Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 66963 , 6 pages
10.12677/ACM.2023.1361291

重症肺炎药物治疗的研究进展

常朝霞1,牛毅2

1青海大学研究生院,青海 西宁

2青海大学附属医院重症医学科,青海 西宁

收稿日期:2023年5月9日;录用日期:2023年6月2日;发布日期:2023年6月13日

摘要

重症肺炎是一种呼吸系统急危重疾病,发展迅速、病情凶险,可导致严重的并发症。在其发病初期,正确使用药物,能够及时挽救患者生命。关于重症肺炎研究是广泛的,在宿主免疫反应、疾病严重程度的评估、微生物原因、多药耐药病原体的危险因素、诊断测试和治疗选择方面吸引了不同的观点。本文就重症肺炎的药物治疗研究进展综述如下。

关键词

重症肺炎,药物治疗,抗生素,激素,免疫球蛋白,抗病毒

Research Progress of Drug Treatment of Severe Pneumonia

Zhaoxia Chang1, Yi Niu2

1Graduate School of Qinghai University, Xining Qinghai

2Department of Intensive Care Medicine, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: May 9th, 2023; accepted: Jun. 2nd, 2023; published: Jun. 13th, 2023

ABSTRACT

Severe pneumonia is an acute and critical disease of the respiratory system, which develops rapidly and is dangerous, and can lead to serious complications. In the early stage of its onset, the correct use of drugs can save the patient’s life in time. Research on severe pneumonia is extensive, attracting diverse perspectives on host immune responses, assessment of disease severity, microbial causes, risk factors for multidrug-resistant pathogens, diagnostic tests, and treatment options. In this article, the research progress of drug therapy for severe pneumonia is summarized as follows.

Keywords:Severe Pneumonia, Drug Therapy, Antibiotics, Hormones, Immunoglobulins, Antiviral

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

根据中华医学会呼吸分会2016年制定的《社区获得性肺炎诊断和治疗指南》中重症肺炎的诊断标准:主要标准:① 需有创的机械通气;② 感染性休克需要血管收缩剂治疗。次要标准:① 呼吸频率 > 30次/分;② PaO/FiO ≤ 250;③ 多肺叶浸润;④ 定向力障碍或意识障碍;⑤ 尿素氮 ≥ 20 mg/dL;⑥ 白细胞计数减少(<4 × 109/L);⑦ 血小板计数减少(<100 × 109/L);⑧ 低体温(T < 36℃);⑨低血压需要液体复苏。入选患者符合1项主要标准或3项次要标准及以上者可诊断为重症肺炎。尽管有许多指南指导我们来识别重症肺炎低风险和高风险个体,但在治疗方面,不同国家、不同医学会和卫生组织提出了不同的肺炎管理的具体指南。由于个体差异性,我们的治疗仍然是经验性的。因此对于已进入重症医学科的危重患者随后可能发展为急性呼吸窘迫综合征(ARDS)、急性肺损伤(ALI)和感染性休克等危及生命的并发症,死亡率可超过50% [1] 。重症肺炎的高死亡率(短期和长期)与肺部和肺外并发症有关。因为对潜在病原体的诊断率不超过50%。所以联合疗法正在成为治疗重症肺炎的首选疗法。本文将回顾重症肺炎的治疗指南,重点放在药物治疗上。

2. 抗生素

给予适当的抗生素是治疗重症肺炎的关键。尽管近年来治疗策略已得到显著改善,但肺炎的发病率和死亡率,尤其是重症肺炎仍然居高不下。不同的多中心队列研究报道了重症肺炎的死亡率为17%至49%。 [2] 。对于所有重症肺炎的患者,在最初的经验性抗生素治疗中应确保覆盖最常见的病原体。许多国际指南 [3] [4] 建议,对于重症肺炎患者,应该经验性地开始包含内酰胺类和大环内酯类(或喹诺酮类)的联合治疗。有两项前瞻性观察研究 [5] [6] 和三项回顾分析 [7] [8] 评估了联合疗法对细菌性肺炎患者的作用。所有这些研究都发现,与单一疗法相比,联合疗法的死亡率更低。一项回顾性观察研究报告,与喹诺酮类药物相比,β-内酰胺类和大环内酯类药物联合治疗重症肺炎患者的14天死亡率更低 [9] 。最近在9个国家的27个ICU进行的一项多中心前瞻性队列研究 [10] 显示,与喹诺酮类药物相比,使用大环内酯类药物治疗重症肺炎患者的ICU死亡率较低。一项包含9850例肺炎 [11] 危重患者的荟萃分析发现,与其他方案相比,大环内酯类和β-内酰胺的联合治疗与降低死亡率有关。一项研究 [12] 发现,在合并感染性休克的肺炎危重患者中,联合治疗显著提高了存活率(OR = 1.69;95% CI为1.09~2.60)。有趣的是,在没有血管加压剂的ICU患者中没有报道任何益处。即使抗生素治疗是适当的,它也实现了较低的28天ICU存活率,这表明联合治疗在最严重的病例中可能更有益。

在重症肺炎中有一类特殊感染患者,为MRSA感染。MRSA虽然罕见,但常与不适当的抗生素治疗有关,因此死亡率较高。根据ATS/IDSA指南的建议,只有当患者有MRSA的危险因素(先前的MRSA呼吸道隔离,最近的住院[最近90天],使用非肠道抗生素[最近90天],以及当地证实的MRSA的危险因素)时,才应使用抗菌药治疗MRSA。MRSA的经验治疗方案包括万古霉素15 mg/kg/12小时(根据水平进行调整)或利奈唑胺600 mg/12小时 [13] 。

3. 激素

重症肺炎患者都存在局部和(或)全身炎症反应 [14] [15] 。过度的炎症反应会产生有害影响并导致组织损伤机制。由于其免疫调节特性,糖皮质激素被认为是调节细胞因子网络复杂平衡的有用工具,并且它们通常用作严重感染期间的辅助治疗 [16] 。但是糖皮质激素用于控制炎症存有争议。相关数据表明,糖皮质激素可以降低重症肺炎患者的死亡率,尤其是炎症较重者 [17] 。两项随机对照试验表明:使用皮质类固醇治疗,患者血管加压药和呼吸机使用的天数减少 [18] 。在一项多中心、随机、双盲和安慰剂对照试验研究中,120例严重肺炎患者和高炎症反应(C反应蛋白(CRP)初始水平 > 15 mg/dL)患者中,激素治疗失败的发生率低于安慰剂组。然而,两组的住院死亡率相似 [19] 。一项系统综述和荟萃分析,包括来自6个试验的1506名患者的数据,报告了住院的慢性阻塞性肺病患者使用皮质类固醇缩短了临床稳定的时间和住院时间,对死亡率无任何影响 [20] 。然而最近的一项观察性研究发现,在患有严重流感肺炎的危重患者中,使用类固醇作为辅助治疗增加了ICU死亡率 [21] 。

而一项来自6个随机、安慰剂对照试验的个体患者数据荟萃分析得出结论糖皮质激素可缩短临床稳定时间和住院时间约1天,但对粗死亡率无显著影响。重要的是,糖皮质激素会增加高血糖的发生率和再次住院的风险 [17] 。

4. 抗病毒药物

病毒性肺炎被认为是重症肺炎的常见原因。因此抗病毒治疗的时机选择非常重要。ATS/ISDA指南建议对所有诊断为严重流感患者使用抗流感治疗,在最初48小时内给予,益处最大 [22] [23] 。对于新冠肺炎住院患者,在疾病的早期,抗病毒药物也显出一些好处 [24] 。来自两个大型随机对照试验的数据显示,在新冠肺炎中使用雷米希韦的结果各不相同。ACT-1试验 [25] 发现,在缩短住院的新冠肺炎成人患者的康复时间方面,瑞德维韦优于安慰剂。荟萃分析发现,在比较早期(<48小时)和晚期(>48小时)接受NAI治疗的流感患者时,危重成人和≥16岁的患者的死亡风险降低了38% [26] 。一些研究证实,在症状出现36小时后开始使用奥司他韦治疗,可以使病情减轻40% [27] [28] 。在一项小鼠模型中,瑞威韦被观察到降低肺病毒载量和改善肺功能 [29] 。它被用于治疗美国第一例新冠肺炎感染,治疗1天后迅速好转。一项多中心随机开放标签II期试验表明,抗病毒治疗与洛匹那韦–利托那韦和利巴韦林三联用药的早期治疗在缓解新冠患者症状和促进恢复方面更高效。此外,上述治疗使所有患者的病毒载量迅速转为阴性,降低了患者的传染性 [30] 。

5. 免疫球蛋白治疗

有令人信服的证据表明,感染的严重程度与免疫系统的反应之间存在关系。一些研究表明,入住ICU的重症肺炎患者的循环免疫球蛋白水平较低,并且这些低水平的免疫球蛋白与死亡率增加之间存在关系 [31] 。在De la Torre等人研究中,需要ICU入院的重症肺炎患者的免疫球蛋白血清水平较低,这与死亡率的增加有关 [32] 。在一项单中心观察性研究 [33] 中发现IgG2水平 < 301 mg/dL与预后不良相关。此外,低浓度的IgG2是ICU入院和死亡率的独立标志。在一项大型多中心回顾研究中,两组患者都处于疾病的严重阶段。结果发现静脉注射丙种球蛋白可显著降低危重型患者28天的病死率 [34] 。一例病例报告中,一名42岁的新冠肺炎患者,在呼吸功能恶化后住进ICU,静脉注射免疫球蛋白后临床症状有所改善 [35] 。一项回顾性研究发现,在入住ICU 48小时内接受免疫球蛋白治疗可减少机械通气和ICU住院时间,提高28 d存活率 [36] 。一项单独的单中心观察性研究 [33] 报告,在严重流感肺炎病例中,IgM浓度与病情严重程度成反比,是预防死亡的保护性因素。在另一项研究中,大剂量静脉注射免疫球蛋白(20 g/d)和皮质类固醇(160 mgd)的联合治疗成功地扭转了之前小剂量静脉注射免疫球蛋白(10 g/d)和皮质类固醇 [37] 治疗失败的重症新冠肺炎患者的病情恶化。相反,一项大型的全国性回溯性研究对1324名接受静脉注射免疫球蛋白的患者和由6940名患者组成的对照组进行了比较,发现机械通气患者使用免疫球蛋白与重症肺炎和感染性休克的死亡率之间没有显著相关性 [38] 。

现有的指南已被证明在指导治疗策略和制定早期适当的治疗方面是有用的。然而,当地的地理变异和新出现的病原体使这一图景不断复杂化。尽管我们在诊断、管理、治疗和预防方面取得了进展,但重症肺炎的死亡率仍然在增加。多药耐药病原体的出现、人口年龄的增加、多种合并症患者数量的增加和多种药物的使用是临床医生在处理重症肺炎患者时面临的一些挑战。尽管如此,我们仍需要进行更多研究,为应对重症肺炎提供相关和有用的见解和帮助。

文章引用

常朝霞,牛 毅. 重症肺炎药物治疗的研究进展
Research Progress of Drug Treatment of Severe Pneumonia[J]. 临床医学进展, 2023, 13(06): 9217-9222. https://doi.org/10.12677/ACM.2023.1361291

参考文献

  1. 1. Wheeler, A.P. and Bernard, G.R. (2007) Acute Lung Injury and the Acute Respiratory Distress Syndrome: A Clinical Review. The Lancet, 369, 1553-1564. https://doi.org/10.1016/S0140-6736(07)60604-7

  2. 2. Jain, S., Self, W.H., Wunderink, R.G., Fakhran, S., Balk, R., Bramley, A.M., et al. (2015) Community-Acquired Pneumonia Requiring Hos-pitalization among U.S. Adults. The New England Journal of Medicine, 373, 415-427. https://doi.org/10.1056/NEJMoa1500245

  3. 3. Jackson, C.D., Burroughs-Ray, D.C. and Summers, N.A. (2020) Clinical Guideline Highlights for the Hospitalist: 2019 American Thoracic Society/Infectious Diseases Society of Ameri-ca Update on Community-Acquired Pneumonia. Journal of Hospital Medicine, 15, 743-745. https://doi.org/10.12788/jhm.3444

  4. 4. Woodhead, M., Blasi, F., Ewig, S., Garau, J., Huchon, G., Ieven, M., et al. (2011) Guidelines for the Management of Adult Lower Respiratory Tract Infections. Clinical Microbiology and Infection, 17, E1-E59. https://doi.org/10.1111/j.1469-0691.2011.03672.x

  5. 5. Mufson, M.A. and Stanek, R.J. (1999) Bacteremic Pneu-mococcal Pneumonia in One American City: A 20-Year Longitudinal Study, 1978-1997. The American Journal of Medi-cine, 107, 34S-43S. https://doi.org/10.1016/S0002-9343(99)00098-4

  6. 6. Baddour, L.M., Yu, V.L., Klugman, K.P., Feldman, C., et al. (2004) Combination Antibiotic Therapy Lowers Mortality among Severely Ill Patients with Pneumococcal Bacteremia. American Journal of Respiratory and Critical Care Medicine, 170, 440-444. https://doi.org/10.1164/rccm.200311-1578OC

  7. 7. Martínez, J.A., Horcajada, J.P., Almela, M., et al. (2003) Addi-tion of a Macrolide to a Beta-Lactam-Based Empirical Antibiotic Regimen Is Associated with Lower In-Hospital Mortal-ity for Patients with Bacteremic Pneumococcal Pneumonia. Clinical Infectious Diseases, 36, 389-395. https://doi.org/10.1086/367541

  8. 8. Weiss, K., Low, D.E., Cortes, L., et al. (2004) Clinical Characteristics at Initial Presentation and Impact of Dual Therapy on the Outcome of Bacteremic Streptococcus pneumoniae Pneumonia in Adults. Canadian Respiratory Journal, 11, 589-593. https://doi.org/10.1155/2004/461392

  9. 9. Torres, A., Rank, D., Melnick, D., et al. (2019) Randomized Trial of Ceftazidime-Avibactam vs Meropenem for Treatment of Hospi-tal-Acquired and Ventilator-Associated Bacterial Pneumonia (REPROVE): Analyses per US FDA-Specified End Points. Open Forum Infectious Diseases, 6, ofz149. https://doi.org/10.1093/ofid/ofz149

  10. 10. Martin-Loeches, I., Lisboa, T., Rodriguez, A., et al. (2010) Combination Antibiotic Therapy with Macrolides Improves Survival in Intubated Patients with Community Acquired Pneumonia. Intensive Care Medicine, 36, 612-620. https://doi.org/10.1007/s00134-009-1730-y

  11. 11. Sligl, W.I., Asadi, L., Eurich, D.T., Tjosvold, L., Marrie, T.J. and Majumdar, S.R. (2014) Macrolides and Mortality in Critically Ill Patients with Community-Acquired Pneumonia: A Sys-tematic Review and Meta-Analysis. Critical Care Medicine, 42, 420-432. https://doi.org/10.1097/CCM.0b013e3182a66b9b

  12. 12. Rodriguez, A., Mendia, A., Sirvent, J.M., et al. (2007) Combination Antibiotic Therapy Improves Survival in Patients with Community-Acquired Pneumonia and Shock. Criti-cal Care Medicine, 35, 1493-1498. https://doi.org/10.1097/01.CCM.0000266755.75844.05

  13. 13. Siddiqui, A.H. and Koirala, J. (2021) Methicillin Re-sistant Staphylococcus aureus. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK482221

  14. 14. Puren, A.J., Feldman, C., Savage, N., et al. (1995) Pat-terns of Cytokine Expression in Community Acquired Pneumonia. Chest, 107, 1342-1349. https://doi.org/10.1378/chest.107.5.1342

  15. 15. Fernández-Serrano, S., Dorca, J., Coromines, M., et al. (2003) Mo-lecular Inflammatory Responses Measured in Blood of Patients with Severe Community-Acquired Pneumonia. Clinical and Vaccine Immunology, 10, 813-820. https://doi.org/10.1128/CDLI.10.5.813-820.2003

  16. 16. De Pascale, G., Bello, G. and Antonelli, M. (2011) Steroids in Severe Pneumonia: A Literature Review. Minerva Anestesiologica, 77, 902-910.

  17. 17. Venkatesh, B., Finfer, S., Co-hen, J. and Myburgh, J. (2018) Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. The New England Journal of Medicine, 378, 797-808. https://doi.org/10.1056/NEJMoa1705835

  18. 18. Briel, M., Spoorenberg, S.M.C., Snijders, D., et al. (2018) Corticosteroids in Patients Hospitalized with Community-Acquired Pneumonia: Systematic Review and Individual Patient Data Meta-Analysis. Clinical Infectious Diseases, 66, 346-354. https://doi.org/10.1093/cid/cix801

  19. 19. Annane, D., Renault, A., Brun-Buisson, C., et al. (2018) Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. The New England Journal of Medicine, 378, 809-818. https://doi.org/10.1056/NEJMoa1705716

  20. 20. Esperatti, M., Ferrer, M., Giunta, V., et al. (2013) Validation of Predictors of Adverse Outcomes in Hospital-Acquired Pneumonia in the ICU. Critical Care Medicine, 41, 2151-2161. https://doi.org/10.1097/CCM.0b013e31828a674a

  21. 21. Vincent, J.-L., Sakr, Y., Singer, M., et al. (2020) Prevalence and Outcomes of Infection among Patients in Intensive Care Units in 2017. JAMA, 323, 1478-1487. https://doi.org/10.1001/jama.2020.2717

  22. 22. Metlay, J.P., Waterer, G.W., Long, A.C., et al. (2019) Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. American Journal of Respiratory and Critical Care Medi-cine, 200, e45-e67. https://doi.org/10.1164/rccm.201908-1581ST

  23. 23. Han, J., Gatheral, T. and Williams, C. (2020) Procalcitonin for Patient Stratification and Identification of Bacterial Co-Infection in COVID-19. Clinical Medicine (London), 20, e47. https://doi.org/10.7861/clinmed.Let.20.3.3

  24. 24. National Institutes of Health (2023) Information on Covid-19 Treatment, Prevention and Research. Covid-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/

  25. 25. Beigel, J.H., Tomashek, K.M., Dodd, L.E., et al. (2020) Remdesivir for the Treatment of Covid-19—Final Report. The New England Journal of Medicine, 383, 1813-1826. https://doi.org/10.1056/NEJMoa2007764

  26. 26. Muthuri, S.G., Venkatesan, S., Myles, P.R., et al. (2014) Effective-ness of Neuraminidase Inhibitors in Reducing Mortality in Patients Admitted to Hospital with Influenza A H1N1pdm09 Virus Infection: A Meta-Analysis of Individual Participant Data. The Lancet Respiratory Medicine, 2, 395-404. https://doi.org/10.1016/S2213-2600(14)70041-4

  27. 27. Dutkowski, R. (2010) Oseltamivir in Seasonal Influenza: Cumulative Experience in Low- and High-Risk Patients. Journal of Antimicrobial Chemotherapy, 65, ii11-ii24. https://doi.org/10.1093/jac/dkq012

  28. 28. Tchesnokov, E.P., Feng, J.Y., Porter, D.P., et al. (2019) Mechanism of In-hibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 11, 326. https://doi.org/10.3390/v11040326

  29. 29. Sheahan, T.P., Sims, A.C., Graham, R.L., et al. (2017) Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Science Translational Medicine, 9, eaal3653. https://doi.org/10.1126/scitranslmed.aal3653

  30. 30. Agostini, M.L. andres, E.L., Sims, A.C., et al. (2018) Corona-virus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio, 9, e00221-18. https://doi.org/10.1128/mBio.00221-18

  31. 31. de la Torre, M.C., Torán, P., Serra-Prat, M., et al. (2016) Serum Lev-els of Immunoglobulins and Severity of Community-Acquired Pneumonia. BMJ Open Respiratory Research, 3, e000152. https://doi.org/10.1136/bmjresp-2016-000152

  32. 32. de la Torre, M.C., Palomera, E., Serra-Prat, M., et al. (2016) IgG2 as an Independent Risk Factor for Mortality in Patients with Community-Acquired Pneumonia. Journal of Critical Care, 35, 115-119. https://doi.org/10.1016/j.jcrc.2016.05.005

  33. 33. Justel, M., Socias, L., Almansa, R., et al. (2013) IgM Levels in Plasma Predict Outcome in Severe Pandemic Influenza. Journal of Clinical Virology, 58, 564-567. https://doi.org/10.1016/j.jcv.2013.09.006

  34. 34. Shao, Z., Feng, Y., Zhong, L., et al. (2020) Clinical Efficacy of In-travenous Immunoglobulin Therapy in Critical Ill Patients with COVID-19: A Multicentre Retrospective Cohort Study. Clinical & Translational Immunology, 9, e1192. https://doi.org/10.1002/cti2.1192

  35. 35. Lanza, M., Polistina, G.E., Imitazione, P., Annunziata, A., Di Spirito, V., Novella, C., et al. (2020) Successful Intravenous Immunoglobulin Treatment in Severe COVID-19 Pneumonia. IDCases, 21, e00794. https://doi.org/10.1016/j.idcr.2020.e00794

  36. 36. Xie, Y., Cao, S., Li, Q., Chen, E., Dong, H., Zhang, W., et al. (2020) Effect of Regular Intravenous Immunoglobulin Therapy on Prognosis of Severe Pneumonia in Patients with COVID-19. Journal of Infection, 81, 318-356. https://doi.org/10.1016/j.jinf.2020.03.044

  37. 37. Tagami, T., Matsui, H., Fushimi, K. and Yasunaga, H. (2015) In-travenous Immunoglobulin and Mortality in Pneumonia Patients with Septic Shock: An Observational Nationwide Study. Clinical Infectious Diseases, 61, 385-392. https://doi.org/10.1093/cid/civ307

  38. 38. Zhou, Z., Xie, S., Zhang, J., et al. (2020) Short-Term Moderate-Dose Cor-ticosteroid Plus Immunoglobulin Effectively Reverses COVID-19 Patients Who Have Failed Low-Dose Therapy. https://doi.org/10.21203/rs.3.rs-34078/v1

期刊菜单