Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73413 , 7 pages
10.12677/ACM.2023.13102181

微小RNA在心房颤动中的研究进展

阿尔祖古丽·麦麦提1,麦五久代·吐尔逊1,阿比旦·尼加提1,冯艳2*

1新疆医科大学研究生院,新疆 乌鲁木齐

2新疆维吾尔自治区人民医院心电学科,新疆 乌鲁木齐

收稿日期:2023年9月6日;录用日期:2023年10月1日;发布日期:2023年10月9日

摘要

微小RNA (miRNA)是一种小的非编码RNA,参与调控转录后基因表达。近年来miRNA在心房颤动中的调控作用成为研究热点。miRNA广泛参与心房电重构、结构重构和神经重构。根据现有研究,参与电重构的miRNA主要包括miRNA-1、miRNA-328、miRNA-499、miRNA-208、miRNA-26;参与结构重构的miRNA主要包括miRNA-21、miRNA-29、miRNA-133、miRNA-26;参与神经重构的miRNA主要包括miRNA-30、miRNA-206等。深入研究miRNA与心房重构的相关性,为心房颤动的诊疗提供新的思路。

关键词

心房颤动,miRNA,重构

Research Progress of MicroRNA in Atrial Fibrillation

Aerzuguli·Maimaiti1, Maiwujiudai·Tuerxun1, Abidan·Nijiati1, Yan Feng2*

1Graduate School of Xinjiang Medical University, Urumqi Xinjiang

2Depatment of Electrocardiogram, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang

Received: Sep. 6th, 2023; accepted: Oct. 1st, 2023; published: Oct. 9th, 2023

ABSTRACT

MicroRNA (miRNA) is a small non-coding RNA, which is involved in the regulation of post-transcriptional gene expression. In recent years, the regulatory role of miRNA in atrial fibrillation has become a research hotspot. miRNAs is widely involved in atrial electrical remodeling, structural remodeling and neural remodeling. According to the existing research, miRNAs involved in electrical reconfiguration mainly include miRNA-1, miRNA-328, miRNA-499, miRNA-208 and miRNA-26; miRNAs involved in structural reconstruction mainly include miRNA-133, miRNA-21, miRNA-29, miRNA-26 and miRNA-208; miRNAs involved in neural remodeling mainly includes miRNA-30 and miRNA-206. In-depth study on the correlation between miRNA and atrial remodeling provides new ideas for the diagnosis and treatment of atrial fibrillation.

Keywords:Atrial Fibrillation, miRNA, Remodeling

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心房颤动(Atrial fibrillation, AF)是最常见的室上性心律失常,其发病率和死亡率高,大大增加了心力衰竭、中风和全身血栓栓塞的风险 [1] 。相关流行病学统计数据表明,AF患者的平均年龄为75岁,约70%的患者年龄在65~85岁之间 [2] 。随着全球人口老龄化,心房颤动的疾病负担将增加,使得心房颤动中的危险因素识别至关重要 [3] 。

1993年,Lee等 [4] 首次在秀丽隐杆线虫中发现了微小RNA (miRNA)。miRNA是由大约22个核苷酸组成的单链非蛋白质编码RNA。miRNA通过在3’非翻译区与靶信使RNA结合参与转录后基因表达的调节 [5] 。miRNA在各种发育过程中发挥着至关重要的作用,包括细胞生长、增殖、分化和代谢。在哺乳动物基因组中,已经报道了大约2200个miRNA,大约三分之一的人类基因组由miRNA调节 [6] 。miRNA通过降解或抑制其靶信使RNA的翻译,从而调节基因表达并在广泛的生物学过程中发挥重要作用 [7] 。

近年来,miRNA在AF中的调控作用成为研究热点,miRNA通过调节心房重构在AF的病理生理学中发挥着至关重要的作用。研究表明miRNA与心房电重构、结构重构和自主神经重构密切相关,从而导致AF的发生。本文主要综述了部分相关的miRNA与心房电重构、结构重构和自主神经重构相关性,为AF的诊疗提供新的思路。

2. miRNA与心房电重构

2.1. miRNA-1

miRNA-1主要在心脏组织中表达,并在心血管疾病的发生发展中发挥重要作用 [8] 。研究发现,在兔心房快速起搏模型中,miRNA-1过表达通过下调电压门控钾通道亚家族E成员1 (KCNE1)和电压门控钾通道亚家族E成员2 (KCNE2)基因,缩短右心房速搏诱发的心房有效不应期(AERP),增加内向整流钾电流(IKs)。此外,KCNE1和KCNB2基因的下调与抗miRNA-1抑制剂寡核苷酸敲低miRNA-1成反比。KCNE1和KCNB2是miRNA-1的靶基因 [5] 。有人认为,这些钾通道基因的靶向下调会放大AF的持续时间和发生率。该研究证明了miRNA-1在AF电重构中的关键作用,及miRNA-1在AF治疗中的临床重要性。

例外,一些研究表明,miRNA-1通过降低细胞内浓度来调节心脏电重构,最终降低CACNB2表达的钙离子 [9] 。Shan等 [10] 发现,当miRNA-1过表达时,心房肌细胞内Ca2+内流增加,导致AF发生,而另一项研究发现,miRNA-1在AF患者中下调,从而抑制了L型钙通道的CACNB2亚基(Cavβ2)的表达。最终,细胞内Ca2+浓度的降低抑制了AF的发生 [9] 。Terentyev等 [11] 研究发现,在大鼠心肌细胞中,miRNA-1的下调可能会改善Ca2+的处理,从而对AF产生有益的影响。Li等 [12] 推测miRNA-1通过介导离子通道的表达和活性降低心律失常,可作为潜在的抗心律失常靶点。

2.2. miRNA-328

miRNA-328促进心房电重构。已有研究发现,左心房内径是房颤发生的独立危险因素,随着心功能分级的增加,房颤患者miRNA-328的表达水平升高 [13] ,由此得出,miRNA-328可能参与房颤患者心房重构过程。在犬AF模型和人AF模型中发现miRNA-328表达上调,腺病毒诱导的miRNA-328由于I型钙通道电流(ICaL)减少和动作电位持续时间(APD)缩短而增加AF的诱导性 [14] 。同时,一项研究表明,循环血液中miRNA-328的上调增加了AF的患病率,并在心肌细胞的钙处理和电重构中发挥重要作用 [5] 。miRNA-328的上调降低了人类和犬模型中CACNA1C和CACNB1的基因表达。因此,ICaL降低了L型钙通道活性,缩短了APD,增加了AF的易损性 [15] 。据报道,miRNA-328在左心耳中的表达高于AF患者外周血和肺静脉血液中的表达,而在对照组中未观察到这一点。因此,我们推测miRNA-328在左心房的局部表达可能参与了AF患者的心脏重构 [16] 。miRNA-328通过犬心房的腺病毒感染和小鼠的转基因方法再现了AF的表型,例如AF易感性增强,ICaL电流减弱,心房动作电位持续时间缩短 [17] 。此外,用拮抗剂使miRNA-328水平正常化逆转了这种情况,内源性miRNA-328的基因敲低抑制了AF的易感性。miRNA-328通过靶向L型钙通道基因,有助于AF的不良心房电重构 [17] 。因此,这项研究揭示了AF的一种新的分子机制,并表明miRNA-328是AF的潜在治疗靶点。

2.3. miRNA-499

在一项比较AF患者和对照个体的miRNA表达研究中,发现AF患者的心房组织中miRNA-499上调 [18] 。miRNA-499靶向并下调编码小电导钙激活钾通道蛋白3 (SK3)的基因KCNN3,该基因具有单核苷酸多态性,与AF的发生有关 [19] 。一项对永久性AF患者和正常窦性心律患者的比较研究发现,miRNA-499上调可通过靶向KCNN3基因,显著下调心脏SK3的表达 [18] 。快速AF患者的miRNA-499表达量是慢速AF患者和对照组患者的2.3倍 [15] 。此外,有研究发现,心房miRNA-499的上调诱导CACNB2表达的下调,并有助于心房颤动的电重构 [20] 。

2.4. miRNA-208

miRNA-208为心脏特异性miRNA,有miRNA-208a和miRNA-208b两种亚型,分别在心脏发育的不同阶段表达。来自胞浆的Ca2+通过肌浆网Ca2+三磷酸腺苷2a型(SERCA2a)转运回肌浆网,从而影响肌浆和胞浆Ca2+浓度。Canon等 [21] 发现,在AF患者和对照个体的心房肌细胞中,miRNA-208b的上调与SERCA2mRNA的降低之间存在负相关。miRNA-208b的体外过表达也降低了SERCA2蛋白的表达。miRNA-208在小鼠模型中过表达,由于间隙连接蛋白-40表达的心律失常基因重构,导致心律失常负担增加 [22] 。

2.5. miRNA-26

miRNA-26家族包括三种亚型(miRNA-26a-1、miRNA-26a-2和miRNA-26b),它们都具有相同的种子序列和相同的靶基因。大量研究表明,向内K+电流(IK1)的增加,以及主要潜在钾电压门控通道亚家族J成员2 (KCNJ2) mRNA及其编码的内向整流钾通道(Kir) 2.1蛋白的表达增加,是AF相关心房电重构的一个突出特征 [23] 。然而,IK1失调在AF中的机制尚不清楚。在犬心动过速性心肌病模型中,心房AF中miRNA-26下调,导致瞬时受体电位阳离子3 通道上调,瞬时受体电位阳离子3通道调节钙注入并与心房重构相关 [24] 。与未发生AF的对照组相比,AF犬和AF患者的心房样品中miRNA-26亚型的表达显著降低,体外研究验证了KCNJ2是miRNA-26的靶点。在小鼠体内敲低内源性miRNA-26导致AF易感性增加,同时伴有IK1和Kir2.1蛋白水平升高 [25] 。同时,有研究发现,miRNA-26的下调可能通过靶向调节KCNJ2来促进AF [26] 。

3. miRNA与心房结构重构

3.1. miRNA-21

心房纤维化是AF的重要发病机制,但其信号转导尚不完全清楚。因此,Adam等 [27] 研究了miRNA-21及其下游靶点Sprouty1在AF中的作用,心脏过表达Rac1的转基因小鼠,导致自发性AF和心房纤维化的发展。miRNA-21还可以通过调节转录因子信号转导器和转录激活因子3磷酸化介导的炎症过程来加剧心房纤维化的过程 [7] 。几项研究报道了miRNA-21在心房重构进展中的作用,心房重构可能促进AF的发生和维持。Cardin等 [28] 发现,心房miRNA-21敲低可抑制心房纤维化和AF促进,提示miRNA-21是AF底物的重要信号分子。miRNA-21的表达有助于心房的结构重构。Nishi等 [29] 发现,miRNA-21在人类心房组织中的表达与心房纤维化呈正相关,并可能影响AF的发生,表明其作为生物标志物的潜力。Ramanujam等 [30] 报告了miRNA-21在心脏巨噬细胞中的关键调节作用,它控制旁分泌向心脏成纤维细胞的促纤维化信号传导,从而决定心脏重构和整体心脏功能。通过数据表明,抑制巨噬细胞中的miRNA-21对治疗纤维化心肌病具有治疗前景。总之,几项研究提供了关于miRNA-21在心房结构重构和AF病理生理中潜在作用的一致证据。

3.2. miRNA-29

人类miRNA-29家族的miRNA具有三个成熟成员,即miRNA-29a,miRNA-29b和miRNA-29c。miRNA-29在成纤维细胞中高表达,其抑制作用可在心肌梗死后诱导细胞培养物和小鼠中的胶原表达 [23] ,这证明了降低miRNA-29表达的促纤维化作用。Zhang等 [31] 研究证明了miRNA-29b在血管紧张素II诱导的小鼠心脏纤维化中的抗纤维化作用。AF患者血浆miRNA-29b水平(约降低54%)和充血性心力衰竭合并AF患者血浆miRNA-29b水平(约降低84%)明显低于对照组。此外,慢性AF患者与窦性心律人群相比,miRNA-29b在心房中的表达降低了约54%。在小鼠中,腺相关病毒介导的miRNA-29b的下调显著增加了心房胶原蛋白-1A1信使RNA的表达和心脏组织中胶原蛋白的含量。这表明miRNA-29在心房纤维化重构中的潜在作用 [32] 。由此可见,miRNA-29可能在心房结构重构中发挥作用,并可能具有作为生物标志物或治疗靶点的价值。

3.3. miRNA-133

miRNA-133主要在心肌细胞和成纤维细胞中表达,其靶向缺失、过表达和反义介导的敲低已证明其在心脏重构中的重要作用 [23] 。miRNA-133a是一种促纤维化细胞因子,靶向调控转化生长因子β1 (TGF-β)和结缔组织生长因子,在控制心肌细胞外基质的结构变化中发挥了重要作用,从而促进结构重构 [32] 。有研究表明,胶原蛋白-1A1是参与心肌纤维化的关键基因,是miRNA-133a的直接靶标。在体内,miRNA-133a的心肌下调可能代表了一种调节机制,通过增加胶原蛋白-1A1表达造成心脏损伤导致心肌纤维化 [33] 。miRNA133a还通过抑制TGF-β和促进纤维化的其他因子的表达来预防心脏纤维化 [34] ,因此,它是心房颤动的生物标志物和潜在的治疗靶点,可以预防心脏纤维化及其并发症。

3.4. miRNA-26

miRNA-26除了在电重构中的作用外,miRNA-26还可能通过调节瞬时受体电位通道3 (TRPC3)的表达来促进心房纤维化重构。TRPC3是一种非选择性阳离子通道,介导各种细胞类型的Ca2+进入。在房颤犬的心房成纤维细胞中,TRPC3表达和TRPC3介导的Ca2+进入均增加;这些变化增强了Ca2+依赖性细胞外信号调节激酶信号和成纤维细胞的增殖和分化,促进了心房纤维化 [24] 。因此,miRNA-26下调可能是AF发展的中心机制,影响心肌细胞IK1升高和成纤维细胞TRPC3上调 [24] 。

4. miRNA与心房自主神经重构

4.1. miRNA-30

心脏自主神经系统的失调通过增加G蛋白门控钾通道电流,缩短动作电位持续时间 [35] ,在AF的发生和维持中发挥着重要作用。在持续性AF患者中,miRNA-30d的上调与乙酰胆碱敏感的内向整流性钾离子电流(IKAch)下调有关 [36] 。因此,miRNA-30可能在心房神经重构中发挥作用。

4.2. miRNA-206

目前,越来越多的证据表明miRNA-206在心血管疾病中发挥着至关重要的作用。有报道称,在犬模型中,通过靶向三磷酸鸟苷环化水解酶1 (GCH1)下调miRNA-206可通过BH4通路加剧自主神经重构,抑制心房有效不应期的表达,从而增加AF敏感性 [37] 。右心房起搏犬体内慢病毒介导的miRNA-206过表达与活性氧(ROS)增加、神经密度和心房有效不应期缩短有关。荧光素酶检测证实miRNA-206直接调控抗氧化超氧化物歧化酶1 (SOD1) [38] 。这些结果表明,miRNA-206可能通过降低SOD1和增加ROS诱导自主神经重构。

5. 结语

到目前为止,还没有明确的miRNA被确定为临床有用的生物标志物或AF治疗的靶点。miRNAs被认为在调控多种导致AF的基因表达中发挥着关键作用。近年来,miRNAs逐渐成为哺乳动物心血管发育和疾病发生的关键调节因子,包括肥大、心力衰竭、心律失常、心脏损伤等。每个miRNA可以调控多个功能相似的miRNA,从而影响复杂的生物过程。miRNA表达的变化在心血管病理生理学的不同方面发挥着重要作用,而miRNA活性的调节可以为心血管疾病提供潜在的新治疗靶点。随着对miRNAs研究的不断深入,以及对新miRNAs功能的深入了解,在miRNAs在AF领域取得了显著进展。AF发生发展的分子生物学机制得到了完善,为AF的诊断、治疗及预防提供了新的策略。然而,目前的文献大多缺乏全面的研究,对miRNA在AF中的基因调控的认识还存在一些空白。深入研究miRNA在AF患者中的表达水平和具体机制,靶向调控miRNA预防和逆转AF,将改善心房重构,为AF的诊断和治疗提供新的思路。

文章引用

阿尔祖古丽·麦麦提,麦五久代·吐尔逊,阿比旦·尼加提,冯 艳. 微小RNA在心房颤动中的研究进展
Research Progress of MicroRNA in Atrial Fibrillation[J]. 临床医学进展, 2023, 13(10): 15593-15599. https://doi.org/10.12677/ACM.2023.13102181

参考文献

  1. 1. Cintra, F.D. and Figueiredo, M. (2021) Atrial Fibrillation (Part 1): Pathophysiology, Risk Factors, and Therapeutic Basis. Arquivos Brasileiros de Cardiologia, 116, 129-139.

  2. 2. Yuan, K., Zhao, P. and Wang, L. (2021) Molecular Mecha-nism of Atrial Remodeling in Patients with Aging Atrial Fibrillation under the Expression of microRNA-1 and mi-croRNA-21. Bioengineered, 12, 12905-12916. https://doi.org/10.1080/21655979.2021.2008668

  3. 3. Park, J.H., Lee, H., Kim, J.W. and Song, T.J. (2023) Asso-ciation between Periodontal Disease Status and Risk of Atrial Fibrillation: A Nationwide Population-Based Cohort Study. BMC Oral Health, 23, Article No. 461. https://doi.org/10.1186/s12903-023-03165-x

  4. 4. Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Ele-gans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y

  5. 5. Komal, S., Yin, J.J., Wang, S.H., et al. (2019) MicroRNAs: Emerging Biomarkers for Atrial Fibrillation. Journal of Cardiology, 74, 475-482. https://doi.org/10.1016/j.jjcc.2019.05.018

  6. 6. Mir, R., Elfaki, I., Khullar, N., et al. (2021) Role of Selected miR-NAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocar-dial Infarction and Atherosclerosis. Journal of Cardiovascular Development and Disease, 8, Article 22. https://doi.org/10.3390/jcdd8020022

  7. 7. Sygitowicz, G., Maciejak-Jastrzebska, A. and Sitkiewicz, D. (2021) A Review of the Molecular Mechanisms Underlying Cardiac Fibrosis and Atrial Fibrillation. Journal of Clinical Medicine, 10, Article 4430. https://doi.org/10.3390/jcm10194430

  8. 8. Li, J., Dong, X., Wang, Z. and Wu, J.H. (2014) MicroRNA-1 in Cardiac Diseases and Cancers. The Korean Journal of Physiology & Pharmacology, 18, 359-363. https://doi.org/10.4196/kjpp.2014.18.5.359

  9. 9. Lu, Y., Hou, S., Huang, D., et al. (2015) Expression Profile Analysis of Circulating microRNAs and Their Effects on Ion Channels in Chinese Atrial Fibrillation Patients. Interna-tional Journal of Clinical and Experimental Medicine, 8, 845-853.

  10. 10. Shan, H., Zhang, Y., Cai, B., et al. (2013) Up-regulation of microRNA-1 and microRNA-133 Contributes to Arsenic-Induced Cardiac Electrical Remodeling. Interna-tional Journal of Cardiology, 167, 2798-2805. https://doi.org/10.1016/j.ijcard.2012.07.009

  11. 11. Terentyev, D., Belevych, A.E., Terentyeva, R., et al. (2009) MiR-1 Overexpression Enhances Ca2+ Release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2. Circulation Research, 104, 514-521. https://doi.org/10.1161/CIRCRESAHA.108.181651

  12. 12. Li, W., Liu, M., Zhao, C., et al. (2020) MiR-1/133 At-tenuates Cardiomyocyte Apoptosis and Electrical Remodeling in Mice with Viral Myocarditis. Cardiology Journal, 27, 285-294. https://doi.org/10.5603/CJ.a2019.0036

  13. 13. 刘兆奕, 吴桂平, 林瑶瑶, 等. microRNA-328与心房颤动患者心房重构的相关性[J]. 中国医科大学学报, 2022, 51(1): 28-32.

  14. 14. Lu, Y., Zhang, Y., Wang, N., et al. (2010) MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation. Circulation, 122, 2378-2387. https://doi.org/10.1161/CIRCULATIONAHA.110.958967

  15. 15. Kim, G.H. (2013) MicroRNA Regulation of Car-diac Conduction and Arrhythmias. Translational Research, 161, 381-392. https://doi.org/10.1016/j.trsl.2012.12.004

  16. 16. Soeki, T., Matsuura, T., Bando, S., et al. (2016) Relationship be-tween Local Production of MicroRNA-328 and Atrial Substrate Remodeling in Atrial Fibrillation. Journal of Cardiology, 68, 472-477. https://doi.org/10.1016/j.jjcc.2015.12.007

  17. 17. Shi, K.H., Tao, H., Yang, J.J., et al. (2013) Role of microRNAs in Atrial Fibrillation: New Insights and Perspectives. Cellular Signalling, 25, 2079-2084. https://doi.org/10.1016/j.cellsig.2013.06.009

  18. 18. Ling, T.Y., Wang, X.L., Chai, Q., et al. (2013) Regulation of the SK3 Channel by MicroRNA-499—Potential Role in Atrial Fibrillation. Heart Rhythm, 10, 1001-1009. https://doi.org/10.1016/j.hrthm.2013.03.005

  19. 19. Ellinor, P.T., Lunetta, K.L., Glazer, N.L., et al. (2010) Common Variants in KCNN3 Are Associated with Lone Atrial Fibrillation. Nature Genetics, 42, 240-244. https://doi.org/10.1038/ng.537

  20. 20. Ling, T.Y., Wang, X.L., Chai, Q., et al. (2017) Regulation of Cardiac CACNB2 by microRNA-499: Potential Role in Atrial Fibrillation. BBA Clinical, 7, 78-84. https://doi.org/10.1016/j.bbacli.2017.02.002

  21. 21. Canon, S., Caballero, R., Herraiz-Martinez, A., et al. (2016) MiR-208b Upregulation Interferes with Calcium Handling in HL-1 Atrial Myocytes: Implications in Human Chronic Atrial Fibrillation. Journal of Molecular and Cellular Cardiology, 99, 162-173. https://doi.org/10.1016/j.yjmcc.2016.08.012

  22. 22. Callis, T.E., Pandya, K., Seok, H.Y., et al. (2009) Mi-croRNA-208a Is a Regulator of Cardiac Hypertrophy and Conduction in Mice. Journal of Clinical Investigation, 119, 2772-2786. https://doi.org/10.1172/JCI36154

  23. 23. Parikh, M. and Pierce, G.N. (2021) A Brief Review on the Bi-ology and Effects of Cellular and Circulating microRNAs on Cardiac Remodeling after Infarction. International Journal of Molecular Sciences, 22, Article 4995. https://doi.org/10.3390/ijms22094995

  24. 24. Harada, M., Luo, X., Qi, X.Y., et al. (2012) Transient Receptor Poten-tial Canonical-3 Channel-Dependent Fibroblast Regulation in Atrial Fibrillation. Circulation, 126, 2051-2064. https://doi.org/10.1161/CIRCULATIONAHA.112.121830

  25. 25. Luo, X., Pan, Z., Shan, H., et al. (2013) Mi-croRNA-26 Governs Profibrillatory Inward-Rectifier Potassium Current Changes in Atrial Fibrillation. Journal of Clini-cal Investigation, 123, 1939-1951. https://doi.org/10.1172/JCI62185

  26. 26. Du, J., Li, Z., Wang, X., et al. (2020) Long Noncoding RNA TCONS-00106987 Promotes Atrial Electrical Remodelling during Atrial Fibrillation by Sponging miR-26 to Regulate KCNJ2. Journal of Cellular and Molecular Medicine, 24, 12777-12788. https://doi.org/10.1111/jcmm.15869

  27. 27. Adam, O., Lohfelm, B., Thum, T., et al. (2012) Role of miR-21 in the Pathogenesis of Atrial Fibrosis. Basic Research in Cardiology, 107, Article No. 278. https://doi.org/10.1007/s00395-012-0278-0

  28. 28. Cardin, S., Guasch, E., Luo, X., et al. (2012) Role for Mi-croRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated with Experimental Postinfarction Heart Failure. Circulation: Arrhythmia and Electrophysiology, 5, 1027-1035. https://doi.org/10.1161/CIRCEP.112.973214

  29. 29. Nishi, H., Sakaguchi, T., Miyagawa, S., et al. (2013) Impact of MicroRNA Expression in Human Atrial Tissue in Patients with Atrial Fibrillation Undergoing Cardiac Surgery. PLOS ONE, 8, e73397. https://doi.org/10.1371/journal.pone.0073397

  30. 30. Ramanujam, D., Schon, A.P., Beck, C., et al. (2021) Mi-croRNA-21-Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 143, 1513-1525. https://doi.org/10.1161/CIRCULATIONAHA.120.050682

  31. 31. Zhang, Y., Huang, X.R., Wei, L.H., et al. (2014) MiR-29b as a Therapeutic Agent for Angiotensin II-Induced Cardiac Fibrosis by Targeting TGF-β/Smad3 Signaling. Molecular Therapy, 22, 974-985. https://doi.org/10.1038/mt.2014.25

  32. 32. Dilaveris, P., Antoniou, C.K., Manolakou, P., et al. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802. https://doi.org/10.2174/0929867324666170918122502

  33. 33. Castoldi, G., Di Gioia, C.R., Bombardi, C., et al. (2012) MiR-133a Regulates Collagen 1A1: Potential Role of miR-133a in Myocardial Fibrosis in Angiotensin II-Dependent Hypertension. Journal of Cellular Physiology, 227, 850-856. https://doi.org/10.1002/jcp.22939

  34. 34. Menezes, J.A., Ferreira, L.C., Barbosa, L., et al. (2023) Circulating Mi-croRNAs as Specific Biomarkers in Atrial Fibrillation: A Meta-Analysis. Non-Coding RNA, 9, Article 13. https://doi.org/10.3390/ncrna9010013

  35. 35. Shen, M.J., Choi, E.K., Tan, A.Y., et al. (2011) Neural Mechanisms of Atrial Arrhythmias. Nature Reviews Cardiology, 9, 30-39. https://doi.org/10.1038/nrcardio.2011.139

  36. 36. Morishima, M., Iwata, E., Nakada, C., et al. (2016) Atrial Fibrilla-tion-Mediated Upregulation of miR-30d Regulates Myocardial Electrical Remodeling of the G-Protein-Gated K+ Channel, IK.ACh. Circulation Journal, 80, 1346-1355. https://doi.org/10.1253/circj.CJ-15-1276

  37. 37. Wei, J., Zhang, Y., Li, Z., et al. (2018) GCH1 Attenuates Cardiac Autonomic Nervous Remodeling in Canines with Atrial-Tachypacing via Tetrahydrobiopterin Pathway Regulated by Mi-croRNA-206. Pacing and Clinical Electrophysiology, 41, 459-471. https://doi.org/10.1111/pace.13289

  38. 38. Zhang, Y., Zheng, S., Geng, Y., et al. (2015) MicroRNA Profiling of Atrial Fibrillation in Canines: MiR-206 Modulates Intrin-sic Cardiac Autonomic Nerve Remodeling by Regulating SOD1. PLOS ONE, 10, e122674. https://doi.org/10.1371/journal.pone.0122674

  39. NOTES

    *通讯作者。

期刊菜单