Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 82551 , 7 pages
10.12677/ACM.2024.143711

反复种植失败患者妊娠结局的影响因素分析

艾克达·阿布力克木,腊晓琳*

新疆医科大学第一附属医院生殖助孕中心,新疆 乌鲁木齐

收稿日期:2024年2月14日;录用日期:2024年3月9日;发布日期:2024年3月14日

摘要

本综述旨在评估反复种植失败(Recurrent Implantation Failure, RIF)患者妊娠结局的多种影响因素。我们系统地回顾了最近几年的文献,探讨了从年龄、生殖系统疾病、子宫内膜容受性、胚胎质量、免疫因素、遗传因素等方面的影响。此综述为临床医师和患者提供了一个关于RIF患者管理和治疗的综合视角,以优化妊娠结果。

关键词

反复种植失败,妊娠结局,影响因素

Analysis of Factors Affecting Pregnancy Outcome in Patients with Recurrent Implantation Failure

Aikeda Abulikemu, Xiaolin La*

Reproductive Fertility Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 14th, 2024; accepted: Mar. 9th, 2024; published: Mar. 14th, 2024

ABSTRACT

The aim of this review was to assess the multiple factors influencing pregnancy outcomes in patients with Recurrent Implantation Failure (RIF). We systematically reviewed the literature of the last few years and explored the influence of factors ranging from age, reproductive disorders, endometrial tolerance, embryo quality, immunologic factors, and genetic factors. This review provides clinicians and patients with a comprehensive perspective on the management and treatment of patients with RIF to optimize pregnancy outcomes.

Keywords:Recurrent Implantation Failure, Pregnancy Outcome, Factors Affecting

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

反复种植失败(RIF)是在辅助生殖技术(Assisted Reproductive Technology, ART)中一个重要的挑战,影响着大量试图通过体外受精(In Vitro Fertilization, IVF)等技术来解决不孕问题的患者。RIF的定义尚无统一标准,通常定义为40岁以下的女性,在至少三个新鲜或冷冻周期中移植至少四个优质胚胎后,未能实现临床妊娠 [1] 。RIF的原因多种多样,本综述旨在探讨影响RIF患者妊娠结局的关键因素。

2. 影响因素

2.1. 年龄

随着女性受教育程度的提高,参与劳动力市场的女性也逐渐增多,女性生活的重点不完全在于生育问题,这一趋势导致女性生育年龄逐渐推迟 [2] 。而随着女性年龄的增长,线粒体功能与卵母细胞质量逐渐下降 [3] 。研究表明,胚胎–子宫内膜不同步率随年龄增加而增加,卵母细胞产量、囊胚形成率和子宫内膜厚度随年龄增加而降低。年龄 ≥ 35岁的女性相比较年龄 < 35女性来说,植入率较低,生化妊娠率较高,活产率显著降低 [4] 。因此,在研究和探讨辅助生殖技术及其妊娠结局时,女性年龄是一个不可忽视的关键因素。

2.2. 生殖系统疾病

宫腔环境是胚胎种植的基本条件,宫腔异常病变如子宫内膜息肉,宫腔粘连,子宫肌瘤,子宫腺肌病,慢性子宫内膜炎等,均可能会影响胚胎移植率。子宫内膜息肉是RIF患者较常见的子宫病变,会影响胚胎种植 [5] 。它不仅能引起子宫腔的形态改变,还通过改变子宫内膜分泌的细胞因子(如胰岛素样生长因子1结合蛋白和TNF-α)来干扰着床过程 [6] 。一项研究指出,宫腔粘连的发生率在接受宫腔镜评估的RIF患者中约为8.5%,宫腔粘连通常发生在清宫术后,粘连会损害子宫内膜的功能层,阻止胚胎附着,从而无法成功着床 [7] 。此外,子宫肌瘤可导致子宫腔变形和粘连,从而阻止胚胎附着在子宫内膜上。子宫肌瘤对妊娠结局的影响与其位置有关。特别是黏膜下肌瘤可能会降低接受试管婴儿的患者的着床和妊娠率,阻碍着床的机制包括子宫肌层收缩增加、血管形成异常和细胞因子谱紊乱 [5] 。一项系统评价指出,黏膜下肌瘤患者的着床率和活产率低于对照组 [8] 。子宫内膜异位症是一种雌激素依赖性炎症,在不孕妇女中的发病率高达50% [9] ,有研究表明子宫内膜异位症会降低患者生育力,其机制可能是破坏盆腔正常解剖结构、造成卵巢周围粘连、改变免疫系统功能、阻碍胚胎着床、降低卵子质量 [10] 。近年来,发现RIF患者合并慢性子宫内膜炎。慢性子宫内膜炎为微生物感染诱发,有研究表明,慢性子宫内膜炎是影响RIF患者活产率和临床妊娠率的一个独立因素,合并慢性子宫内膜炎的患者活产率及临床妊娠率显著降低 [11] 。因此,子宫腔的异常病变是影响胚胎移植成功率的重要因素,深入了解这些异常病变的特点及其对胚胎移植的具体影响机制,对于提高RIF患者的治疗效果和妊娠成功率具有重要意义。

2.3. 子宫内膜容受性

适当的子宫内膜功能以及子宫内膜和胚胎之间的动态相互作用是成功种植的必要条件。子宫内膜容受性是子宫环境接受胚胎和随后植入的时间窗,这个时期通常在月经周期的第20天和第24天之间,子宫内膜处于分泌期 [12] 。RIF的病因复杂,如免疫因素,血栓前状态,感染因素,生殖系统解剖结构异常,内分泌因素,男性因素,染色体异常等,子宫内膜容受性欠佳是RIF的原因之一 [13] 。黄体酮对于建立子宫内膜容受性至关重要 [14] 。然而,子宫内膜种植窗的开放存在很短的时间,成功植入不仅取决于子宫内膜容受性,还取决于子宫内膜发育与胚胎之间的同步性 [15] 。在辅助生殖实施过程中,这种同步性可能会受到影响。一方面,血清黄体酮过早升高会降低新鲜胚胎移植周期的妊娠率,可能提示子宫内膜和胚胎之间存在不同步 [16] 。另一方面,在冻融胚胎移植(Frozen Embryo Transfer, FET)中,黄体酮给药的持续时间显著影响妊娠率 [17] 。在所有哺乳动物中胎盘滋养层黏附时,子宫内膜上皮雌激素受体α (ERα)和孕酮受体(PR)基本消失。最近的证据表明,PR的消失是由P通过调节FOXO1转录因子来调节的 [18] [19] 。此外,缺乏PR下调可能会阻止FOXO1促进白血病抑制因子(LIF)的表达,LIF对多种胎盘物种中滋养层的附着至关重要 [18] 。因此,PR下调、LIF表达和FOXO1作用在子宫内膜上皮和子宫内膜容受性中都相互关联。细胞粘附分子在滋养层表面表达,并与子宫内膜细胞外基质表达的配体相互作用 [20] 。这些细胞粘附分子包括:(1) 选择素,参与滋养层黏附的碳水化合物结合糖蛋白 [21] ;(2) 钙粘蛋白,钙依赖性糖蛋白,有助于滋养层运动和侵袭 [22] ;(3) 整合素,参与胚胎子宫内膜附着和信号转导的跨膜糖蛋白 [23] 。

子宫内膜容受性可以通过无创方法进行研究,例如高分辨率经阴道超声(TVS)、三维超声(US)、多普勒超声、三维功率多普勒超声、磁共振成像(MRI)来检测子宫内膜组织血流。子宫内膜容受性阵列(ERA)是一种尝试,旨在临床上改善由于子宫内膜黄体期分化加速或延迟导致的胚胎–子宫内膜不同步的组织学检测 [24] 。一种较新的子宫内膜容受性测试是ReceptivaDx测试,该测试基于发现子宫内膜异位症女性子宫内膜 BCL6 的过表达 [25] 。在ET周期中,包括ERA和ReceptivaDx在内的新方法为改善妊娠结局提供了指导,特别是治疗患有BCL6缺陷的女性,可以显着降低子宫内膜异位症治疗后的流产率 [15] 。提高子宫内膜容受性可以通过以下方式来实现:(1) 改变生活方式,例如戒烟,补充营养,加强锻炼等;(2) 改善黄体缺陷,通常采用激素替代疗法;(3) 改善子宫血流,如口服小剂量阿司匹林 [26] 。

2.4. 胚胎质量

胚胎质量是辅助生殖过程中实现成功活产的关键决定因素之一,取决于形成胚胎的卵母细胞和精子的质量。卵母细胞的数量和质量是卵泡发育第一阶段的两个主要决定因素 [27] 。随着年龄的增长,线粒体DNA的不稳定性增加,这可能导致卵母细胞中的mtDNA突变,从而导致卵母细胞质量下降 [3] 。此外,卵巢储备随着年龄的增长而减少,可能是由于线粒体功能障碍、端粒缩短、黏附蛋白功能障碍等因素导致卵母细胞功能衰退,减少了卵巢中卵细胞的总量 [28] 。卵母细胞评估可能会有利于胚胎评估,以预测体外受精(IVF)的妊娠机会。在存在优质胚胎的情况下,卵母细胞评分较高的患者在接受辅助生殖技术后更有可能成功妊娠 [29] 。精子DNA损伤可能发生在氧化应激的情况下,例如生活方式不足、吸烟、既往手术史、放化疗、性传播疾病、鱼精蛋白缺乏症或DNA修复缺陷 [30] 。有研究表明,精子DNA片段化检测为自然或人工受孕提供了除常规参数之外的相关信息 [31] 。同样,另一项研究表明,精子DNA损伤的增加对IVF和/或ICSI后的临床妊娠率有负面影响 [32] 。卵胞浆内形态选择单精子注射(IMSI)技术通过大约6300倍的高倍率显微镜来细致观察精子的形态特征及头部中的液泡,旨在精选形态学上最优质的精子进行注射 [33] 。有研究将IMSI与传统的ICSI进行了比较,发现临床结局方面没有显著改善 [34] 。这提示虽然IMSI技术提供了对精子形态更细致的观察,但在提高临床妊娠率方面的实际效果仍需进一步研究与验证。

2.5. 免疫因素

各种免疫细胞类型,特别是T细胞的特殊亚群,在成功妊娠和生殖失败中具有不同的功能。具有抑制特性的调节性T (Treg)细胞在胚胎移植和发育中至关重要。这些Treg细胞通过抑制Th1淋巴细胞的产生和功能(I型炎症反应的主要介质)积极参与母体免疫适应。Th1型免疫的下调是临床正常妊娠的基本要求,相比之下,Th2介导的免疫反应在正常妊娠期间往往占主导地位。与正常妊娠相比,在复发性流产和RIF中,细胞因子的平衡发生了显著变化。具体来说,Th1型细胞因子如干扰素(IFN)-γ的水平显著提高,而Th2型细胞因子,包括IL-6和IL-10的水平则降低。这种细胞因子平衡的变化,暗示免疫应答在复发性流产和RIF中的重要作用 [35] [36] 。自然杀伤细胞可分为外周血自然杀伤(pNK)细胞和子宫自然杀伤(uNK)细胞。在外周血中,pNK细胞被认为具有细胞毒性,相比之下,uNK细胞的细胞毒性明显降低。在妊娠早期,uNK细胞通过渗透到滋养层并参与控制滋养层侵袭及子宫螺旋动脉的重塑,从而增加母体血液和滋养层细胞之间的接触面积,这一过程是胎盘健康发育的主要过程。尽管uNK细胞似乎可以保护胚胎并支持植入,但在RIF和IVF后复发性流产的患者中发现了高水平的uNK细胞 [37] ,其机制有待进一步研究。一项研究 [38] 通过对IVF过程中RIF患者的子宫内膜进行全基因组甲基化和基因表达谱分析,研究子宫内膜容受性的变化情况,确定了448个差异甲基化位点,其中242个是低甲基化的,而206个是高甲基化的。这些与差异甲基化基因相关的最重要的生物学过程与抗原加工和呈递有关,包括MHC I类和MHC II类的内源性和外源性肽呈递。富集的途径属于吞噬体、同种异体移植物排斥反应、移植物抗宿主病、抗原呈递和炎症性肠病的途径。此外,转录起始位点的差异甲基化位点主要富集参与免疫功能的基因,如抗原加工和呈递、免疫球蛋白产生、IL-10和IL-4调节、T辅助细胞免疫应答以及由HLA-DRB1和HLA-DRB5基因组成的炎症应答。当与基因表达谱重叠时,大多数下调的基因在先天免疫和细胞防御反应、T细胞增殖调节、趋化因子介导的信号通路、补体激活调节、急性和慢性炎症反应以及细胞趋化性中发挥作用。抗原加工和呈递途径、自然杀伤细胞介导的细胞毒性途径以及补体和凝血级联反应是下调基因中富集最多的三条途径。这些结果表明,子宫内膜的甲基化缺陷可能是子宫内膜局部免疫紊乱导致RIF的原因。

2.6. 遗传因素

一个能够成功种植的“优质”胚胎必须从高质量的成熟卵母细胞和精子开始,每个卵母细胞和精子都包含一组单倍体染色体。与年龄相关的不孕症可能部分归因于减数分裂错误数量的增加,特别是染色体分离错误。这导致产生的卵子和胚胎为非整倍体,降低了其着床率 [39] 。研究发现,在年长女性群体中,即便采用整倍体胚胎进行移植,其着床率、临床妊娠率(CPR)以及活产率(LBR)的降低仍然存在,这一结果指出年龄相关不孕症的成因可能不仅仅局限于胚胎的非整倍性问题。尽管面临这些挑战,选择性地移植整倍体胚胎仍可以在一定程度上提高年长女性的生育成功率,从而凸显了这一策略在缓解年龄相关生育能力下降方面的有效性 [40] [41] 。2014年的一项研究表明,44岁女性的囊胚非整倍体率可高达53%,42岁女性的非整倍体率高达33% [42] 。这表明高龄女性的囊胚往往总体质量较差 [43] ,且常染色体单体、单倍体和多倍体通常甚至不会进展到囊胚期 [44] 。母体易栓症相关基因,包括凝血因子V Leiden (FVL)、凝血酶原和亚甲基四氢叶酸还原酶(MTHFR)基因突变,也在RIF的病因学中进行了研究 [45] [46] 。一项小型研究报告称,RIF患者的MTHFR c.677C > T多态性,出现了显著的Hardy-Weinberg平衡偏差,特别是具有两种纯合基因型的夫妇(例如,男性为677C的纯合子和女性为677T的纯合子,反之亦然)的4倍过度表达,从而表明杂合子处于劣势。此外,携带MTHFR 677T纯合整倍体胚胎的移植失败率显著增高 [47] 。对母体uNK细胞免疫球蛋白样受体(KIR)基因型的研究表明KIR A抑制性单倍型具有优越性。一项涉及668例整倍体单胚胎移植的大型研究报告称,与KIR B患者相比,KIR A患者的妊娠丢失显著降低(分别为16%和28%)。这一差异受到移植胚胎的HLA-C基因型的显著影响,证实了母体和胚胎机制之间相互作用对成功种植的重要性 [48] 。

3. 结论

影响RIF患者妊娠结局的因素是多方面的,其作用机制复杂。通过综合全面的评估和干预这些影响因素,可以为RIF患者提供更有效的治疗方案,提高活产率,实现他们的生育愿望。已有大量研究从多角度出发分析RIF患者妊娠结局的影响因素的作用机制,但在未来的研究中,还需要进一步挖掘,以期制定更加有效的治疗方法,以提高反复种植失败患者的活产率。

文章引用

艾克达·阿布力克木,腊晓琳. 反复种植失败患者妊娠结局的影响因素分析
Analysis of Factors Affecting Pregnancy Out-come in Patients with Recurrent Implantation Failure[J]. 临床医学进展, 2024, 14(03): 367-373. https://doi.org/10.12677/ACM.2024.143711

参考文献

  1. 1. Coughlan, C., Ledger, W., Wang, Q., Liu, F., Demirol, A., Gurgan, T., Cutting, R., Ong, K., Sallam, H. and Li, T.C. (2014) Recurrent Implantation Failure: Definition and Management. Reproductive BioMedicine Online, 28, 14-38. https://doi.org/10.1016/j.rbmo.2013.08.011

  2. 2. Mills, M., Rindfuss, R.R., McDonald, P., Te Velde, E. and ESHRE Reproduction and Society Task Force (2011) Why Do People Postpone Parenthood? Reasons and Social Policy Incentives. Human Reproduction Update, 17, 848-860. https://doi.org/10.1093/humupd/dmr026

  3. 3. May-Panloup, P., Boucret, L., Chao, De La Barca, J.M., Desqui-ret-Dumas, V., Ferré-L’hotellier, V., Morinière, C., Descamps, P., Procaccio, V. and Reynier, P. (2016) Ovarian Ageing: The Role of Mitochondria in Oocytes and Follicles. Human Reproduction Update, 22, 725-743. https://doi.org/10.1093/humupd/dmw028

  4. 4. Shapiro, B.S., Daneshmand, S.T., Desai, J., Garner, F.C., Aguirre, M. and Hudson, C. (2016) The Risk of Embryo-Endometrium Asynchrony Increases with Maternal Age after Ovarian Stimulation and IVF. Reproductive BioMedicine Online, 33, 50-55. https://doi.org/10.1016/j.rbmo.2016.04.008

  5. 5. Franasiak, J.M., Alecsandru, D., Forman, E.J., Gemmell, L.C., Goldberg, J.M., Llarena, N., Margolis, C., Laven, J., Schoenmakers, S. and Seli, E. (2021) A Review of the Pathophysi-ology of Recurrent Implantation Failure. Fertility and Sterility, 116, 1436-1448. https://doi.org/10.1016/j.fertnstert.2021.09.014

  6. 6. Elbehery, M.M., Nouh, A.A., Mohamed, M.L., Alanwar, A.A., Abd-Allah, S.H. and Shalaby, S.M. (2011) Insulin-Like Growth Factor Binding Protein-1 and Glycodelin Levels in Uterine Flushing before and after Hysteroscopic Polypectomy. Clinical Laboratory, 57, 953-957.

  7. 7. Demirol, A. and Gurgan, T. (2004) Effect of Treatment of Intrauterine Pathologies with Office Hysteroscopy in Patients with Recur-rent IVF Failure. Reproductive BioMedicine Online, 8, 590-594. https://doi.org/10.1016/S1472-6483(10)61108-X

  8. 8. Pritts, E.A., Parker, W.H. and Olive, D.L. (2009) Fibroids and Infertility: An Updated Systematic Review of the Evidence. Fertility and Sterility, 91, 1215-1223. https://doi.org/10.1016/j.fertnstert.2008.01.051

  9. 9. Lin, Y.H., Chen, Y.H., Chang, H.Y., Au, H.K., Tzeng, C.R. and Huang, Y.H. (2018) Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. International Journal of Molecular Sciences, 19, Article No. 2385. https://doi.org/10.3390/ijms19082385

  10. 10. Smolarz, B., Szyłło, K. and Romanowicz, H. (2021) Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). International Journal of Mo-lecular Sciences, 22, Article No. 10554. https://doi.org/10.3390/ijms221910554

  11. 11. Li, J., Li, X., Ding, J., Zhao, J., Chen, J., Guan, F., Deng, H., Zhou, M., Han, Y., Xiao, Z. and Yang, J. (2023) Analysis of Pregnancy Outcomes in Patients with Recurrent Implantation Failure Complicated with Chronic Endometritis. Frontiers in Cell and Developmental Biology, 11, Article ID: 1088586. https://doi.org/10.3389/fcell.2023.1088586

  12. 12. Mrozikiewicz, A.E., Ożarowski, M. and Jędrzejczak, P. (2021) Biomolecular Markers of Recurrent Implantation Failure—A Review. International Journal of Molecular Sciences, 22, Article No. 10082. https://doi.org/10.3390/ijms221810082

  13. 13. Ruiz-Alonso, M., Blesa, D., Díaz-Gimeno, P., Gómez, E., Fernán-dez-Sánchez, M., Carranza, F., Carrera, J., Vilella, F., Pellicer, A. and Simón, C. (2013) The Endometrial Receptivity Array for Diagnosis and Personalized Embryo Transfer as a Treatment for Patients with Repeated Implantation Failure. Fertility and Sterility, 100, 818-824. https://doi.org/10.1016/j.fertnstert.2013.05.004

  14. 14. Lessey, B.A. and Young, S.L. (2019) What Exactly Is Endo-metrial Receptivity? Fertility and Sterility, 111, 611-617. https://doi.org/10.1016/j.fertnstert.2019.02.009

  15. 15. Wilcox, A.J., Baird, D.D. and Weinberg, C.R. (1999) Time of Implantation of the Conceptus and Loss of Pregnancy. The New England Journal of Medicine, 340, 1796-1799. https://doi.org/10.1056/NEJM199906103402304

  16. 16. Venetis, C.A., Kolibianakis, E.M., Bosdou, J.K., Lainas, G.T., Sfontouris, I.A., Tarlatzis, B.C. and Lainas, T.G. (2015) Estimating the Net Effect of Progesterone Elevation on the Day of HCG on Live Birth Rates after IVF: A Cohort Analysis of 3296 IVF Cycles. Human Reproduction, 30, 684-691. https://doi.org/10.1093/humrep/deu362

  17. 17. Prapas, Y., Prapas, N., Jones, E.E., Duleba, A.J., Olive, D.L., Chatzi-parasidou, A. and Vlassis, G. (1998) The Window for Embryo Transfer in Oocyte Donation Cycles Depends on the Du-ration of Progesterone Therapy. Human Reproduction, 13, 720-723.

  18. 18. Li, R., Wang, X., Huang, Z., Balaji, J., Kim, T.H., Wang, T., Zhou, L., Deleon, A., Cook, M.E., Marbrey, M.W., Wu, S.P., Jeong, J.W., Arora, R. and De Mayo, F.J. (2021) The Role of Epithelial Progesterone Receptor Isoforms in Embryo Implantation. IScience, 24, Article ID: 103487. https://doi.org/10.1016/j.isci.2021.103487

  19. 19. Vasquez, Y.M., Wang, X., Wetendorf, M., Franco, H.L., Mo, Q., Wang, T., Lanz, R.B., Young, S.L., Lessey, B.A., Spencer, T.E., Lydon, J.P. and DeMayo, F.J. (2018) FOXO1 Regu-lates Uterine Epithelial Integrity and Progesterone Receptor Expression Critical for Embryo Implantation. PLOS Genetics, 14, E1007787. https://doi.org/10.1371/journal.pgen.1007787

  20. 20. Lyall, F. (2006) Mechanisms Regulating Cytotrophoblast Inva-sion in Normal Pregnancy and Pre-Eclampsia. The Australian and New Zealand Journal of Obstetrics and Gynaecology, 46, 266-273. https://doi.org/10.1111/j.1479-828X.2006.00589.x

  21. 21. Genbacev, O.D., Prakobphol, A., Foulk, R.A., Krtolica, A.R., Ilic, D., Singer, M.S., Yang, Z.Q., Kiessling, L.L., Rosen, S.D. and Fisher, S.J. (2003) Trophoblast L-Selectin-Mediated Adhesion at the Maternal-Fetal Interface. Science, 299, 405-408. https://doi.org/10.1126/science.1079546

  22. 22. Shih, I.M., Hsu, M.Y., Oldt, R.J., Herlyn, M., Gearhart, J.D. and Kurman, R.J. (2002) The Role of E-Cadherin in the Motility and Invasion of Implantation Site Intermediate Trophoblast. Placenta, 23, 706-715. https://doi.org/10.1053/plac.2002.0864

  23. 23. Lessey, B.A. (1998) Endometrial Integrins and the Establishment of Uterine Receptivity. Human Reproduction, 13, 247-258. https://doi.org/10.1093/humrep/13.suppl_3.247

  24. 24. Díaz-Gimeno, P., Horcajadas, J.A., Martínez-Conejero, J.A., Esteban, F.J., Alamá, P., Pellicer, A. and Simón, C. (2011) A Genomic Diagnostic Tool for Human Endometrial Recep-tivity Based on the Transcriptomic Signature. Fertility and Sterility, 95, 50-60, 60.E1-15. https://doi.org/10.1016/j.fertnstert.2010.04.063

  25. 25. Evans-Hoeker, E., Lessey, B.A., Jeong, J.W., Savaris, R.F., Palomino, W.A., Yuan, L., Schammel, D.P. and Young, S.L. (2016) Endometrial BCL6 Overexpression in Eutopic En-dometrium of Women with Endometriosis. Reproductive Sciences, 23, 1234-1241. https://doi.org/10.1177/1933719116649711

  26. 26. Neykova, K., Tosto, V., Giardina, I., Tsibizova, V. and Vakrilov, G. (2022) Endometrial Receptivity and Pregnancy Outcome. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 2591-2605. https://doi.org/10.1080/14767058.2020.1787977

  27. 27. Magnusson, Å., Källen, K., Thurin-Kjellberg, A. and Bergh, C. (2018) The Number of Oocytes Retrieved during IVF: A Balance between Efficacy and Safety. Human Reproduction, 33, 58-64. https://doi.org/10.1093/humrep/dex334

  28. 28. Cimadomo, D., Fabozzi, G., Vaiarelli, A., Ubaldi, N., Ubaldi, F.M. and Rienzi, L. (2018) Impact of Maternal Age on Oocyte and Embryo Competence. Frontiers in Endocri-nology (Lausanne), 9, Article No. 327. https://doi.org/10.3389/fendo.2018.00327

  29. 29. Lazzaroni-Tealdi, E., Barad, D.H., Albertini, D.F., Yu, Y., Kushnir, V.A., Russell, H., Wu, Y.G. and Gleicher, N. (2015) Oocyte Scoring Enhances Embryo-Scoring in Predicting Pregnancy Chances with IVF Where It Counts Most. PLOS ONE, 10, E0143632. https://doi.org/10.1371/journal.pone.0143632

  30. 30. Practice Committee of the American Society for Reproductive Medicine (2013) The Clinical Utility of Sperm DNA Integrity Testing: A Guideline. Fertility and Sterility, 99, 673-677. https://doi.org/10.1016/j.fertnstert.2012.12.049

  31. 31. Agarwal, A., Cho, C.L. and Esteves, S.C. (2016) Should We Evaluate and Treat Sperm DNA Fragmentation? Current Opinion in Obstetrics and Gynecology, 28, 164-171. https://doi.org/10.1097/GCO.0000000000000271

  32. 32. Simon, L., Zini, A., Dyachenko, A., Ciampi, A. and Carrell, D.T. (2017) A Systematic Review and Meta-Analysis to Determine the Effect of Sperm DNA Damage on in Vitro Ferti-lization and Intracytoplasmic Sperm Injection Outcome. Asian Journal of Andrology, 19, 80-90. https://doi.org/10.4103/1008-682X.182822

  33. 33. Boitrelle, F., Guthauser, B., Alter, L., Bailly, M., Bergere, M., Wainer, R., Vialard, F., Albert, M. and Selva, J. (2014) High-Magnification Selection of Spermatozoa Prior to Oocyte Injection: Confirmed and Potential Indications. Reproductive BioMedicine Online, 28, 6-13. https://doi.org/10.1016/j.rbmo.2013.09.019

  34. 34. Oliveira, J.B., Cavagna, M., Petersen, C.G., Mauri, A.L., Massaro, F.C., Silva, L.F., Baruffi, R.L. and Franco, J.G. (2011) Pregnancy Outcomes in Women with Repeated Implantation Failures after Intracytoplasmic Morphologically Selected Sperm Injection (IMSI). Reproductive Biology and Endocrinol-ogy, 9, Article No. 99. https://doi.org/10.1186/1477-7827-9-99

  35. 35. Ghaebi, M., Abdolmohammadi-Vahid, S., Ahmadi, M., Eghbal-Fard, S., Dolati, S., Nouri, M., Talebi, M., Hamdi, K., Marofi, F., Aghebati-Maleki, L., Jadidi-Niaragh, F., Dopour, M. and Yousefi, M. (2019) T Cell Subsets in Peripheral Blood of Women with Recurrent Implantation Failure. Journal of Re-productive Immunology, 131, 21-29. https://doi.org/10.1016/j.jri.2018.11.002

  36. 36. Ng, S.C., Gilman-Sachs, A., Thaker, P., Beaman, K.D., Beer, A.E. and Kwak-Kim, J. (2002) Expression of Intracellular Th1 and Th2 Cytokines in Women with Recurrent Spontaneous Abortion, Implantation Failures after IVF/ET or Normal Pregnancy. American Journal of Reproductive Immunology, 48, 77-86. https://doi.org/10.1034/j.1600-0897.2002.01105.x

  37. 37. Tuckerman, E., Mariee, N., Prakash, A., Li, T.C. and Laird, S. (2010) Uterine Natural Killer Cells in Peri-Implantation Endometrium from Women with Repeated Implantation Failure after IVF. Journal of Reproductive Immunology, 87, 60-66. https://doi.org/10.1016/j.jri.2010.07.001

  38. 38. Pathare, A.D.S. and Hinduja, I. (2020) Aberrant DNA Methylation Profiling Affecting the Endometrial Receptivity in Recurrent Implantation Failure Patients Undergoing in Vitro Fertilization. American Journal of Reproductive Immunology, 83, E13196. https://doi.org/10.1111/aji.13196

  39. 39. Webster, A. and Schuh, M. (2017) Mechanisms of Aneuploidy in Human Eggs. Trends in Cell Biology, 27, 55-68. https://doi.org/10.1016/j.tcb.2016.09.002

  40. 40. Harton, G.L., Munné, S., Surrey, M., Grifo, J., Kaplan, B., McCul-loh, D.H., Griffin, D.K., Wells, D. and PGD Practitioners Group (2013) Diminished Effect of Maternal Age on Implan-tation after Preimplantation Genetic Diagnosis with Array Comparative Genomic Hybridization. Fertility and Sterility, 100, 1695-1703. https://doi.org/10.1016/j.fertnstert.2013.07.2002

  41. 41. Reig, A., Franasiak, J., Scott, R.T. and Seli, E. (2020) The Impact of Age beyond Ploidy: Outcome Data from 8175 Euploid Single Embryo Transfers. Journal of Assisted Repro-duction and Genetics, 37, 595-602. https://doi.org/10.1007/s10815-020-01739-0

  42. 42. Franasiak, J.M., Forman, E.J., Hong, K.H., Werner, M.D., Upham, K.M., Treff, N.R. and Scott, R.T. (2014) The Nature of Aneuploidy with Increasing Age of the Female Partner: A Review of 15,169 Consecutive Trophectoderm Biopsies Evaluated with Comprehensive Chromosomal Screening. Fer-tility and Sterility, 101, 656-663.E1. https://doi.org/10.1016/j.fertnstert.2013.11.004

  43. 43. Cimadomo, D., Soscia, D., Vaiarelli, A., Maggiulli, R., Ca-palbo, A., Ubaldi, F.M. and Rienzi, L. (2019) Looking past the Appearance: A Comprehensive Description of the Clini-cal Contribution of Poor-Quality Blastocysts to Increase Live Birth Rates during Cycles with Aneuploidy Testing. Hu-man Reproduction, 34, 1206-1214. https://doi.org/10.1093/humrep/dez078

  44. 44. Rubio, C., Rodrigo, L., Mercader, A., Mateu, E., Buendía, P., Pehlivan, T., Viloria, T., De Los Santos, M.J., Simón, C., Remohí, J. and Pellicer, A. (2007) Impact of Chromosomal Abnormali-ties on Preimplantation Embryo Development. Prenatal Diagnosis, 27, 748-756. https://doi.org/10.1002/pd.1773

  45. 45. Berker, B., Taşkin, S., Kahraman, K., Taşkin, E.A., Atabekoğlu, C. and Sönmezer, M. (2011) The Role of Low-Mo- lecular-Weight Heparin in Recurrent Implantation Failure: A Prospective, Quasi-Randomized, Controlled Study. Fertility and Sterility, 95, 2499-2502. https://doi.org/10.1016/j.fertnstert.2010.12.033

  46. 46. Zhu, Y., Wu, T., Ye, L., Li, G., Zeng, Y. and Zhang, Y. (2018) Prevalent Genotypes of Methylenetetrahydrofolate Reductase (MTHFR) in Recurrent Miscarriage and Recurrent Implan-tation Failure. Journal of Assisted Reproduction and Genetics, 35, 1437-1442. https://doi.org/10.1007/s10815-018-1205-6

  47. 47. Enciso, M., Sarasa, J., Xanthopoulou, L., Bristow, S., Bowles, M., Fragouli, E., Delhanty, J. and Wells, D. (2016) Polymorphisms in the MTHFR Gene Influence Embryo Viability and the Incidence of Aneuploidy. Human Genetics, 135, 555-568. https://doi.org/10.1007/s00439-016-1652-z

  48. 48. Morin, S.J., Treff, N.R., Tao, X., Scott, R.T., Franasiak, J.M., Juneau, C.R., Maguire, M. and Scott, R.T. (2017) Combination of Uterine Natural Killer Cell Immunoglobulin Receptor Haplotype and Trophoblastic HLA-C Ligand Influences the Risk of Pregnancy Loss: A Retrospective Cohort Analysis of Direct Embryo Genotyping Data from Euploid Transfers. Fertility and Sterility, 107, 677-683.E2. https://doi.org/10.1016/j.fertnstert.2016.12.004

  49. NOTES

    *通讯作者。

期刊菜单