设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(10),1537-1549
PublishedOnlineOctober2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1210167
X-G
C
-ÝE/
ooo(((‰‰‰§§§ëë댌Œ+++§§§ëëë;;;˜˜˜
∗
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2022c94F¶¹^Fϵ2022c103F¶uÙFϵ2022c1010F
Á‡
R´†‚,C´˜‡ŒéóR-,X´˜‡R-a.Ú\X-G
C
-ÝE/Vg,y²E
/M´X-G
C
-Ý…=Mz‡gþÑ´X-G
C
-Ý,¿…é?¿C-X-E
/N,MNE/Ñ´"Ô.Š•A^,dX-G
C
-Ý5ŸíX-G
C
-ÝE
/˜5Ÿ.
'…c
X-G
C
-Ý§X-G
C
-ÝE/§Œéó§-½5
X-G
C
-ProjectiveComplexes
XingyuLi,YupengZhao,RenyuZhao
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Sep.4
th
,2022;accepted:Oct.3
rd
,2022;published:Oct.10
th
,2022
Abstract
LetRbeacommutativering,CasemidualizingR-moduleandXaclassofR-mo dules.
∗ÏÕŠö"
©ÙÚ^:o(‰,ëŒ+,ë;˜.X-G
C
-ÝE/[J].nØêÆ,2022,12(10):1537-1549.
DOI:10.12677/pm.2022.1210167
o(‰
ThenotionofX-G
C
-projectivecomplexesisintroduced,anditisshownthatacom-
plexMisX-G
C
-projectiveifandonlyifeachdegreeofMisX-G
C
-projectiveand
anymorphismfromMtoNisnullhomotopicwheneverNisaC-X-complex.As
applications,somepropertiesofX-G
C
-projectivecomplexesarededucedfromthose
ofX-G
C
-projectivemodules.
Keywords
X-G
C
-ProjectiveModule,X-G
C
-ProjectiveComplex,SemidualizingModule,Stability
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CC BY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
GorensteinÓN“êåuAuslanderÚBridger'uV>Noether‚þk•)¤G-‘ê
ïÄóŠ( [1]).1995c,EnochsÚJenda3˜„‚þÚ\¿ïÄGorensteinÝÚGorenstein
S,C½GorensteinÓNnØÄ:.•òGorensteinÓN“êlNoether‚þÿÐ
và‚þ,2dvà‚þÿÐ˜„‚þ,©z[2–4]¥©OÚ\DingÝ,DingS,
GorensteinAC-ÝÚGorensteinAC-SVg.X´˜‡†R-a,©z[5,6]¥Ú
\¿ïÄX-Gorenstein Ý,Ú˜í2'uGorenstein Ý, Ding ÝÚGorenstein
AC-ÝNõ(J.
ƒéuŒéóÓNnØ´ƒéÓN“ê˜‡-‡ïÄ••,Gorenstein ÓN“ê¥
NõVgÚ(Øí2ƒéuŒéóœ/,X[7–12] .AO/,Yang3[12] ¥ïÄ
†‚þƒéuŒéóCX-Gorenstein Ý,Ú˜í2'uG
C
-Ý([9,10])ÚD
C
-Ý
([11])NõïÄ(J.
E/‰Æ´äkvÝ,Sé–Abel‰Æ,¤±3E/‰Æ¥•Œ±mÐÓN“ê
ïÄóŠ.ïÄE/Gorenstein ÓN5Ÿ†Ùˆ‡gþƒAGorenstein ÓN5Ÿƒm
éX´E/GorensteinÓNnØ˜‡-‡‘K,Cc5Nõk¿g(J,X[13–19].
R´†‚,C´˜‡Œéó, X´˜‡R-a,…X⊆A
C
(R),ÉþãïÄéu, ©Ú\
ƒéuCX-GorensteinÝE/Vg,{¡•X-G
C
-ÝE/,y²E/M´X-G
C
-Ý
…=Mz‡gþÑ´X-G
C
-Ý,¿…é?¿C-X-E/N,Hom E/
Hom
R
(M,N) ÑÜ,„½n2.6.T(ØÚ˜í2[15,½n4.7] Ú[18,½n1.2.8],¿„•¹
ƒéuŒéóCGorensteinAC-ÝE/œ/.Š•A^,dX-G
C
-Ý5Ÿí
DOI:10.12677/pm.2022.12101671538nØêÆ
o(‰
X-G
C
-ÝE/˜5Ÿ,„·K2.10–íØ2.16.
2.ý•£
!·‚0©¥^˜ÄVg, ÎÒÚ¯¢. eÃAÏ(², R´kü †‚,
þ´R-, ¤9E/Ñ´R-E/.·‚^C(R)L«R-E/‰Æ,^P(R),F(R)©
OL«¤kÝR-aÚ²"R-a.
C(R) ¥E/
···−→M
n−1
d
n−1
M
−→M
n
d
n
M
−→M
n+1
−→···
PŠM. ¡M
n
•M1n‡gþ;¡d
n
M
•M1n‡‡©;¡Ker(d
n
M
)•M1n
‡Ì‚,PŠZ
n
(M);¡Im(d
n−1
M
)•M1n‡>,PŠB
n
(M); ¡H
n
(M) = Z
n
(M)/B
n
(M)
•M1n‡ÓN.·‚^eI5«©E/,X{M
i
}
i∈I
´˜qE/, Ké?¿i∈I, M
n
i
L
«M
i
1n‡gþ.
M∈C(R), m∈Z. ·‚^M[m]L«ùE/: 1n‡gþM[m]
n
= M
n+m
,1
n‡‡©•(−1)
m
d
n+m
M
. M´R-,^
ML«1−1 Ú10 ‡g´M, Ù¦gÑ•0 E
/.
M,N∈C(R). dM,N(½Hom E/Hom
R
(M,N)½Â•:1n‡gþ•
Hom
R
(M,N)
n
=
Y
t∈Z
Hom
R
(M
t
,N
t+n
),
1n‡‡©•
d
n
((f
t
)
t∈Z
) = (d
n+t
N
f
t
−(−1)
n
f
t+1
d
t
M
)
t∈Z
,
Ù¥(f
t
)
t∈Z
∈Hom
R
(M,N)
n
.AO/,Z
0
(Hom
R
(M,N))´MN¤kE/¤
Abel+, P•Hom
C(R)
(M,N).é?¿i>1,^Ext
i
C(R)
(M,N) L«†ܼfHom
C(R)
(−,−)
mÑ+.^Ext
1
dw
(M,N)L«Ext
1
C(R)
(M,N)¥¤kgŒáÜ¤Abel f
+.e¡(ØïáExt
1
dw
(M,N)†Hom E/Hom
R
(M,N)ƒméX.
Ún1.1([20,Ún2.1]) M,N∈C(R).Ké?¿n∈Z,
Ext
1
dw
(M,N[n−1])
∼
=
H
n
(Hom
R
(M,N)) = Hom
C(R)
(M,N[n])/∼,
Ù¥∼´ÓÔ'X. AO/, Hom
R
(M,N)Ü…=é?¿n∈Z, ?¿E/f: M−→
N[n]ÓÔu0.
½Â1.224¡R-C´Œéó,XJ
(1)•3Ü
···−→P
1
−→P
0
−→C−→0,
Ù¥z‡P
i
Ñ´k•)¤ÝR-;
DOI:10.12677/pm.2022.12101671539nØêÆ
o(‰
(2)g,Óχ
R
C
: R−→Hom
R
(C,C) ´Ó;
(3)Ext
>1
R
(C,C) = 0.
e©¥,CL«˜‡?¿½ŒéóR-.
½Â1.318ƒéuŒéóCAuslander aA
C
(R) ´d÷ve^‡¤kR-M¤
R-a:
(1)Tor
R
>1
(C,M) = 0 = Ext
>1
R
(C,C⊗
R
M);
(2)g,DŠÓµ
M
: M→Hom
R
(C,C⊗
R
M)´Ó.
ƒéuŒéóCBass aB
C
(R) ´d÷ve^‡¤kR-N¤a:
(1)Ext
>1
R
(C,N) = 0 = Tor
R
>1
(C,Hom
R
(C,N));
(2)g,DŠÓν
N
: C⊗
R
Hom
R
(C,N) →N´Ó.
½Â1.4X´˜‡R-a.-
X
C
(R) = {C⊗
R
X|X∈X}.
¡X
C
(R) ¥•C-X-.
5P1.5(1)X= P(R)ž,C-X-Ò´C-Ý( [7,10]).PC-ÝR-a•P
C
(R);
(2)X= F(R)ž,C-X-Ò´C-²"([7,10]). PC-²"R-a•F
C
(R);
(3)¡R-N´FP
∞
-.([4])½‡k•L«([21]),XJNkk•)¤Ý©)
···−→P
1
−→P
0
−→N−→0.¡R-M´level([4])½f²"([21]),XJé?¿
FP
∞
-.N,Tor
R
1
(M,N) = 0.PlevelR-a•L(R). X= L(R) ž,C-X-Ò´C-level
([8]).PC-levelR-a•L
C
(R).
Ún1.6X´˜‡R-a,M´R-.XJX⊆A
C
(R),@oM∈X
C
(R)…=
M∈B
C
(R), …Hom
R
(C,M) ∈X.
y²7‡5.M∈X
C
(R),K•3X∈X,¦M=C⊗X.Ï•X⊆A
C
(R),¤±
d[7,·K4.1] •M∈B
C
(R), …Hom
R
(C,M) = Hom
R
(C,C⊗X)
∼
=
X∈X.
¿©5.M∈B
C
(R), …Hom
R
(C,M) ∈X.KM
∼
=
C⊗
R
Hom
R
(C,M) ∈X
C
(R).
·K1.7X´˜‡R-a,…X⊆A
C
(R). eX'u*ܵ4, KX
C
(R) 'u*ܵ4.
y²0→M
0
→M→M
00
→0 ´R-Ü,…M
0
,M
00
∈X
C
(R).KdÚn1.6•
M
0
,M
00
∈B
C
(R). u´d[7,½n6.2]•M∈B
C
(R). ϕM
0
∈B
C
(R), ¤±S
0 −→Hom
R
(C,M
0
) −→Hom
R
(C,M) −→Hom
R
(C,M
00
) −→0
DOI:10.12677/pm.2022.12101671540nØêÆ
o(‰
Ü.dÚn1.6•Hom
R
(C,M
0
),Hom
R
(C,M
00
) ∈X.Ï•X'u*ܵ4,¤±Hom
R
(C,M) ∈
X. u´dÚn1.6 •M∈X
C
(R).
½Â1.828X´˜‡R-a, M´R-. ¡M´ƒéuŒéóCX-Gorenstein Ý
,{¡X-G
C
-Ý,XJ•3Ü
Q: ···−→P
1
−→P
0
−→C⊗
R
P
0
−→C⊗
R
P
1
−→···,
÷v:
(1)M
∼
=
Im(P
0
−→C⊗
R
P
0
);
(2)P
i
ÚP
i
Ñ´Ý;
(3)é?¿X∈X, Hom
R
(Q,C⊗
R
X)Ü.
5P1.9(1)X= P(R) ž,X-G
C
-ÝÒ´[10]¥G
C
-Ý;
(2)X= F(R)ž,X-G
C
-ÝÒ´[11]¥D
C
-Ý;
(3) X=L(R) ž,·‚¡X-G
C
-Ý•ƒéuŒéóCGorensteinAC-Ý, {
¡•GAC
C
-;
(4)C= Rž, X-G
C
-ÝÒ´[5]¥X-Gorenstein Ý.
½Â1.1013W´˜‡R-a. ¡M∈C(R) ´W-E/, XJM´ÜE/, ¿…é?¿
n∈Z,Z
n
(M) ∈W.
PW-E/a•
f
W. W=P(R) (F(R),L(R),P
C
(R),F
C
(R),L
C
(R),X
C
(R))ž, W-E
/=•Ý(²",level,C-Ý,C-²",C-level,C-X)E/,©OP•
]
P(R)(
^
F(R),
]
L(R),
^
P
C
(R),
^
F
C
(R),
^
L
C
(R),
^
X
C
(R)).
±eob½X´÷v^‡X⊆A
C
(R), …'u*ÜÚ÷Óص4R-a.
3.X-G
C
-ÝE/
!ÄkÚ\X-G
C
-ÝE/Vg,ÙgïáX-G
C
-ÝE/†Ùˆ‡gþX-G
C
-Ý
5ƒméX,•/Ïuù«éX,|^X-G
C
-Ý5Ÿ?ØX-G
C
-ÝE/5Ÿ.
½Â2.1M∈C(R).¡M´ƒéuŒéóCX-GorensteinÝE/,{¡X-G
C
-Ý
E/,XJ•3E/Ü
X: ···−→P
1
f
1
−→P
0
f
0
−→Q
−1
f
−1
−→Q
−2
−→···,
÷v:
DOI:10.12677/pm.2022.12101671541nØêÆ
o(‰
(1)z‡P
i
´ÝE/,z‡Q
j
´C-ÝE/;
(2)M
∼
=
Imf
0
;
(3)é?¿C-X-E/N,Hom
C(R)
(X,N)Ü.
5P2.2(1)XÝaž,X-G
C
-ÝE/Ò´G
C
-ÝE/([15]);
(2)X²"až,X-G
C
-ÝE/Ò´D
C
-ÝE/([18]);
(3)Xlevelaž,·‚¡X-G
C
-ÝE/•GAC
C
-ÝE/;
(4)C=Rž,X-G
C
-ÝE/Ò´X-GorensteinÝE/.X-GorensteinÝE/±
GorensteinÝE/([13,14]), DingÝE/([16]) ÚGorensteinAC-ÝE/•ÙA~([17]).
Ún2.3eM´X-G
C
-ÝE/,Ké?¿C-X-E/N,Ext
>1
C(R)
(M,N) = 0.
y²Ï•M´X-G
C
-ÝE/,¤±•3E/Ü
···−→P
1
−→P
0
−→M−→0,
Ù¥z‡P
i
Ñ´ÝE/,¿…é?¿C-X-E/N,kÜ
0 −→Hom
C(R)
(M,N) −→Hom
C(R)
(P
0
,N) −→Hom
C(R)
(P
1
,N) −→···.
é?¿C-X-E/N,Ext
>1
C(R)
(M,N) = 0.
Ún2.4M∈C(R). XJé?¿n∈Z, M
n
Ñ´X-G
C
-Ý, @oé?¿C-X-E
/N,Hom
R
(M,N)Ü…=Ext
1
C(R)
(M,N) = 0.
y²d·K1.7Ú[12,·K1.2.2]Œ.
Ún2.5eM´C-ÝE/,N´C-X-E/,KHom
R
(M,N)Ü.
y²Ï•X'u*ܵ4, ¤±d·K1.7 •X
C
(R) 'u*ܵ4. u´d[7,·K5.2, ½
n6.4]Ú[19,íØ3.6]•(ؤá.
e¡‰Ñ©̇(J.
½n2.6M∈C(R). KM´X-G
C
-ÝE/…=é?¿n∈Z, M
n
´X-G
C
-Ý
,¿…é?¿C-X-E/N,Hom
R
(M,N)´ÜE/.
y²7‡5. M: ···−→M
n−1
−→M
n
−→M
n+1
−→···´X-G
C
-ÝE/, K•3
Ü
X: ···−→P
1
f
1
−→P
0
f
0
−→Q
−1
f
−1
−→Q
−2
−→···,
Ù¥z‡P
i
´ÝE/,z‡Q
j
´C-ÝE/,¦M
∼
=
Imf
0
,…é?¿C-X-E/N,
Hom
C(R)
DOI:10.12677/pm.2022.12101671542nØêÆ
o(‰
(X,N)Ü.u´é?¿n∈ZkR-Ü
X
n
: ···−→P
n
1
f
n
1
−→P
n
0
f
n
0
−→Q
n
−1
f
n
−1
−→Q
n
−2
−→···,
¿…M
n
∼
=
Imf
n
0
. dÝ†C-Ý'u*ܵ4Œz‡P
n
i
´Ý, z‡Q
n
j
´C-Ý
.N´C-X-,KN[−n]´C-X-E/.u´d[20,Ún3.1]kþ1Ü†ã
···
//
Hom
C(R)
(Q
−1
,N[−n])
//
∼
=

Hom
C(R)
(P
0
,N[−n])
//
∼
=

Hom
C(R)
(P
1
,N[−n])
∼
=

//
···
···
//
Hom
R
(Q
n
−1
,N)
//
Hom
R
(P
n
0
,N)
//
Hom
R
(P
n
1
,N)
//
···.
e1•Ü.ùL²é?¿C-X-N,Hom
R
(X
n
,N)Ü.Ïdé?¿n∈Z,M
n
´
X-G
C
-Ý.dÚn2.3ÚÚn2.4 •é?¿C-X-E/N,Hom
R
(M,N)Ü.
¿©5.n∈Z,Ï•M
n
´X-G
C
-Ý,¤±d[12,Ún1.2.8] ••3R-Ü
0 −→M
n
−→Q
n
−→W
n
−→0,
Ù¥Q
n
´C-Ý, W
n
´X-G
C
-Ý.u´kE/ÜS
0 −→
M
n∈Z
M
n
[−n] −→
M
n∈Z
Q
n
[−n] −→
M
n∈Z
W
n
[−n] →0.
-Q
−1
=
L
n∈Z
Q
n
[−n].w,Q
−1
∈
^
P
C
(R). ,˜•¡,éE/M,kXeÜS
0 −→M
(
1
d
)
−→
M
n∈Z
M
n
[−n]
(−d,1)
−→M[1] −→0,
Ù¥d´E/M‡©. α: M−→Q
−1
´Xeü‡E/ܤ
M
(
1
d
)
−→
M
n∈Z
M
n
[−n] −→
M
n∈Z
Q
n
[−n].
Kα´ü.-L
−1
=Coker α.KdÚnŒE/Ü
0 −→M[1] −→L
−1
−→
M
n∈Z
W
n
[−n] −→0.
Ï•
L
n∈Z
W
n
[−n] ÚM[1] z‡gþÑ´X-G
C
-Ý, ¤±d[12,Ún1.2.6] •é?¿
n∈Z,L
n
−1
´X-G
C
-Ý.Ïdé?¿C-X-E/N,d·K1.7Ú[12,·K1.2.2]ŒÜS

0 −→Hom
R
(L
−1
,N) −→Hom
R
(Q
−1
,N) −→Hom
R
(M,N) −→0.
DOI:10.12677/pm.2022.12101671543nØêÆ
o(‰
ϕHom
R
(M,N) Ü, …dÚn2.5 •Hom
R
(Q
−1
,N) •´ÜE/, ¤±Hom
R
(L
−1
,N) ´
ÜE/.Ïdd·K2.4 •Ext
1
C(R)
(L
−1
,N) = 0,S
0 −→Hom
C(R)
(L
−1
,N) −→Hom
C(R)
(Q
−1
,N) −→Hom
C(R)
(M,N) −→0
Ü.ùL²
0 −→M−→Q
−1
−→L
−1
−→0
´Hom
C(R)
(−,
^
X
C
(R))Ü.5¿L
−1
ÚMkƒÓ5Ÿ, ¤±-EþãL§ŒÜS
0 −→M−→Q
−1
−→Q
−2
−→···,(3.1)
Ù¥z‡Q
i
´C-ÝE/, …é?¿C-X-E/N,¼fHom
C(R)
(−,N) ±(3.1) Ü5.
MÝ©)
···−→P
1
f
1
−→P
0
f
0
−→M−→0.(3.2)
-G
j
= Kerf
j
, j=0,1,2,....Kd[12,·K1.2.5,1.2.6]•, é?¿j>0 ±9?¿n∈Z, G
n
j
´X-G
C
-Ý.N´C-X-E/, dÚn2.4 •S
0 −→Hom
C(R)
(M,N) −→Hom
C(R)
(P
0
,N) −→Hom
C(R)
(G
0
,N) −→0
Ü. Ï•z‡M
n
´X-G
C
-Ý, ¤±d·K1.7Ú[12,· K1.2.2] •,é?¿C-X-E/N,
kE/Ü
0 −→Hom
R
(M,N) −→Hom
R
(P
0
,N) −→Hom
R
(G
0
,N) −→0.
ϕHom
R
(M,N) ÚHom
R
(P
0
,N) ´Ü,¤±Hom
R
(G
0
,N) •´Ü. -ETL§Œ
é?¿C-X-E/N,¼fHom
C(R)
(−,N) ±(3.2) Ü5.
d(3.1)†(3.2) ŒÜS
X: ···−→P
1
f
1
−→P
0
f
0
−→Q
−1
f
−1
−→Q
−2
f
−2
−→···,
Ù¥z‡P
i
´ÝE/,z‡Q
j
´C-ÝE/,¦M
∼
=
Imf
0
,…é?¿C-X-E/N,
Hom
C(R)
(X,N).Ïd, M´X-G
C
-ÝE/.
íØ2.7([15,½n4.7]) M∈C(R). KM´G
C
-Ý…=é?¿n∈Z, M
n
´
G
C
-Ý.
y²X= P(R).Kd½n2.6 •7‡5¤á.ey¿©5.
z‡M
n
Ñ´G
C
-Ý. ?˜‡ ÝE/N, Kd[15,íØ4.2] •N=
Q
n∈Z
P
n
[−n], Ù
DOI:10.12677/pm.2022.12101671544nØêÆ
o(‰
¥z‡P
n
´Ý.u´d[20,Ún3.1] Ú[10,·K2.2]
Ext
1
C(R)
(M,N) = Ext
1
C(R)
(M,
Y
n∈Z
P
n
[−n])
=
Y
n∈Z
Ext
1
C(R)
(M,P
n
[−n])
=
Y
n∈Z
Ext
1
R
(M
n
,P
n
)
= 0.
dÚn1.1•Hom
R
(M,N)Ü.Ïdd½n2.6 •M´G
C
-ÝE/.
íØ2.8([18,½n1.2.8])M∈C(R). KM´D
C
-ÝE/…=é?¿n∈Z, M
n
´D
C
-Ý,¿…é?¿C-²"E/N,Hom
R
(M,N)´ÜE/.
íØ2.9M∈C(R). KM´GAC
C
-ÝE/… =é?¿n∈Z, M
n
´GAC
C
-Ý
,¿…é?¿C-levelE/N,Hom
R
(M,N)´ÜE/.
Š•½n2.6A^, e¡·‚|^X-G
C
-Ý5ŸïÄX-G
C
-ÝE/5Ÿ.
·K2.10X-G
C
-ÝE/'u†Ú‘††Úµ4.
y²M=
L
λ∈Λ
M
λ
.Kd½n2.69[12,½n1.2.7]•M´X-G
C
-ÝE/…=
é?¿n∈Z,M
n
´X-G
C
-Ý,¿…é?¿C-X-E/N,Hom
R
(M,N)Ü…=
é?¿n∈ZÚ?¿λ∈Λ,M
n
λ
´X-G
C
-Ý,¿…é?¿C-X-E/NÚλ∈Λ,
Hom
R
(M
λ
,N) Ü…=é?¿λ∈Λ,M
λ
´X-G
C
-ÝE/.
·K2.11ÝE/ÚC-ÝE/´X-G
C
-ÝE/.
y²d[12,·K1.2.5], ½n2.6ÚÚn2.5 Œ.
A´Abel ‰Æ, …AkvõÝé–, B´A¥˜é–a. â©z[22], ¡B´Ý
Œ),XJB•¹A¥¤kÝé–,¿…éA¥?¿áÜS
0 −→M
0
−→M−→M
00
−→0,
eM
00
∈B,KM∈B…=M
0
∈B.
·K2.12X-G
C
-ÝE/a´ÝŒ).
y²d·K2.11•ÝE/´X-G
C
-ÝE/.
0 −→M−→H−→K−→0
´E/áÜS,Ù¥K´X-G
C
-ÝE/.Ké?¿n∈Z,d½n2.6•K
n
´X-G
C
-Ý
DOI:10.12677/pm.2022.12101671545nØêÆ
o(‰
. ld[12,½n1.2.6] •M
n
´X-G
C
-Ý… =H
n
´X-G
C
-Ý.,˜•¡,é
?¿C-X-E/N,d·K1.7 Ú[12,½n1.2.2]ŒÜS
0 −→Hom
R
(K,N) −→Hom
R
(H,N) −→Hom
R
(M,N) −→0,
¿…d½n2.6 •Hom
R
(K,N)Ü.l Hom
R
(M,N)Ü…=Hom
R
(H,N) Ü.u´
d½n2.6 •,M´X-G
C
-ÝE/…=H´X-G
C
-ÝE/.ÏdX-G
C
-ÝE/a´
ÝŒ).
·K2.130−→M−→T−→K−→0 ´E/Ü, ¿…MÚT´X-G
C
-ÝE
/.KeQãd:
(1)K´X-G
C
-ÝE/;
(2)é?¿n∈Z,K
n
´X-G
C
-Ý;
(3)é?¿C-X-E/N,Ext
1
C(R)
(K,N) = 0.
y²(1)⇒(3) dÚn2.3 Œ.
(3)⇒(2)n∈Z.•ÄR-Ü
0 −→M
n
−→T
n
−→K
n
−→0.
d½n2.6•M
n
ÚT
n
Ñ´X-G
C
-Ý,¤±d[12,½n1.2.11] •Iy²é?¿C-X-N,
Ext
1
R
(K
n
,N) = 0.
N∈X
C
(R), K
N[−n] ∈
^
X
C
(R). d(3)•Ext
1
C(R)
(K,N[−n]) = 0.d[20,Ún3.1] •
Ext
1
C(R)
(K,N[−n])
∼
=
Ext
1
R
(K
n
,N),¤±Ext
1
R
(K
n
,N) = 0.Ïd,K
n
´X-G
C
-Ý.
(2)⇒(1) d½n2.6, •Iy²é?¿C-X-E/N, Hom
R
(K,N)Ü. N´C-X-E /.
duz‡K
n
Ñ´X-G
C
-Ý,¤±d·K1.7 Ú[12,·K1.2.2] •S
0 −→Hom
R
(K,N) −→Hom
R
(T,N) −→Hom
R
(M,N) −→0
Ü. Ï•MÚT´X-G
C
-ÝE/, ¤±d½n2.6 •Hom
R
(M,N) ÚHom
R
(T,N)Ü. Ï
dHom
R
(K,N)•´Ü.
e¡(ØL²X-G
C
-ÝE/äk-½5.
½n2.14M∈C(R).KM´X-G
C
-ÝE/…=•3X-G
C
-ÝE/Ü
G: ···−→G
1
−→G
0
−→G
−1
−→···,
¦M
∼
=
Im(G
0
−→G
−1
),¿…é?¿C-X-E/N,Hom
C(R)
(G,N) Ü.
DOI:10.12677/pm.2022.12101671546nØêÆ
o(‰
y²7‡5. M´X-G
C
-ÝE/,K•3X-G
C
-ÝE/Ü
···−→0 −→M
1
M
−→M−→0 −→···
¦M
∼
=
Im(M
1
M
−→M),¿…w,é?¿C-X-E/N,Hom
C(R)
(−,N)±TSÜ5.
¿©5.n∈Z,K•3Ü
G
n
: ···−→G
n
1
−→G
n
0
−→G
n
−1
−→···,
¦M
n
∼
=
Im(G
n
0
−→G
n
−1
).ϕG
j
´X-G
C
-ÝE/,¤±d½n2.6•z‡G
n
j
Ñ´X-G
C
-Ý
.N∈X
C
(R), KN[−n] ∈
^
X
C
(R). ¤±d[20,Ún3.1]Œþ1Ü†ã
···
//
Hom
C(R)
(G
−1
,N[−n])
//
∼
=

Hom
C(R)
(G
0
,N[−n])
//
∼
=

Hom
C(R)
(G
1
,N[−n])
∼
=

//
···
···
//
Hom
R
(G
n
−1
,N)
//
Hom
R
(G
n
0
,N)
//
Hom
R
(G
n
1
,N)
//
···.
le1•Ü.Hom
R
(G
n
,N)Ü.Ïdd[12,½n1.3.1]•M
n
´X-G
C
-Ý.
N∈
^
X
C
(R). •ÄÜ
0 −→M
1
−→G
0
−→M−→0,
Ù ¥M
1
∼
=
Im(G
1
−→G
0
). d½n2.6 •z‡G
n
0
Ñ´X-G
C
-Ý, …Hom
R
(G
0
,N) Ü. u
´dÚn2.4ŒExt
1
C(R)
(G
0
,N) = 0.q
0 −→Hom
C(R)
(M,N) −→Hom
C(R)
(G
0
,N) −→Hom
C(R)
(M
1
,N) −→0
Ü, ¤±Ext
1
C(R)
(M,N) = 0.Ï•z‡M
n
Ñ´X-G
C
-Ý,¤±dÚn2.4•Hom
R
(M,N)
Ü.Ïdd½n2.6Œ•M´X-G
C
-ÝE/.
íØ2.15M∈C(R). KM´X-G
C
-ÝE/…=•3Ü
G: ···−→G
1
−→G
0
−→G
−1
−→···,
Ù¥G
i
∈
]
P(R)
S
^
P
C
(R),i∈Z,¦M
∼
=
Im(G
0
−→G
−1
),¿…é?¿C-X-E/N,
Hom
C(R)
(G,N) Ü.
y²7‡5. w,.
¿©5.•3E/Ü
G: ···−→G
1
−→G
0
−→G
−1
−→···,
DOI:10.12677/pm.2022.12101671547nØêÆ
o(‰
Ù¥G
i
∈
]
P(R)
S
^
P
C
(R),i∈Z,¦M
∼
=
Im(G
0
−→G
−1
),…é?¿C-X-E/N,
Hom
C(R)
(G,N)Ü.d·K2.11Œ•z‡G
i
Ñ´X-G
C
-ÝE/.d½n2.15•M´
X-G
C
-ÝE/.
díØ2.15Œe(Ø,§L²X-G
C
-ÝE/äké¡5.
íØ2.16•3Ü
X: ···−→P
1
f
1
−→P
0
f
0
−→Q
−1
f
−1
−→Q
−2
−→···,
Ù¥z‡P
i
´ÝE/, z‡Q
j
´C-ÝE/, ¿…é?¿C-X-E/N, Hom
C(R)
(X,N) 
Ü.Ké?¿i∈Z,Cokerf
i
´X-G
C
-ÝE/.
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(11861055,12061061)"
ë•©z
[1]Auslander,M.andBridger,M.(1969)StableModuleTheory.In:MemoirsoftheAmerican
MathematicalSociety,No.94,AmericanMathematicalSociety,Providence,RI.
https://doi.org/10.1090/memo/0094
[2]Ding,N.Q.,Li,Y.L.andMao,L.X.(2009)StronglyGorensteinFlatModules.Journalofthe
AustralianMathematicalSociety,86,323-338.https://doi.org/10.1017/S1446788708000761
[3]Mao,L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein Flat Modules. Jour-
nalofAlgebraandItsApplications,7,491-506.https://doi.org/10.1142/S0219498808002953
[4]Bravo,D.,Gillespie,J. andHovey,M.(2014) TheStable ModuleCategoryof aGeneral Ring.
arXiv:1405-5768
[5]Bennis,D.andOuarghi,K.(2010)X-GorensteinProjectiveModules.InternationalMathe-
maticalForum,5,487-491.
[6]Meng,F.Y.andPan,Q.X.(2011)X-GorensteinProjectiveandY-GorensteinInjectiveMod-
ules.HacettepeJournalofMathematicsandStatistics,40,537-554.
[7]Holm,H.andWhite,D.(2007)FoxbyEquivalenceoverAssociativeRings.JournalofMathe-
maticsofKyotoUniversity,47,781-808.https://doi.org/10.1215/kjm/1250692289
[8]Hu,J.S.andGeng,Y.X.(2016)RelativeTorFunctorsforLevelModuleswithRespecttoa
SemidualizingBimodule.AlgebrasandRepresentationTheory,19,579-597.
https://doi.org/10.1007/s10468-015-9589-9
DOI:10.12677/pm.2022.12101671548nØêÆ
o(‰
[9]Holm,H.andJørgensen,P.(2006)Semi-Dualizing Modules and RelatedGorensteinHomolog-
icalDimensions.JournalofPureandAppliedAlgebra,205,423-445.
https://doi.org/10.1016/j.jpaa.2005.07.010
[10]White,D.(2010)GorensteinProjectiveDimensionwithRespecttoaSemidualizingModule.
JournalofCommutativeAlgebra,2,111-137.https://doi.org/10.1216/JCA-2010-2-1-111
[11]Zhang,C.X.,Wang,L.M.andLiu,Z.K.(2013)DingProjectiveModuleswithRespecttoa
SemidualizingModule.BulletinoftheKoreanMathematicalSociety,51,339-356.
https://doi.org/10.4134/BKMS.2014.51.2.339
[12]Ô†.X-G
C
-Ý9‘ê[D]:[a¬Æ Ø©].=²:Ü“‰ŒÆ,2014.
[13]Enochs,E.E.andGarc´ıaRozas,J.R.(1998)GorensteinInjectiveandProjectiveComplexes.
CommunicationsinAlgebra,26,1657-1674.https://doi.org/10.1080/00927879808826229
[14]Yang,X.Y.andLiu,Z.K.(2011)GorensteinProjective,InjectiveandFlatComplexes.Com-
municationsinAlgebra,39,1705-1721.https://doi.org/10.1080/00927871003741497
[15]Yang,C.H.andLiang, L.(2012) GorensteinInjectiveand ProjectiveComplexeswithRespect
toaSemidualizingModule.CommunicationsinAlgebra,40,3352-3364.
https://doi.org/10.1080/00927872.2011.568030
[16]Yang,G.,Liu,Z.K.andLiang,L.(2013)ModelStructuresonCategoriesofComplexesover
Ding-ChenRings.CommunicationsinAlgebra,41,50-69.
https://doi.org/10.1080/00927872.2011.622326
[17]Bravo,D.andGillespie,J.(2016)AbsolutelyClean,Level, andGorenstein AC-InjectiveCom-
plexes.CommunicationsinAlgebra,44,2213-2233.
https://doi.org/10.1080/00927872.2015.1044100
[18]ýù.ƒéuŒéóDingÝE/[D]:[a¬Æ Ø©].=²:Ü“‰ŒÆ,2016.
[19]Zhao,R.Y.andDing,N.Q.(2017)(W,Y,X)-GorensteinComplexes.Communicationsin
Algebra,45,3075-3090.https://doi.org/10.1080/00927872.2016.1235173
[20]Gillespie,J.(2004)TheFlatModelStructureonCh(R).TransactionsoftheAmericanMath-
ematicalSociety,356,3369-3390.https://doi.org/10.1090/S0002-9947-04-03416-6
[21]Gao,Z.H.andWang,F.G.(2015)WeakInjectiveandWeakFlatModules.Communications
inAlgebra,43,3857-3868.https://doi.org/10.1080/00927872.2014.924128
[22]Holm,H.(2004)GorensteinHomologicalDimensions.JournalofPureandAppliedAlgebra,
189,167-193.https://doi.org/10.1016/j.jpaa.2003.11.007
DOI:10.12677/pm.2022.12101671549nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.