Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62331 , 7 pages
10.12677/ACM.2023.133460

高强度聚焦超声治疗原发性肝癌的进展

郭蕊雨,金成兵

重庆医科大学附属第二医院肿瘤中心,重庆

收稿日期:2023年2月8日;录用日期:2023年3月6日;发布日期:2023年3月13日

摘要

原发性肝癌是最常见的恶性肿瘤之一,发病率高、预后差,其早期临床症状不典型,多数患者确诊时已是不可手术切除的中晚期。对于中晚期肝癌的主要局部治疗手段有肝动脉化疗栓塞、放疗、经皮肝穿刺肿瘤无水酒精注射等。近年来,一种新兴的局部微创治疗方法——高强度聚焦超声在肝癌临床治疗中已逐渐应用。本文就高强度聚焦超声在肝癌综合治疗中的应用进展进行综述,以利于为肝癌患者提供一种可选择的治疗方法。

关键词

高强度聚焦超声,肝癌,治疗

Advances of High-Intensity Focused Ultrasound Ablation in the Treatment of Primary Liver Cancer

Ruiyu Guo, Chengbing Jin

Tumor Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Feb. 8th, 2023; accepted: Mar. 6th, 2023; published: Mar. 13th, 2023

ABSTRACT

Primary liver cancer is one of the most common malignant tumors with high incidence and poor prognosis. Due to the atypical clinical symptoms in the early stage, most patients are diagnosed at advanced stage. At present, the main therapeutic methods for advanced primary liver cancer include transcatheter arterial chemoembolization (TACE), radiotherapy, percutaneous ethanol intratumoral injection, etc. As an emerging mininally invasive technique, high-intensity focused ultrasound (HIFU) ablation has been extensively used in the treatment of primary liver cancer clinically. We reviewed the progress of HIFU in the treatment of primary liver cancer in this article, in order to provide an alternative treatment for patients with primary liver cancer.

Keywords:High-Intensity Focused Ultrasound, Liver Neoplasms, Therapeutics

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

据2020年世界癌症发病率和死亡率统计,原发性肝癌在全球的发病率及死亡率均位居前列,是癌症相关的第二大死因 [1] 。原发性肝癌包括肝细胞癌(Hepatocellular Carcinoma, HCC)和肝内胆管癌,以及其他罕见的类型 [2] 。临床上最常见的是肝细胞癌 [2] ,以下简称肝癌。在我国,肝癌的高危因素主要是慢性乙型肝炎病毒感染、黄曲霉毒素暴露,或两者皆有 [3] [4] 。

由于肝癌早期临床症状不明显、恶性程度较高、易转移,绝大多数患者就诊时已是中晚期,失去了手术切除的最佳时机 [5] [6] 。因此研究探索不可手术切除中晚期肝癌的新的治疗手段显得尤为重要。近年来,高强度聚焦超声(High Intensity Focused Ultrasound, HIFU)在国内外发展迅速,并逐渐应用于临床治疗,它是一种无创性局部消融治疗肿瘤的新技术 [7] [8] 。HIFU具有无创或微创的优势,在治疗肝癌方面有其独特的优势 [9] [10] ,本文就HIFU治疗肝癌的研究进展综述如下。

2. HIFU治疗肝癌的机制

HIFU是一种将体外低能量的超声波,通过聚焦方式形成一个高能量的焦点的新技术。由于超声波能通过皮肤、肌肉等软组织到达肝脏,因此,HIFU体外低能量的超声波也能到达肝脏形成高能量焦点 [11] 。高能量的焦点作用于肝癌组织后,主要通过热效应、空化、机械及放化疗增敏等生物学效应,灭活肿瘤细胞 [12] [13] [14] 。HIFU杀伤肿瘤组织的主要机制之一是其高温所致的热效应,即在1秒内靶区组织温度迅速升至60℃以上,使肿瘤发生凝固性坏死 [15] [16] [17] 。HIFU的非热效应主要是由高强度的声脉冲产生空化效应 [18] ,诱导靶区组织高压和高温,增加靶区组织的局部破坏。此外,还有研究显示,HIFU可损伤肿瘤周边<2 mm的滋养血管及增加放化疗的敏感性 [19] [20] 。病理学研究显示,HIFU能够准确的消融肿瘤组织,治疗区和非治疗区的界限清楚,治疗区与非治疗区之间距离仅50 μm,由5~7层细胞构成,随着时间延长,凝固性坏死区域周围逐渐形成肉芽组织,伴随坏死区域内坏死细胞裂解,最终被纤维组织替代 [15] 。

3. HIFU疗效评价

高强度聚焦超声治疗肿瘤的局部消融的疗效评价尤为重要。一旦局部疗效评价未达到计划目标结果,则可以再次HIFU消融来达到治疗目的,以获取更佳临床获益。早期的局部疗效评价在HIFU治疗后1个月内进行,晚期评价可分别在HIFU治疗后的1~3个月、6个月、12个月等定期进行。目前针对高强度聚焦超声治疗原发性肝癌的局部消融疗效评价标准,主要参考mRECIST评价体系作为评价标准,疗效分为完全缓解(Complete Response,CR;动脉期肿瘤无强化);部分缓解(Partial Response,PR;动脉期肿瘤强化总直径缩小,且缩小范围 ≥ 30%);稳定(Stable Disease,SD;动脉期肿瘤强化范围介于PR和PD之间);进展(Progressive Disease,PD;动脉期肿瘤强化总直径扩大,且扩大范围 ≥ 20%或出现新病灶) [21] 。mRECIST评价体系中采用的影像学指标主要为增强CT和增强MRI [22] 。此外,HIFU消融过程中,可以采用术中超声造影技术来进行即刻的消融效果的评价,以获取初步的局部疗效评价,利于提高预期消融满意的成功率。除局部消融的疗效评价外,一些临床常用的评价指标也用于HIFU治疗肝癌的临床疗效评价,如与生存有关的中位生存期、生存率以及肿瘤进展时间、肿瘤标志物、肿瘤标志物等。

4. HIFU在早期肝癌中的应用

外科手术是早期肝癌根治性治疗的首选治疗方式,但由于部分肝癌病人伴有不同程度的肝硬化及合并有其他重要器官功能障碍,导致部分早期肝癌病人不能耐受手术治疗。对于不能耐受手术切除的早期肝癌病人,临床上多采用一些具有对肝功能影响少、创伤小、疗效确切的治疗方法,如介入栓塞、射频和微波等局部消融技术等治疗方法 [6] 。高强度聚焦超声消融与临床上常用的射频、微波消融比较,具有体外非侵入性、适形、精准、消融范围可控及无穿刺所致的肿瘤种植、出血等穿刺相关并发症等优点 [10] 。现已有少量的HIFU在早期肝癌的临床应用的研究结果。福田博之等 [23] 对12例早期肝癌单独实施了HIFU消融术,12例患者不良反应少、复发率低于其他消融术,表明HIFU治疗早期肝癌是一种安全有效的方法。陈道详等 [24] 对比HIFU和射频消融分别治疗早期肝癌的疗效,在HIFU组纳入更多肝硬化对象的情况下,HIFU组患者的1年和3年的总生存率仍更高,表明HIFU在治疗早期肝癌是的疗效可能优于射频消融,可明显改善患者预后。以上的初步临床研究结果显示,HIFU能安全有效消融早期肝癌,但仍需要一系列高质量的多中心临床研究来进一步明确。

5. HIFU在不可手术切除肝癌中的应用

5.1. HIFU联合肝动脉化疗栓塞术(Transarterial chemoembolization, TACE)

肝动脉化疗栓塞术(Transarterial Chemoembolization, TACE)和肝动脉血管栓塞术(Transarterial Embolization, TAE)是目前公认的肝癌非手术治疗中常用的且较为有效方法之一 [25] ,但肝癌是肝动脉和门静脉双重供血,TACE/TAE主要栓塞肝动脉,肿瘤常常难以完全坏死,且TACE带来的缺血缺氧可能诱导显著的新血管生成反应,导致后期肿瘤复发、转移 [26] [27] 。Gu等 [28] 对37名失去手术及RFA机会无肝外转移的肝癌患者行HIFU联合TACE治疗,所有患者均未发生CTC毒副反应分级4级以上不良反应。2年局部控制率为73.0%,2年总生存率为70.3%,表明HIFU联合TACE治疗是安全的,能获得良好的局部控制率和预后。Li等 [29] 回顾性研究表明,89例中晚期肝癌分别接受TACE联合HIFU及单独TACE治疗,结果显示联合组的总有效率显著高于单独治疗组,TACE联合HIFU组的1年、2年、3年、5年总生存率和中位生存期分别为34.1%、18.2%、9.1%、0%和19.0个月,TACE组分别为47.2%,16.7%,2.8%、0%和10.0个月,这表明TACE联合HIFU治疗较单纯TACE治疗可明显延长患者生存期。Sun等 [30] 对比HIFU联合TACE及单独TACE治疗原发性肝癌患者中的疗效,结果显示联合组总有效率为83.82%,明显高于对照组的55.56%。联合组患者的3年生存率为61.76%,高于对照组的40.74%。联合组CD3+、CD4+、CD4+/CD8+和NK细胞明显高于对照组,同时两组不良反应发生率相同。表明HIFU联合TACE治疗原发性肝癌可提高免疫应答,延长患者生存期且不增加不良反应发生率。HIFU联合TACE或TAE可延长患者的生存期,明显优于单独的介入治疗。其联合治疗效果更好的主要原因在于:一方面,TACE/TAE治疗通过栓塞肿瘤的血管可有效减少肿瘤的血供,从而减少HIFU治疗时的热量流失;另一方面,TACE/TAE治疗后的病灶会沉积碘油等栓塞剂,利于热量的沉积和扩散,可明显提高HIFU消融效率和疗效 [8] 。因此,TACE/TAE治疗后序贯HIFU,能有效消融TACE/TAE后残存的肿瘤,增加完全消融的几率,利于减少复发转移,延长患者生存。

5.2. HIFU联合放疗

由于肝脏放射耐受量较低,故对原发性肝癌进行放疗时剂量受限,肝癌的放射治疗效果往往不佳 [31] 。随着放疗技术的发展,三维适形放疗,特别是立体定向放疗(Stereotactic Body Radiotherapy, SBRT),实现了精准放疗,有效的提高了肝脏放射耐受量,提高了肝癌的放疗效果 [32] 。尽管如此,单纯的放疗也会存在肝癌的残留及复发转移。多种方法合理的联合,有利于提高肝癌的局部控制率及减少复发转移,提高患者的生存,仍是目前不能手术切除肝癌的主要治疗策略 [33] 。Jin等 [34] 对20例接受SBRT治疗后存在24个残留病灶的肝癌患者行HIFU消融术,17个残留病灶达到完全消融,7个残瘤病灶达到部分消融,且未观察到与HIFU相关的严重不良反应。因此,认为HIFU消融SBRT术后局部残留的HCC是安全有效的。Wang等 [35] 选取160例巨大肝细胞癌,分为单纯HIFU组和HIFU与立体定向体部放疗联合组,联合治疗组的完全缓解、部分缓解、病情稳定和疾病进展的患者比例分别为52.6%、21.1%、21.1%和5.3%;在单一治疗组相应的比例分别为0%、23.8%、50%和26.2%。联合治疗组的1年、3年和5年生存率分别为33%、20%和13%,表明高强度聚焦超声联合放疗可降低肿瘤复发、转移,延长患者生存时间。HIFU联合放疗能获取局部疗效增加的可能原因如下:肿瘤中央区域血供较差,乏氧细胞较多,而乏氧细胞则对放疗相对不敏感,但血供差利于HIFU热量沉积,易将其完全消融;同时,肿瘤周边区域部分,相对血液供应更加丰富,肿瘤细胞增殖比例高,而对放疗相对敏感,而容易因血流速度快而丢失HIFU局部热沉积导致HIFU难以完全消融肿瘤,产生肿瘤残留 [36] 。此外,HIFU产生的靶区消融组织周边的充血、无菌性炎症反应等可改善肿瘤局部微环境,可改善消融周边乏氧细胞的乏氧状态,提高残留肿瘤细胞对放疗的敏感性。

5.3. HIFU联合经皮肝穿瘤内无水乙醇注射(Percutaneous Ethanol Intratumoral Injection)

经皮肝刺瘤内无水乙醇注射也是目前肝细胞癌常见的治疗手段,多适用于直径 ≤ 3 cm肝癌的治疗,尤其对直径 ≤ 2 cm的肝癌消融效果确切,对中晚期不能手术的肝癌也可起姑息治疗的作用。PEI的优点是安全,特别适用于癌灶贴近肝门、胆囊及胃肠道组织等高危部位 [37] 。Qiao等 [38] 对20只移植了VX2肝肿瘤的兔子分别用无水乙醇单独消融和无水乙醇联合HIFU消融,结果联合治疗组的肿瘤坏死率为90.27%,无水乙醇组的肿瘤坏死率63.55%,表明无水乙醇联合HIFU能有效增加肝脏消融体积、肿瘤坏死更加彻底。谭新劲等 [39] 对22例原发性肝癌采用高强度聚焦超声联合无水酒精注射治疗,治疗后18例病灶体积缩小,12例AFP阳性患者AFP浓度下降,近半数患者半年生存率达到90.9%。由此可以得出HIFU联合PEI在降低患者AFP水平、降低肿瘤负荷效果较好,可延长患者的生存期,是一种有效的治疗原发性肝癌的微创治疗方法。HIFU联合PEI可以增加消融效果,主要可能在于PEI改变了治疗靶区的声环境,增加了HIFU的能量沉积,其次,PEI破坏了局部肿瘤血管,减少了因血液流动而丢失的HIFU靶区能量。

5.4. HIFU联合化疗

由于肝癌细胞是一种天然耐药的肿瘤细胞,对化疗缺乏敏感性,化疗多用于肝癌的姑息治疗,目前无法手术切除或局部治疗的局部晚期和转移性肝癌多采用FOLFOX4方案,中晚期肝癌的姑息治疗还可选用三氧化二砷。高强度聚焦超声对化疗有协同作用,机制如下:1) HIFU可以利用热效应直接杀伤肿瘤细胞。2) 高热可减少化疗药物所致的DNA断裂修复,从而增加了DNA的损伤 [40] 。3) HIFU的热效应可促进化疗药物更快地进入肿瘤细胞,增加肿瘤细胞内的药物浓度 [40] [41] [42] 。4) 加热也可增加化疗药物的反应速度,加快肿瘤细胞的死亡 [43] [44] 。徐涛等将58例晚期肝癌患者随机分成高强度聚焦超声联合化疗组及单独化疗组,发现联合治疗组总有效率64.28%,单纯化疗组总有效率36.67%,提示高强度聚焦超声联合化疗治疗效果优于单独化疗 [43] 。

6. HIFU的优点及不足

HIFU是一种非侵入式的治疗方式,在多个临床试验中已表明治疗肝癌是安全、有效的。具有以下优势:1) HIFU是一种体外非接触性消融治疗方法,焦点区域周边能量很低,治疗区和非治疗区界限分明,极好的保护了周边正常肝组织。相对外科而言,降低了出血和感染的风险,并且减少术后疤痕和/或疼痛 [8] 。2) HIFU是体外无创治疗方法,创伤小,因而可多次重复治疗,以达到治疗目的为止。3) 超声引导下的HIFU的消融过程是在术中实时超声的监控、引导下完成的,利于实时监控靶区位置,特别是肝脏等移动器官肿瘤的治疗,实现了精准治疗。同时,可以通过焦点区域监控超声灰阶的变化及术中的超声造影剂造影,进行即刻评价消融效果。但是同样存在以下不足:1) 肝癌的HIFU消融,目前临床上多采用的是超声引导下的HIFU消融设备。由于采用的是超声作为图像监控引导,其定位、图像融合相对于MRI、CT等稍差,难以对<1 cm肝病灶进行定位、引导治疗,多数仅能显示并消融≥1 cm的病灶。2) 超声波难以通过肋骨等骨性结构,在治疗肋骨间隙狭窄的靠近肋骨的肝癌,相对比较困难,只能在全身麻醉辅助下的呼吸控制技术使肋骨后方的肿瘤随肝脏移动、暴露在肋骨间隙中进行治疗。3) 部分肿瘤组织对超声波热转换率不高,需要更高的超声波能量、更长的辐照时间才能达到凝固性坏死。为提高这部分肿瘤消融效率,需要提高超声换能器聚焦性能比。部分肿瘤因位置原因,超声换能器焦点不能到达病灶或病灶不能被焦域有效覆盖时也不能进行有效消融。

7. 结论

综上所述,HIFU不论是单独还是联合其他治疗手段治疗肝癌能极大地改善患者的预后,但目前仍缺乏大型的临床随机研究来验证HIFU与其他治疗方法的有效性和安全性,为改善肝癌患者的预后提供更可靠的数据支撑。

文章引用

郭蕊雨,金成兵. 高强度聚焦超声治疗原发性肝癌的进展
Advances of High-Intensity Focused Ultrasound Ablation in the Treatment of Primary Liver Cancer[J]. 临床医学进展, 2023, 13(03): 3234-3240. https://doi.org/10.12677/ACM.2023.133460

参考文献

  1. 1. Llovet, J.M., de Baere, T., Kulik, L., et al. (2021) Locoregional Therapies in the Era of Molecular and Immune Treat-ments for Hepatocellular Carcinoma. Nature Reviews Gastroenterology & Hepatology, 18, 293-313. https://doi.org/10.1038/s41575-020-00395-0

  2. 2. Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021) Hepato-cellular Carcinoma. Nature Reviews Disease Primers, 7, 6. https://doi.org/10.1038/s41572-020-00240-3

  3. 3. Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortal-ity Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660

  4. 4. Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314. https://doi.org/10.1016/S0140-6736(18)30010-2

  5. 5. Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160. https://doi.org/10.5582/bst.2021.01091

  6. 6. Takeda, A., Sanuki, N., Tsurugai, Y., et al. (2016) Phase 2 Study of Stereotactic Body Radiotherapy and Optional Transarterial Chemoembolization for Solitary Hepatocellular Carcinoma Not Amenable to Resection and Radiofrequency Ablation. Cancer, 122, 2041-2049. https://doi.org/10.1002/cncr.30008

  7. 7. Siedek, F., Yeo, S.Y., Heijman, E., et al. (2019) Magnetic Reso-nance-Guided High-Intensity Focused Ultrasound (MR-HIFU): Technical Background and Overview of Current Clinical Applications (Part 1). Rofo, 191, 522-530. https://doi.org/10.1055/a-0817-5645

  8. 8. Sehmbi, A.S., Froghi, S., Oliveira, D.A.M., et al. (2021) Systematic Re-view of the Role of High Intensity Focused Ultrasound (HIFU) in Treating Malignant Lesions of the Hepatobiliary Sys-tem. HPB (Oxford), 23, 187-196. https://doi.org/10.1016/j.hpb.2020.06.013

  9. 9. Cheung, T.T., Ma, K.W. and She, W.H. (2021) A Review on Ra-diofrequency, Microwave and High-Intensity Focused Ultrasound Ablations for Hepatocellular Carcinoma with Cirrhosis. The Hepatobiliary Surgery and Nutrition, 10, 193-209. https://doi.org/10.21037/hbsn.2020.03.11

  10. 10. Tsang, S.H., Ma, K.W., She, W.H., et al. (2021) High-Intensity Focused Ultrasound Ablation of Liver Tumors in Difficult Locations. International Journal of Hyperthermia, 38, 56-64. https://doi.org/10.1080/02656736.2021.1933217

  11. 11. Prachee, I., Wu, F. and Cranston, D. (2021) Oxford’s Clinical Experience in the Development of High Intensity Focused Ultra-sound Therapy. International Journal of Hyperthermia, 38, 81-88. https://doi.org/10.1080/02656736.2021.1899311

  12. 12. Tempany, C.M., Mcdannold, N.J., Hynynen, K., et al. (2011) Focused Ultrasound Surgery in Oncology: Overview and Principles. Radiology, 259, 39-56. https://doi.org/10.1148/radiol.11100155

  13. 13. Yamada, S., Takai, Y., Nemoto, K., et al. (1992) Intraoperative Radi-ation Therapy Combined with Hyperthermia against Pancreatic Carcinoma. The Tohoku Journal of Experimental Medi-cine, 166, 395-401. https://doi.org/10.1620/tjem.166.395

  14. 14. Tang, H., Guo, Y., Peng, L., et al. (2018) In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Applied Materials & Interfaces, 10, 15428-15441. https://doi.org/10.1021/acsami.8b01967

  15. 15. Izadifar, Z., Izadifar, Z., Chapman, D., et al. (2020) An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. Journal of Clinical Medicine, 9, 460. https://doi.org/10.3390/jcm9020460

  16. 16. Lee, K.W. (2021) The Asian Perspective on HIFU. International Journal of Hyperthermia, 38, 5-8. https://doi.org/10.1080/02656736.2021.1889697

  17. 17. Duc, N.M. and Keserci, B. (2019) Emerging Clinical Appli-cations of High-Intensity Focused Ultrasound. Diagnostic and Interventional Radiology, 25, 398-409. https://doi.org/10.5152/dir.2019.18556

  18. 18. Elhelf, I., Albahar, H., Shah, U., et al. (2018) High Intensity Focused Ultrasound: The Fundamentals, Clinical Applications and Research Trends. Diagnostic and Interventional Imaging, 99, 349-359. https://doi.org/10.1016/j.diii.2018.03.001

  19. 19. Kennedy, J.E., Ter Haar, G.R. and Cranston, D. (2003) High Inten-sity Focused Ultrasound: Surgery of the Future? The British Journal of Radiology, 76, 590-599. https://doi.org/10.1259/bjr/17150274

  20. 20. Hynynen, K., Chung, A.H., Colucci, V., et al. (1996) Potential Adverse Effects of High-Intensity Focused Ultrasound exposure on Blood Vessels in Vivo. Ultrasound in Medicine & Biology, 22, 193-201. https://doi.org/10.1016/0301-5629(95)02044-6

  21. 21. Forner, A., Reig, M.E., de Lope, C.R., et al. (2010) Current Strategy for Staging and Treatment: The BCLC Update and Future Prospects. Seminars in Liver Disease, 30, 61-74. https://doi.org/10.1055/s-0030-1247133

  22. 22. Llovet, J.M. and Lencioni, R. (2020) mRECIST for HCC: Perfor-mance and Novel Refinements. Journal of Hepatology, 72, 288-306. https://doi.org/10.1016/j.jhep.2019.09.026

  23. 23. Fukuda, H., Ito, R., Ohto, M., et al. (2011) Treatment of Small Hepatocellular Carcinomas with US-Guided High-Intensity Focused Ultrasound. Ultrasound in Medicine & Biology, 37, 1222-1229. https://doi.org/10.1016/j.ultrasmedbio.2011.04.020

  24. 24. Cheung, T.T., Fan, S.T., Chu, F.S., et al. (2013) Survival Analysis of High-Intensity Focused Ultrasound Ablation in Patients with Small Hepatocellular Carcinoma. HPB (Oxford), 15, 567-573. https://doi.org/10.1111/hpb.12025

  25. 25. Raoul, J.L., Forner, A., Bolondi, L., et al. (2019) Updated Use of TACE for Hepatocellular Carcinoma Treatment: How and When to Use It Based on Clinical Evidence. Cancer Treatment Reviews, 72, 28-36. https://doi.org/10.1016/j.ctrv.2018.11.002

  26. 26. Sergio, A., Cristofori, C., Cardin, R., et al. (2008) Transcatheter Arterial Chemoembolization (TACE) in Hepatocellular Carcinoma (HCC): The Role of Angiogenesis and Invasiveness. The American Journal of Gastroenterology, 103, 914-921. https://doi.org/10.1111/j.1572-0241.2007.01712.x

  27. 27. Forner, A. and Trinchet, J.C. (2009) Transarterial Therapies in HCC: Does Embolization Increase Survival? Journal of Hepatology, 51, 981-983. https://doi.org/10.1016/j.jhep.2009.09.009

  28. 28. Gu, L., Shen, Z., Ji, L., et al. (2022) High-Intensity Focused Ul-trasound Alone or Combined with Transcatheter Arterial Chemoembolization for the Treatment of Hepatocellular Carci-noma with Unsuitable Indications for Hepatectomy and Radiofrequency Ablation: A Phase II Clinical Trial. Surgical Endoscopy, 36, 1857-1867. https://doi.org/10.1007/s00464-021-08465-3

  29. 29. Li, C., Zhang, W., Zhang, R., et al. (2010) Therapeutic Effects and Prognostic Factors in High-Intensity Focused Ultrasound Combined with Chemoembolisation for Larger Hepatocel-lular Carcinoma. European Journal of Cancer, 46, 2513-2521. https://doi.org/10.1016/j.ejca.2010.06.015

  30. 30. Sun, M., Shang, P., Bai, J., et al. (2021) High-Intensity Focused Ultrasound Ablation Combined with Transcatheter Arterial Chemoembolization Improves Long-Term Efficacy and Prognosis of Primary Liver Cancer. Journal of Clinical Labora-tory Analysis, 35, e23633. https://doi.org/10.1002/jcla.23633

  31. 31. Keane, F.K. and Hong, T.S. (2017) Role and Future Directions of External Beam Radiotherapy for Primary Liver Cancer. Cancer Control, 24, 1-12. https://doi.org/10.1177/1073274817729242

  32. 32. Feng, M. and Ben-Josef, E. (2011) Radiation Therapy for Hepa-tocellular Carcinoma. Seminars in Radiation Oncology, 21, 271-277. https://doi.org/10.1016/j.semradonc.2011.05.002

  33. 33. Chen, L.C., Lin, H.Y., Hung, S.K., et al. (2021) Role of Modern Radiotherapy in Managing Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 27, 2434-2457. https://doi.org/10.3748/wjg.v27.i20.2434

  34. 34. Jin, C., Yang, W., Ran, L., et al. (2020) Feasibility of High-Intensity Focused Ultrasound for Hepatocellular Carcinoma after Stereotactic Body Radiation Therapy: Initial Expe-rience. Ultrasound in Medicine & Biology, 46, 2744-2751. https://doi.org/10.1016/j.ultrasmedbio.2020.06.013

  35. 35. Wang, L., Li, L., Wang, X., et al. (2018) Comparison of Combination Stereotactic Body Radiotherapy plus High-Intensity Focused Ultrasound Ablation versus Stereotactic Body Radiotherapy Alone for Massive Hepatocellular Carcinoma. Medical Science Monitor, 24, 8298-8305. https://doi.org/10.12659/MSM.910735

  36. 36. Wu, F., Chen, W.Z., Bai, J., et al. (2002) Tumor Vessel Destruction Resulting from High-Intensity Focused Ultrasound in Patients with Solid Malignancies. Ultrasound in Medicine & Biol-ogy, 28, 535-542. https://doi.org/10.1016/S0301-5629(01)00515-4

  37. 37. Zhou, J., Sun, H., Wang, Z., et al. (2020) Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer, 9, 682-720. https://doi.org/10.1159/000509424

  38. 38. Qiao, W., Yu, Y., Huang, Y., et al. (2020) Impact of Focused Ultrasound on the Ethanol Ablation of VX2 Liver Tumours in Rabbits. European Radiology, 30, 5862-5870. https://doi.org/10.1007/s00330-020-06941-3

  39. 39. 谭新劲, 陈健, 林瑞禄, 等. 高强度聚焦超声联合经皮穿刺注射无水乙醇治疗原发性肝癌[J]. 西南国防医药, 2006, 16(5): 517-519.

  40. 40. Moore, W.E., Lopez, R.M., Matthews, D.E., et al. (1989) Evaluation of High-Intensity Therapeutic Ultrasound Irradiation in the Treatment of Experimental He-patoma. Journal of Pediatric Surgery, 24, 30-33. https://doi.org/10.1016/S0022-3468(89)80295-7

  41. 41. Zhang, T., Chen, L., Zhang, S., et al. (2017) Effects of High-Intensity Focused Ultrasound on Cisplatin-Resistant Human Lung Adenocarcinoma in Vitro and in Vivo. Acta Biochimica et Biophysica Sinica (Shanghai), 49, 1092-1098. https://doi.org/10.1093/abbs/gmx107

  42. 42. Li, T., Wang, Y.N., Khokhlova, T.D., et al. (2015) Pulsed High-Intensity Focused Ultrasound Enhances Delivery of Doxorubicin in a Preclinical Model of Pancreatic Cancer. Cancer Research, 75, 3738-3746. https://doi.org/10.1158/0008-5472.CAN-15-0296

  43. 43. 付斯瑜, 徐涛, 郭智荣, 等. 高强度聚焦超声配合FOLFOX4方案治疗晚期肝癌的临床观察[J]. 医学与哲学(临床决策论坛版), 2010, 31(2): 24-25.

  44. 44. 陈忠民, 徐广伟, 任林广, 等. 热疗与化疗联合作用Hep-A-22荷瘤小鼠的实验观察[J]. 实用肿瘤学杂志, 2001, 15(1): 4-5.

期刊菜单