 121, 439-462. https://doi.org/10.1084/jem.121.3.439

  8. 8. Gold, P. and Freedman, S.O. (1965) Specific Carcinoembryonic Anti-gens of the Human Digestive System. Journal of Experimental Medicine, 122, 467-481. https://doi.org/10.1084/jem.122.3.467

  9. 9. Beauchemin, N. and Arabzadeh, A. (2013) Carcinoembryonic Anti-gen-Related Cell Adhesion Molecules (CEACAMs) in Cancer Progression and Metastasis. Cancer and Metastasis Re-views, 32, 643-671. https://doi.org/10.1007/s10555-013-9444-6

  10. 10. Rodrigues, J.G., et al. (2018) Glycosylation in Cancer: Selected Roles in Tumour Progression, Immune Modulation and Metastasis. Cellular Immunology, 333, 46-57. https://doi.org/10.1016/j.cellimm.2018.03.007

  11. 11. Rückert, F., Pilarsky, C. and Grützmann, R. (2010) Serum Tu-mor Markers in Pancreatic Cancer-Recent Discoveries. Cancers, 2, 1107-1124. https://doi.org/10.3390/cancers2021107

  12. 12. Sousa, A.R., Oliveira, M.J. and Sarmento, B. (2019) Impact of CEA-targeting Nanoparticles for Drug Delivery in Colorectal Cancer. Journal of Pharmacology and Experimental Ther-apeutics, 370, 657-670. https://doi.org/10.1124/jpet.118.254441

  13. 13. Hammarström, S. (1999) The Carcinoembryonic Antigen (CEA) Family: Structures, Suggested Functions and Expression in Normal and Malignant Tissues. Seminars in Cancer Biology, 9, 67-81. https://doi.org/10.1006/scbi.1998.0119

  14. 14. Tiernan, J.P., et al. (2013) Carcinoembryonic Antigen Is the Preferred Biomarker for in Vivo Colorectal Cancer Targeting. British Journal of Cancer, 108, 662-667. https://doi.org/10.1038/bjc.2012.605

  15. 15. Lee, J.S., et al. (2013) Elevated Levels of Preoperative CA 15-3 and CEA Serum Levels Have Independently Poor Prognostic Significance in Breast Cancer. Annals of Oncology, 24, 1225-1231. https://doi.org/10.1093/annonc/mds604

  16. 16. Feng, F., et al. (2017) Diagnostic and Prognostic Value of CEA, CA19-9, AFP and CA125 for Early Gastric Cancer. BMC Cancer, 17, Article No. 737. https://doi.org/10.1186/s12885-017-3738-y

  17. 17. Grunnet, M. and Sorensen, J.B. (2012) Carcinoembryonic Anti-gen (CEA) as Tumor Marker in Lung Cancer. Lung Cancer, 76, 138-143. https://doi.org/10.1016/j.lungcan.2011.11.012

  18. 18. Lee, K J., et al. (2013) Serum CA 19-9 and CEA Levels as a Prognostic Factor in Pancreatic Adenocarcinoma. Yonsei Medical Journal, 54, 643-649. https://doi.org/10.3349/ymj.2013.54.3.643

  19. 19. Stockley, R.A., et al. (1986) Effect of Cigarette Smoking, Pulmo-nary Inflammation, and Lung Disease on Concentrations of Carcinoembryonic Antigen in Serum and Secretions. Thorax, 41, 17-24. https://doi.org/10.1136/thx.41.1.17

  20. 20. Kashiwabara, K., Nakamura, H. and Yokoi, T. (2001) Chrono-logical Change of serum Carcinoembryonic Antigen (CEA) Concentrations and Pulmonary Function Data after Cessation of Smoking in Subjects with Smoking-Associated CEA Abnormality. Clinica Chimica Acta, 303, 25-32. https://doi.org/10.1016/S0009-8981(00)00341-7

  21. 21. Fahy, B.N. (2014) Follow-up after Curative Resection of Colorectal Cancer. Annals of Surgical Oncology, 21, 738-746. https://doi.org/10.1245/s10434-013-3255-4

  22. 22. Tsikitis, V.L., et al. (2009) Postoperative Surveillance Recom-mendations for Early Stage Colon Cancer Based on Results from the Clinical Outcomes of Surgical Therapy Trial. Jour-nal of Clinical Oncology, 27, 3671-3676. https://doi.org/10.1200/JCO.2008.20.7050

  23. 23. Goldstein, M.J. and Mitchell, E.P. (2005) Carcinoembryonic Anti-gen in the Staging and Follow-up of Patients with Colorectal Cancer. Cancer Investigation, 23, 338-351. https://doi.org/10.1081/CNV-58878

  24. 24. Compton, C., Fenoglio-Preiser, C.M., Pettigrew, N. and Fielding, L.P. (2000) American Joint Committee on Cancer Prognostic Factors Consensus Conference: Colorectal Working Group. Cancer, 88, 1739-1757. https://doi.org/10.1002/(SICI)1097-0142(20000401)88:7<1739::AID-CNCR30>3.0.CO;2-T

  25. 25. 鞠鹏飞. 血清肿瘤标记物对结直肠癌腹膜转移预判的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2020.

  26. 26. Saito, G., et al. (2017) Monitoring of Serum Carcinoembryonic Antigen Levels after Curative Resection of Colon Cancer: Cutoff Values Determined according to Preoperative Levels Enhance the Diagnostic Accuracy for Recurrence. Oncology, 92, 276-282. https://doi.org/10.1159/000456075

  27. 27. 武天同. CEA、CA19-9和CA72-4联检在结直肠癌预后中的临床研究[D]: [硕士学位论文]. 广州: 南方医科大学, 2018.

  28. 28. 石方玉. Ki67、EGFR、P53及血清肿瘤标记物CEA、CA199对结直肠癌预后的价值分析[D]: [硕士学位论文]. 承德: 承德医学院, 2022.

  29. 29. 王文军, 杨伏猛, 刘倩. D二聚体和肿瘤标志物与结直肠癌的相关性研究[J]. 中国继续医学教育, 2018, 10(2): 55-56.

  30. 30. 蔡丽彬. 血浆循环游离DNA与CEA在结直肠癌中的临床研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2018.

  31. 31. 邓子昂, 李洋, 杨作磊, 冉锐. 血浆Septin9甲基化和血清CEA联合检测在结直肠癌诊断中的临床意义[J]. 现代医药卫生, 2020, 36(11): 1628-1630+1633.

  32. 32. 龙华婧, 邱芳华, 刘道利, 刘燕娣, 周意, 吴嘉怡. 血清肿瘤标记物与多层螺旋CT、肠镜及病理联合检查对结直肠癌的诊断价值[J]. 国际检验医学杂志, 2019, 40(15): 1802-1806+1810.

  33. 33. Kantor, J., et al. (1992) Immunogenicity and Safety of a Recombinant Vaccinia Virus Vaccine Expressing the Carcinoembryonic Antigen Gene in a Nonhuman Primate. Cancer Research, 52, 6917-6925.

  34. 34. Hance, K.W., Zeytin, H.E. and Greiner, J.W. (2005) Mouse Models Expressing Human Carcinoembryonic Antigen (CEA) as a Transgene: Evaluation of CEA-Based Cancer Vaccines. Mutation Research, 576, 132-154. https://doi.org/10.1016/j.mrfmmm.2004.10.014

  35. 35. Bei, R. and Scardino, A. (2010) TAA Polyepitope DNA-Based Vaccines: A Potential Tool for Cancer Therapy. BioMed Research International, 2010, Article ID: 102758. https://doi.org/10.1155/2010/102758

  36. 36. Marshall, J.L., et al. (2000) Phase I Study in Advanced Cancer Patients of a Diversified Prime-and-Boost Vaccination Protocol Using Recombinant Vaccinia Virus and Recombinant Nonrepli-cating Avipox Virus to Elicit Anti-Carcinoembryonic Antigen Immune Responses. Journal of Clinical Oncology, 18, 3964-3973. https://doi.org/10.1200/JCO.2000.18.23.3964

  37. 37. Conry, R.M., et al. (2000) Human Autoantibodies to Carci-noembryonic Antigen (CEA) Induced by a Vaccinia-CEA Vaccine. Clinical Cancer Research, 6, 34-41.

  38. 38. von Mehren, M., et al. (2001) The Influence of Granulocyte Macrophage Colony-Stimulating Factor and Prior Chemotherapy on the Immunological Response to a Vaccine (ALVAC-CEA B7.1) in Patients with Metastatic Carcinoma. Clinical Can-cer Research, 7, 1181-1191.

  39. 39. Zeytin, H.E., et al. (2004) Combination of a Poxvirus-Based Vaccine with a Cy-clooxygenase-2 Inhibitor (Celecoxib) Elicits Antitumor Immunity and Long-Term Survival in CEA.Tg/MIN Mice. Can-cer Research, 64, 3668-3678. https://doi.org/10.1158/0008-5472.CAN-03-3878

  40. 40. Oun, R., Moussa, Y.E. and Wheate, N.J. (2018) The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Transactions, 47, 6645-6653. https://doi.org/10.1039/C8DT00838H

  41. 41. Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H. and Atyabi, F. (2011) Polylactide-Co-Glycolide Nanoparticles for Controlled Delivery of Anticancer agents. International Journal of Nanomedicine, 6, 877-895. https://doi.org/10.2147/IJN.S18905

  42. 42. Perkins, G.L., Slater, E.D., Sanders, G.K. and Prichard, J.G. (2003) Se-rum Tumor Markers. American Family Physician, 68, 1075-1082.

  43. 43. Murthy, S.K. (2007) Nanoparticles in Modern Medicine: State of the Art and Future Challenges. International Journal of Nanomedicine, 2, 129-141.

  44. 44. Pereira, I., Sousa, F., Kennedy, P. and Sarmento, B. (2018) Carcinoembryonic Antigen-Targeted Nanoparticles Potentiate the Deliv-ery of Anticancer Drugs to Colorectal Cancer Cells. International Journal of Pharmaceutics, 549, 397-403. https://doi.org/10.1016/j.ijpharm.2018.08.016

  45. 45. Ji, X., Lv, H., Sun, X. and Ding, C. (2019) Green-Emitting Carbon Dot Loaded Silica Nanoparticles Coated with DNA-Cross-Linked Hydrogels for Sensitive Carcinoembryonic Antigen Detection and Effective Targeted Cancer Therapy. Chemical Communications, 55, 15101-15104. https://doi.org/10.1039/C9CC07831B

  46. 46. Boogerd, L.S.F., et al. (2018) Safety and Effectiveness of SGM-101, a Fluorescent Antibody Targeting Carcinoembryonic Antigen, for Intraoperative Detection of Colorectal Cancer: A Dose-Escalation Pilot Study. The Lancet Gastroenterology and Hepatology, 3, 181-191. https://doi.org/10.1016/S2468-1253(17)30395-3

  47. 47. de Valk, K.S., et al. (2021) Dose-Finding Study of a CEA-Targeting Agent, SGM-101, for Intraoperative Fluorescence Imaging of Colorectal Cancer. Annals of Surgical Oncology, 28, 1832-1844. https://doi.org/10.1245/s10434-020-09069-2

  48. NOTES

    *通讯作者。

期刊菜单