设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2022,11(11),8355-8367
PublishedOnlineNovemb er2022inHans.http://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2022.1111884
Ä
u
‡
Â
ñ
8
+
¡
E
Cahn-Hilliard
•
§
g
·
Ak
•
{
XXX
©©©
ýýý
1
,
•••
••••••
2
,
ŠŠŠ
ŠŠŠ
___
3
,
___
÷÷÷
1
∗
1
n
ó
Œ
Æ
ê
ÆÆ
§
ì
Ü
2
S
“
‰
Œ
Æ
ê
Æ
†
Ú
O
Æ
§
S
Ä
3
ì
Ü
U
Æ
U
†
Ä
å
ó
§
X
§
ì
Ü
A
¥
Â
v
F
Ï
µ
2022
c
10
28
F
¶
¹
^
F
Ï
µ
2022
c
11
23
F
¶
u
Ù
F
Ï
µ
2022
c
11
30
F
Á
‡
Cahn-Hilliard
•
§
•
o
š
‚
5
‡
©•
§
§
3
Ô
n
§
)
Ô
§
z
Æ
ˆ‡
+
•
Ñ
k
2
•
A
^
§
Ï
d
ï
Ä
Ù
ê
Š
•{
ä
k
¢
S
A^
d
Š
"
©
Ï
L
©
Û
Cahn-Hilliard
•
§
˜
«
ê
Š
‚
ª
§
y
²
Ù
Ø
O
Ú
Ã
^
‡
U
þ
-
½
5
§
¿
…
J
Ñ
˜
‡
Ä
u
Ø
O
˜
m
Ú
ž
m
g
·
A
ü
Ñ
§
=
‡
Â
ñ
8
+
¡
E
£
superconvergentclusterrecovery
§
{
¡
•
SCR
¤
•{
§
^
u
ê
Š
¦
)
Cahn-Hilliard
•
§
§
T
ü
Ñ
Ì
‡
g
Ž
´
Ä
u
Ø
O
(
J
5
›
›
‚
Œ
§
l
Œ
±
k
ü
$
O
Ž
¤
§
•
Ï
L
Ž
~
y
²
SCR
Ž
{
p
5
Ú
-
½
5
"
'
…
c
Ø
O
§
Cahn-Hilliard
•
§
§
g
·
A
§
SCR
§
k
•
{
TheSCR-BasedAdaptiveFiniteElement
MethodfortheCahn-HilliardEquation
WenyanTian
1
,YaoyaoChen
2
,ZhaoxiaMeng
3
,Hong’enJia
1
∗
1
CollegeofMathematics,TaiyuanUniversityofTechnology,TaiyuanShanxi
2
SchoolofMathematicsandStatistics,AnhuiNormalUniversity,WuhuAnhui
3
DepartmentofEnergyandPowerEngineering,ShanxiInstituteofEnergy,JinzhongShanxi
∗
Ï
Õ
Š
ö
©
Ù
Ú
^
:
X
©
ý
,
•
••
,
Š
Š
_
,
_
÷
.
Ä
u
‡
Â
ñ
8
+
¡
E
Cahn-Hilliard
•
§
g
·
Ak
•
{
[J].
A^
ê
Æ
?
Ð
,2022,11(11):8355-8367.DOI:10.12677/aam.2022.1111884
X
©
ý
Received:Oct.28
th
,2022;accepted:Nov.23
rd
,2022;published:Nov.30
th
,2022
Abstract
TheCahn-Hilliardequationisafourth-ordernonlinearpartialdifferentialequation
withawiderangeofapplicationsinvariousfieldssuchasphysics,biology,andchem-
istry,soitisofpracticalapplicationtostudyitsnumericalmethods.Inthisstudy,
weanalyzedtheCahn-Hilliardequationinasecond-ordernumericalformat,demon-
strateditserrorestimateandunconditionalenergystability,andsuggestedaspatial
andtemporaladaptivestrategybasedontheposteriorerrorestimate,namelythe
superconvergentclusterrecovery(SCR)method,fornumericalsolutions.
Keywords
Error Estimate,TheCahn-Hilliard Equation,Adaptive,SCR,FiniteElement Method
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
ï
Ä
Cahn-Hilliard
•
§
U
L
ã
X
e
µ
u
t
=
−
ε
∆
2
u
+
1
ε
∆
f
(
u
)(
x,t
)
∈
Ω
×
(0
,T
]
,
∂
n
u
=
∂
n
(
−
ε
∆
u
+
1
ε
f
(
u
)) = 0
,
(
x,t
)
∈
∂
Ω
×
(0
,T
]
,
u
(
x,
0) =
u
0
x
∈
Ω
.
(1.1)
3
þ
ã
•
§
¥
§
Ω
L
«
R
d
(
d
= 2
,
3)
¥
ä
k
Lipschitz
>
.
∂
Ω
k
.
•
¶
n
L
«
Ω
ü
{
•
þ
¶
u
L
«
ƒ
|
C
þ
¶
f
(
u
)
´
˜
‡
š
‚
5
¼
ê
¶
ε
´
˜
‡
~
ê
¶
t
´
•
ª
ž
m
"
Cahn-Hilliard
•
§
å
u
1958
c
Cahn
Ú
Hillard
m
M
5
Ø
©
[1]
§
£
ã
9
å
Æ
¥
ü
«
Ô
Ÿ
ƒ
p
*
Ñ
y–
§
Œ
±
^
5
[
N
¥
E
,
ƒ
©
l
Ú
o
z
y–
[2–5](
X
µ
á
‰
Æ
Ú
6
N
Ä
å
Æ
¥
)
"
î
8
•
Ž
§
N
õ
Š
ö
é
Cahn-Hilliard
•
§
ƒ
'
n
Ø
9
Ù
ê
Š
•{
?
1ï
Ä
"
Barrett
Ú
Elliott
J
Ñ
^
N
Ú
š
N
k
•
•{
5
ï
Ä
Cahn-Hilliard
•
§
[6–8]
"
Shen
Ú
Xu
J
Ñ
Cahn-Hilliard
•
§
I
þ
9
Ï
C
þ
(SAV)
•{
[9]
"
Zhao
Ú
Xiao
ò
L
¡
k
•
{
(SFEM)
†
-
½
Œ
Û
ª
•{
ƒ
(
Ü
[10]
§
Ù
¥
æ
^
g
·
A
•{
?
1
ï
Ä
"
3
[11]
¥
g
·
A
•{
é
A
Š
¯
K
?
1
ï
Ä
"
3
[12]
¥
§
ò
Ä
u
SCR
Ø
O
Ž
f
^u
ƒ
|
C
þ
Ú
„
Ý
¼
ê
˜
m
l
Ñ
"
3
[13]
¥
§
æ
DOI:10.12677/aam.2022.11118848356
A^
ê
Æ
?
Ð
X
©
ý
^
g
·
A
ž
m
Ú
•
{
é
Cahn-Hilliard
•
§
?
1
ï
Ä
"
3
©
ï
Ä
.
¥
§
du
ë
ê
ε
)
.
¡
´
I
‡
'
Ù
§
Ü
©
æ
^
•
°
[
‚
y
©
§
±
9
ê
Š
[
I
‡
é
•
ž
m
â
U
ˆ
-
½
G
§
Ï
æ
^
g
·
A
ü
Ñ
"
©
¤
¦
^
SCR
{
•
Ð
´
d
Huang
Ú
Yi[14]
J
Ñ
§
¿
…
ò
Ù
A^u
Allen-Cahn
•
§
[15]
"
©
(
X
e
µ
3
1
2
!
¥
§
J
Ñ
Cahn-Hilliard
•
§
l
Ñ
‚
ª
[16]
§
©
Û
Ã
^
‡
U
þ
-
½
5
Ú
Ø
O
"
3
1
3
!
¥
§
0
SCR
Ž
f
ž
m
Ú
˜
m
l
Ñ
z
Ø
O
f
"
3
1
4
!
¥
§
Ï
L
A
‡
ê
Š
Ž
~
`
²
g
·
A
§
S
k
5
"
2.
U
þ
-
½
l
Ñ
.
•
;
•
3
z
‡
ž
m
Ú
•
þ
¦
)
o
•
§
§
Ú
\
˜
‡
#
C
þ
µ
=:
−
ε
∆
u
+
1
ε
f
(
u
)
¿
ò
(1.1)
L
«
•
µ
u
t
= ∆
µ
(
x,t
)
∈
Ω
×
(0
,T
]
,
µ
=
−
ε
∆
u
+
1
ε
f
(
u
)(
x,t
)
∈
Ω
×
(0
,T
]
,
∂
n
u
=
∂
n
µ
= 0(
x,t
)
∈
∂
Ω
×
(0
,T
]
,
u
(
x,
0) =
u
0
x
∈
Ω
,
(2.1)
Ù
¥
ε>
0
´
˜
‡
ë
ê
§
“
Lá
ƒ
m
L
Þ
.
¡
þ
Ý
§
u
L
«
ƒ
|
C
þ
§
u
0
∈
H
1
(Ω)(
t
=0)
´
Ð
©
^
‡
§
š
‚
5
‘
f
(
u
)=
F
0
(
u
)
§
Ù
¥
F
(
u
)=
1
4
(
u
2
−
1)
2
´
˜
‡
V
²
³
¼
ê
"
¢
S
þ
§
Cahn-
Hilliard
•
§
Œ
±
w
Š
´
g
d
U
¼
ê
E
(
u
)
H
−
1
−
F
Ý
6
µ
E
(
u
)=
R
Ω
(
1
ε
F
(
u
)+
ε
2
|∇
u
|
2
)
dx
§
¿
Œ
±
í
Ñ
Cahn-Hilliard
•
§
÷
v
±
e
U
þ
5
Æ
µ
d
dt
E
(
u
) =
−
Z
Ω
|∇
(
−
ε
∆
u
+
1
ε
f
(
u
))
|
2
dx
≤
0
,
(2.2)
ù
¿
›
Xg
d
U
E
(
u
)
3
ž
m
þ
÷
v
U
þ
P
ò
A
5
E
(
u
)(
t
n
+1
)
≤
E
(
u
)(
t
n
)
,
∀
n
∈
N
"
3
!
¥
§
•
•
B
Q
ã
0
˜
ò
3
©
¥
¦
^
Î
Ò
"
I
O
Sobolev
˜
mò
^
H
m
=
W
m,
2
(Ω)
5
L
«
§
H
m
é
A
‰
ê
Œ
±
^
k·k
m
5
L
«
§
L
2
‰
ê
Ú
S
È
©
O
^
k·k
Ú
(
·
,
·
)
L
«
"
d
§
^
k·k
∞
L
«
L
∞
‰
ê
"
T
h
=
{
e
h
}
´
•
Ω
¥
/
G
5
K
n
/
§
h
´
¤
k
e
h
ƒ
¥
•
Œ
†
»
"
-
V
h
•
©
ã
‚
5
ë
Y
¼
ê
ƒ
é
A
k
•
‘
˜
m
§
˜
m
V
h
Ä
¼
ê´
I
O
Lagrange
Ä
¼
ê
φ
z
(
z
∈N
h
§
Ù
¥
N
h
“
L
n
/
º:
8
Ü
)
µ
V
h
=
{
v
∈
H
1
(Ω) :
v
|
e
h
∈
P
1
(
e
h
)
,
∀
e
h
∈T
h
}
,
Ó
ž
§
½
Â
V
0
h
=
V
h
T
H
1
0
(Ω)
"
d
§
é
u
¢ê
p
≥
0
Ú
÷
v
^
‡
¤
k
v
(
t
)
§
½
±
e
‰
ê
µ
k
v
k
L
p
(0
,T
;
X
)
= (
R
T
0
k
v
(
t
)
k
p
X
dt
)
1
2
.
(2.1)
f
/
ª
•
µ
¦
)
u
∈
L
∞
(0
,T
;
H
1
(Ω))
§
w
∈
L
2
(0
,T,
;
H
1
(Ω))
§
(
(
u
t
,w
)+(
∇
µ,
∇
w
) = 0
∀
w
∈
H
1
(Ω)
,
(
µ,v
) =
ε
(
∇
u
,
∇
v
)+
1
ε
(
f
(
u
)
,v
)
∀
v
∈
H
1
(Ω)
.
(2.3)
(2.3)
Œ
l
Ñ
‚
ª
•
µ
¦
)
u
h
∈
C
1
(0
,T
;
V
h
)
¥
§
¦
(
u
h,t
,w
h
)+(
∇
µ
h
,
∇
w
h
) = 0
∀
w
h
∈
V
h
,
(
µ
h
,v
h
) =
ε
(
∇
u
h
,
∇
v
h
)+
1
ε
(
f
(
u
h
)
,v
h
)
∀
v
h
∈
V
h
.
(2.4)
DOI:10.12677/aam.2022.11118848357
A^
ê
Æ
?
Ð
X
©
ý
ò
[0
,T
]
þ
!
©
•
•
0 =
t
0
<t
1
<...<t
N
=
T
•
N
©
§
=
I
n
:= (
t
n
−
1
,t
n
]
"
4
t
L
«ž
m
Ú
•
§
¿
…
k
T
=
N
4
t
,
n
= 1
,...,N
"
3
d
Ä
:
þ
l
Ñ
‚
ª
•
µ
¦
)
u
n
h
∈
V
n
h
,n
= 1
,
2
,...,N
§
(
u
n
h
−
Π
n
u
n
−
1
h
4
t
,w
h
)+(
∇
µ
n
−
1
2
h
,
∇
w
h
) = 0
∀
w
h
∈
V
n
h
,
(
µ
n
−
1
2
h
,v
h
) =
ε
(
∇
c
u
n
h
,
∇
v
h
)+
1
ε
(
f
(
u
n
h
,u
n
−
1
h
)
,v
h
)
∀
v
h
∈
V
n
h
,
(2.5)
Ù
¥
c
u
n
h
§
Ú
f
(
u
n
h
,u
n
−
1
h
)
©
O
½
Â
•
µ
c
u
n
h
=
u
n
h
+Π
n
u
n
−
1
h
2
,
f
(
u
n
h
,u
n
−
1
h
) =
(
u
n
h
)
3
+(
u
n
h
)
2
Π
n
u
n
−
1
h
+
u
n
h
(Π
n
u
n
−
1
h
)
2
+(Π
n
u
n
−
1
h
)
3
4
−
u
n
h
+Π
n
u
n
−
1
h
2
,
(2.6)
µ
n
−
1
2
´
¥
:
t
n
−
1
2
= (
t
n
−
1
+
t
n
)
/
2
C
q
Š
§
Π
n
“
L
Š
k
•
˜
m
V
h
"
½
n
2.1.
l
Ñ
‚
ª
(2.5)-(2.6)
´
Ã
^
‡
U
þ
-
½
§
Ù
)
÷
v
E
(
u
n
h
)
≤
E
(
u
n
−
1
h
)
,
∀
n
≥
1
.
y
²
.
-
w
h
=
4
tµ
n
−
1
2
Ú
v
h
=
u
n
−
u
n
−
1
3
(2.5)
¥
4
t
k∇
µ
n
−
1
2
h
k
2
+
E
(
u
n
h
)
−
E
(
u
n
−
1
h
) = 0
,
ù
¿
›
X
¤
J
Ñ
l
Ñ
‚
ª
(2.5)-(2.6)
±
U
þ
P
~
5
"
•
Ñ
Ø
O
§
ò
ý
Ý
K
Ž
f
½
Â
•
P
h
:
H
1
→
V
h
§
§
÷
v
±
e
^
‡
(
∇
(
P
h
v
−
v
)
,
∇
α
h
) = 0
,
∀
α
h
∈
V
h
.
(2.7)
l
©
z
[17]
¥
§
±
e
ü
‡
Ø
ª
¤
á
§
k
v
−
P
h
v
k≤
Ch
2
k
v
k
2
,
k
(
v
−
P
h
v
)
t
k≤
Ch
2
k
v
t
k
2
.
(2.8)
•
•
B
O
Ž
§
½
Â
±
e
Ø
¼
ê
§
˜
e
n
=
P
h
u
(
t
n
)
−
u
n
h
,
ˆ
e
n
=
u
(
t
n
)
−
P
h
u
(
t
n
)
,
¯
e
n
−
1
2
=
P
h
µ
(
t
n
−
1
2
)
−
µ
n
−
1
2
h
,
ˇ
e
n
−
1
2
=
µ
(
t
n
−
1
2
)
−
P
h
µ
(
t
n
−
1
2
)
.
Ï
L
‘
È
©
{
‘
V
Ð
m
ª
†
Young’s
Ø
ª
§
N
´
[18]
k
R
n
1
k
2
≤4
t
3
Z
t
n
t
n
−
1
k
u
ttt
(
t
)
k
2
dt,
k
R
n
2
k
2
≤4
t
3
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
2
dt,
(2.9)
Ù
¥
R
n
1
=
u
(
t
n
)
−
u
(
t
n
−
1
)
4
t
−
u
t
(
t
n
−
1
2
)
,R
n
2
=
−4
(
u
(
t
n
)+
u
(
t
n
−
1
)
2
−
u
(
t
n
−
1
2
))
.
DOI:10.12677/aam.2022.11118848358
A^
ê
Æ
?
Ð
X
©
ý
½
n
2.2.
-
u
n
h
†
u
(
t
n
)
©
O
´
(2.5)-(2.6)
Ú
(2.1)
)
"
@
o
§
é
u
u
∈
C
2
(0
,T
;
H
2
(Ω))
§
k
k
u
k
h
−
u
(
t
k
)
k
+(
4
t
ε
k
X
n
=0
k
µ
n
−
1
2
h
−
µ
(
t
n
−
1
2
)
k
2
)
1
2
6
C
(
ε,T
)(
K
1
(
ε,u
)
4
t
2
+
K
2
(
ε,u
)
h
2
)
,
Ù
¥
C
(
ε,T
)
∼
exp
(
T
\
ε
)
,
K
1
(
ε,u
) =
√
ε
(
k
u
ttt
k
L
2
(0
,T
;
L
2
)
+
k
u
tt
k
L
2
(0
,T
;
H
2
)
)+
1
√
ε
(
k
u
tt
k
L
2
(0
,T
;
L
2
)
+
k
u
2
t
k
L
2
(0
,T
;
L
2
)
)
,
K
2
(
ε,u
) =
k
u
0
k
2
+
√
ε
k
u
t
k
L
2
(0
,T
;
H
2
)
+
1
√
ε
k
µ
k
C
(0
,T
;
H
2
)
+
k
u
k
C
(0
,T
;
H
2
)
.
y
²
.
ò
t
n
−
1
2
?
f
/
ª
(2.3)
~
(2.5)
§
1
4
t
(˜
e
n
−
˜
e
n
−
1
,w
h
)+(
∇
¯
e
n
−
1
2
,
∇
w
h
) = (
R
n
1
−
1
4
t
(
I
−
P
h
)(
u
(
t
n
)
−
u
(
t
n
−
1
))
,w
h
)
,
(¯
e
n
−
1
2
+ ˇ
e
n
−
1
2
,v
h
) =
ε
2
(
∇
˜
e
n
+
∇
˜
e
n
−
1
,v
h
)+
ε
(
4
R
n
2
,v
h
)+
1
ε
(
f
(
u
(
t
n
−
1
2
))
−
f
(
u
n
h
,u
n
−
1
h
)
,v
h
)
,
,
©
O
w
h
=
1
2
ε
4
t
(˜
e
n
+ ˜
e
n
−
1
)
Ú
v
h
=
4
t
¯
e
n
−
1
2
§
¿
ò
þ
ã
ü
‡
ª
ƒ
\
k
˜
e
n
k
2
−k
˜
e
n
−
1
k
2
+
2
4
t
ε
k
¯
e
n
−
1
2
k
2
=
4
t
(
R
n
1
,
˜
e
n
+ ˜
e
n
−
1
)
−
(
I
−
P
h
)(
u
(
t
n
)
−
u
(
t
n
−
1
)
,
˜
e
n
+ ˜
e
n
−
1
)
−
2
4
t
(
R
n
2
,
¯
e
n
−
1
2
)
+
2
4
t
ε
2
(
f
(
u
(
t
n
−
1
2
))
−
f
(
u
n
h
,u
n
n
−
1
)
,
¯
e
n
−
1
2
)
−
2
4
t
ε
(ˇ
e
n
−
1
2
,
¯
e
n
−
1
2
)
:=
I
+
II
+
III
+
IV
+
V
,
¦
^
‘
k
ε
Cauchy
Ø
ª
Ú
Young’s
Ø
ª
§
5
O
I
,
II
,
III
Ú
V
µ
I
≤4
t
k
R
n
kk
˜
e
n
+ ˜
e
n
−
1
k≤
ε
4
t
4
2
Z
t
n
t
n
−
1
k
u
ttt
(
t
)
k
2
dt
+
4
t
2
ε
k
˜
e
n
k
2
+
4
t
2
ε
k
˜
e
n
−
1
k
2
,
II
≤k
(
I
−
P
h
)(
u
(
t
n
)
−
u
(
t
n
−
1
))
kk
˜
e
n
+ ˜
e
n
−
1
k
≤
ε
2
Z
t
n
t
n
−
1
k
(
I
−
P
h
)
u
t
(
t
)
k
2
dt
+
1
2
ε
k
˜
e
n
k
2
+
1
2
ε
k
˜
e
n
−
1
k
2
,
III
≤
3
4
tε
k
R
n
2
k
2
+
4
t
3
ε
k
¯
e
n
−
1
2
k
2
≤
3
ε
4
t
4
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
2
dt
+
4
t
3
ε
k
¯
e
n
−
1
2
k
2
,
V
≤
2
4
t
ε
(
√
3
k
ˇ
e
n
−
1
2
k
)(
1
√
3
k
¯
e
n
−
1
2
k
)
≤
3
4
t
ε
k
ˇ
e
n
−
1
2
k
2
+
4
t
3
ε
k
¯
e
n
−
1
2
k
2
.
DOI:10.12677/aam.2022.11118848359
A^
ê
Æ
?
Ð
X
©
ý
•
{
ü
å
„
§
{
•
u
(
t
n
) =
u
n
Ú
u
(
t
n
−
1
2
) =
u
n
−
1
2
§
©
Û
1
o
‘
IV
µ
IV
=
2
4
t
ε
2
(
u
n
h
−
u
n
−
1
h
2
−
u
n
−
1
2
+(
u
n
−
1
2
)
3
−
(
u
n
h
)
3
+(
u
n
h
)
2
u
n
−
1
h
h
+
u
n
h
(
u
n
−
1
h
)
2
+(
u
n
−
1
h
)
3
4
)
=
2
4
t
ε
2
[(
u
n
h
−
u
n
−
1
h
2
−
u
n
−
1
2
)+((
u
n
−
1
2
)
3
−
(
u
n
−
u
n
−
1
2
)
3
)+((
u
n
−
u
n
−
1
2
)
3
−
g
n
)
+(
g
n
−
(
u
n
h
)
3
+(
u
n
h
)
2
u
n
−
1
h
+
u
n
h
(
u
n
−
1
h
)
2
+(
u
n
−
1
h
)
3
4
,
¯
e
n
−
1
2
)]
:=
2
4
t
ε
2
(
IV
1
+
IV
2
+
IV
3
+
IV
4
,
¯
e
n
−
1
2
)
,
Ù
¥
g
n
=
(
u
n
)
3
+(
u
n
)
2
u
n
−
1
+
u
n
(
u
n
−
1
)
2
+(
u
n
−
1
)
3
4
.
U
Y
^
‘
È
©
{
‘
V
Ð
m
§
Cauchy-Schwarz
Ø
ª
Ú
(2.9)
é
±
þ
o
‘
?
1
©
Û
§
Ñ
µ
k
IV
1
k
=
k
−
˜
e
n
−
ˆ
e
n
−
˜
e
n
−
1
−
ˆ
e
n
−
1
+
u
n
+
u
n
−
1
2
−
u
n
−
1
2
k
≤k
˜
e
n
+ ˜
e
n
−
1
2
k
+
k
ˆ
e
n
+ ˆ
e
n
−
1
2
k
+
4
t
3
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
dt,
k
IV
2
k≤k
3
ξ
2
1
(
u
n
+
u
n
−
1
2
−
u
n
−
1
2
)
k≤
3
ξ
2
1
4
t
3
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
dt,
k
IV
3
k
=
k
(
u
n
)
3
−
(
u
n
)
2
u
n
−
1
−
u
n
(
u
n
−
1
)
2
+(
u
n
−
1
)
3
8
k
=
k
((
u
n
)
2
−
(
u
n
−
1
)
2
)(
u
n
−
u
n
−
1
)
8
k≤k
ξ
2
4
(
u
n
−
u
n
−
1
)
2
k≤
ξ
2
4
4
t
3
Z
t
n
t
n
−
1
k
u
2
t
(
t
)
k
2
dt,
Ù
¥
ξ
1
u
(
u
n
+
u
n
−
1
)
/
2
Ú
u
n
−
1
2
ƒ
m
§
ξ
2
u
u
n
Ú
u
n
−
1
ƒ
m
§
ζ
1
Ú
ζ
2
u
u
n
−
1
Ú
u
n
ƒ
m
§
k
IV
4
k
=
1
4
k
2
3
(
u
n
)
3
+
1
3
(
u
n
+
u
n
−
1
)
3
+
2
3
(
u
n
−
1
)
3
−
2
3
(
u
n
h
)
3
+
1
3
(
u
n
h
+
u
n
−
1
h
)
3
+
2
3
(
u
n
−
1
h
)
3
k
=
k
1
6
((
u
n
)
3
−
(
u
n
h
)
3
)+
1
6
((
u
n
−
1
)
3
−
(
u
n
−
1
h
)
3
)+
1
12
((
u
n
+
u
n
−
1
)
3
−
(
u
n
h
+
u
n
−
1
h
)
3
)
k
≤
1
2
k
ξ
2
3
(
u
n
−
u
n
h
)
k
+
1
2
k
ξ
2
4
(
u
n
−
1
−
u
n
−
1
h
)
k
+
1
4
k
ξ
2
5
(
u
n
−
u
n
h
+
u
n
−
1
−
u
n
−
1
h
)
k
≤
C
(
k
u
n
−
1
−
u
n
−
1
h
k
+
k
u
n
−
u
n
h
k
)
≤
C
(
k
ˆ
e
n
−
1
k
+
k
˜
e
n
−
1
k
+
k
ˆ
e
n
k
+
k
˜
e
n
k
)
,
Ù
¥
ξ
3
u
u
n
Ú
u
n
−
1
ƒ
m
§
ξ
4
u
u
n
−
1
Ú
u
n
−
1
h
ƒ
m
§
ξ
5
u
u
n
+
u
n
−
1
Ú
u
n
h
+
u
n
−
1
h
ƒ
m
"
•
y
ξ
3
§
ξ
4
§
ξ
5
•
3
§
I
‡
÷
v
^
‡
k
u
n
h
k
∞
≤
C,
∀
1
≤
n
≤
N
[19]
"
DOI:10.12677/aam.2022.11118848360
A^
ê
Æ
?
Ð
X
©
ý
e
5
§
ò
Ø
ª
IV
i
,i
= 1
,
2
,
3
,
4
Ü
¿
•
IV
§
Ñ
IV
≤
2
4
t
ε
2
(
k
IV
1
k
+
k
IV
2
k
+
k
IV
3
k
+
k
IV
4
k
)
k
¯
e
n
−
1
2
k
≤
3
4
t
ε
(
k
˜
e
n
+ ˜
e
n
−
1
2
k
+
k
ˆ
e
n
+ ˆ
e
n
−
1
2
k
+
4
t
3
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
dt
+3
ξ
2
1
4
t
3
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
dt
+
ξ
2
4
4
t
3
Z
t
n
t
n
−
1
k
u
2
t
(
t
)
k
2
dt
+
C
(
k
ˆ
e
n
−
1
k
+
k
˜
e
n
−
1
k
+
k
ˆ
e
n
k
+
k
˜
e
n
k
))
2
+
4
t
3
ε
k
¯
e
n
−
1
2
k
2
≤
C
4
t
4
ε
Z
t
n
t
n
−
1
k
u
tt
(
t
)
k
2
dt
+
C
4
t
4
ε
Z
t
n
t
n
−
1
k
u
2
t
(
t
)
k
2
dt
+
C
(
k
ˆ
e
n
−
1
k
2
+
k
˜
e
n
−
1
k
2
+
k
ˆ
e
n
k
2
+
k
˜
e
n
k
2
)+
4
t
3
ε
k
¯
e
n
−
1
2
k
2
.
Ï
LÜ
¿
ù
‘
I
,
II
,
III
,
IV
,
V
§
¿
l
n
= 1
,...,k
(
k
≤
T/
4
t
)
?
1
¦
Ú
§
(
Ü
(2.8)
k
˜
e
k
k
2
−k
˜
e
0
k
2
+
4
t
ε
k
X
n
=1
k
¯
e
n
−
1
2
k
2
≤
1
2
4
t
4
ε
k
u
ttt
(
t
)
k
2
L
2
(0
,T
;
L
2
)
+
ε
2
Ch
4
k
u
t
(
t
)
k
2
L
2
(0
,T
;
H
2
)
+
3
4
t
ε
k
X
n
=1
k
ˇ
e
n
−
1
2
k
2
+
C
4
t
4
ε
k
u
tt
(
t
)
k
2
L
2
(0
,T
;
L
2
)
+
C
4
t
4
ε
k
u
2
t
(
t
)
k
L
2
(0
,T
;
L
2
)
+3
ε
4
t
4
k
u
tt
(
t
)
k
2
L
2
(0
,T
;
H
2
)
+
C
k
X
n
=1
(
k
ˆ
e
n
−
1
k
2
+
k
˜
e
n
−
1
k
2
+
k
ˆ
e
n
k
2
+
k
˜
e
n
k
2
)
.
•
§
A^
l
Ñ
Gronwall
Ú
n
Ú
n
Ø
ª
5
¤
y
²
"
3.
Ä
u
Ø
O
SCR
SCR
•{
´
é
æ
:
+
¥
)
Š
?
1
‚
5
õ
‘
ª
[
Ü
§
,
?
1
¦
§
•
¡
E
:
þ
¡
E
F
Ý
"
ž
m
l
Ñ
z
Ø
O
Ž
f
´
d
ü
‡
ž
m
Ú
•
ƒ
m
ê
Š
C
q
Šƒ
½
Â
§
˜
m
l
Ñ
z
Ø
O
Ž
f
´
d
F
ݽ
Â
§
=
ê
Š
F
Ý
†
¡
E
F
Ý
ƒ
[14]
"
3
e
©
¥
ò{
‡
0
X
Û
¼
¡
E
F
Ý
§
©
•
ü
‡
Ú
½
"
Ú
½
1:
é
u
˜
‡
S
Ü
º:
z
=
z
0
∈N
h
T
Ω
§
¡
E
F
Ý
§
¦
Œ
U
À
J
é
¡
©
Ù
u
z
±
Œ
:
z
i
= (
x
i
,y
i
)
§
1
≤
i
≤
n
(
–
4
‡
)
§
˜
„
5
`
À
J
G
!
:
L
y
•
•
û
Ð
"
½
Â
SCR
Ž
f
G
h
:
V
h
→
V
h
×
V
h
•
µ
(
G
h
u
h
)(
z
) =
∇
p
z
(
x,y
)
.
DOI:10.12677/aam.2022.11118848361
A^
ê
Æ
?
Ð
X
©
ý
4
K
z
“
L
à
õ
>
/
:
§
é
˜
‡
‚
5
õ
‘
ª
p
z
(
x,y
)
§
÷
v
±
e
^
‡
p
z
(
x,y
) =
argmin
p
1
∈
P
1
n
X
i
=0
(
p
1
(
z
i
)
−
u
h
(
z
i
))
2
,
•
;
•
h
Ú
å
O
Ž
Ø
-
½
§
F
½
Â
X
e
F
:(
x,y
)
→
(
ξ,η
) =
(
x,y
)
−
(
x
0
,y
0
)
h
,
Ù
¥
h
=
max
{|
x
i
−
x
0
|
,
|
y
i
−
y
0
|
: 1
≤
i
≤
n
}
§
@
o
[
Ü
õ
‘
ª
Œ
±
•
p
z
(
x,y
) =
P
T
a
=
ˆ
P
T
ˆa
,
¿
…
P
T
= (1
,x,y
)
,
ˆ
P
T
= (2
,ξ,η
)
§
a
T
= (
a
1
,a
2
,a
3
)
,
ˆa
T
= (ˆ
a
1
,
ˆ
a
2
,
ˆ
a
3
)
.
X
ê
•
þ
ˆ
a
Œ
±
Ï
L
‚
5
•
§
(
½
A
T
Aˆa
=
A
T
u
§
Ù
¥
A
=
1
ξ
0
η
0
1
ξ
1
η
1
.
.
.
.
.
.
.
.
.
1
ξ
n
η
n
andu
=
u
(
z
0
)
u
(
z
1
)
.
.
.
u
(
z
n
)
.
•
§
Ï
L
þ
ã
©
Û
¡
E
F
Ý
G
h
u
=
∇
p
z
=
a
2
a
3
!
=
1
h
ˆ
a
2
ˆ
a
3
!
Ú
½
2:
Ï
L
3
Ω
þ
Š
G
h
u
¡
E
F
Ý
G
h
u
=
X
z
∈N
h
G
h
u
(
z
)
φ
z
.
^
η
n
t
Ú
η
h,e
h
©
O
Š
•
ž
m
Ú
˜
m
l
Ñ
z
Ø
•
I
§
,
3
Ž
{
¥
N
ž
m
Ú
•
Ú
‚
·
A
5
§
η
n
t
:=
k
u
n
h
−
Π
n
u
n
−
1
h
k
,η
h,e
h
:=
k
G
h
u
h
−∇
u
h
k
0
,e
h
, η
2
h
=
X
e
h
∈T
h
η
2
h,e
h
3
SCR
l
Ñ
z
L
§
¥
§
ž
m
Ú
•
‘
X
Ø
O
C
z
C
z
§
‚
Œ
•
Š
â
ž
m
Ú
•
C
z
§
¤
±
z
•
#
˜
‡
t
n
Ò
¬
ï
˜
‡
#
‚
§
¿
3
T
‚
þ
U
Y
ï
˜
‡
#
˜
m
V
h
§
Ù
¥
Π
n
“
L
Š
k
•
˜
m
V
h
"
4.
ê
Š
¢
!
¥
§
Ï
L
ê
Š
Ž
~
é
‚
ª
(2.5)-(2.6)
3
Ø
Ó
Ð
Š
^
‡
e
?
1
[
"
DOI:10.12677/aam.2022.11118848362
A^
ê
Æ
?
Ð
X
©
ý
Ž
~
4.1.
é
u
Cahn-Hilliard
•
§
(2.1)
§
-
Ω = [
−
1
,
1]
×
[
−
1
,
1]
§
ε
=0
.
01
§
Ð
Š
X
e
µ
u
0
(
x,y
) =tanh
x
2
+
y
2
−
0
.
15
2
/ε
×
tanh
(
x
−
0
.
31)
2
+
y
2
−
0
.
15
2
/ε
×
tanh
(
x
+0
.
31)
2
+
y
2
−
0
.
15
2
/ε
×
tanh
x
2
+(
y
−
0
.
31)
2
−
0
.
15
2
/ε
×
tanh
x
2
+(
y
+0
.
31)
2
−
0
.
15
2
/ε
×
tanh
(
x
−
0
.
31)
2
+(
y
−
0
.
31)
2
−
0
.
15
2
/ε
×
tanh
(
x
−
0
.
31)
2
+(
y
+0
.
31)
2
−
0
.
15
2
/ε
×
tanh
(
x
+0
.
31)
2
+(
y
−
0
.
31)
2
−
0
.
15
2
/ε
×
tanh
(
x
+0
.
31)
2
+(
y
+0
.
31)
2
−
0
.
15
2
/ε
(4.1)
ã
1
Ð
«
3
8
‡
Ø
Ó
ž
m
Ú
•
e
˜
X
‚
g
·
A
(
J
9
Ù
ê
Š
)
§
Œ
±
w
Ñ
‚
[
z
´
Î
Ü
"
Y
²
8
5
K
§
!
:
ê
þ
5
"
l
ã
2
¥
U
þ
‘
ž
m
C
z
~
§
!
:
ê
±
9
ž
m
Ú
•
•
¬
‘
ž
m
C
z
C
z
"
,
3
U
þ
¯
„
ü
z
ã
§
ž
m
Ú
•
Œ
±
Ó
P
ê
Š
)
C
z
§
ˆ
-
½
G
ž
§
ž
m
Ú
•
¬
C
Œ
"
Figure1.
Resultsofgridadaptiveandnumericalsolutions
ã
1.
Ž
~
4
.
1
(
CH
),
‚
g
·
A
Ú
ê
Š
)
(
J
DOI:10.12677/aam.2022.11118848363
A^
ê
Æ
?
Ð
X
©
ý
Figure2.
Fromlefttoright:Distributionofenergy,nodesandtimesteps
ã
2.
Ž
~
4
.
1
(
CH
),
l
†
m
:
U
þ
!
!
:
Ú
ž
m
Ú
•
©
Ù
œ
¹
Ž
~
4.2.
3
ë
ê
•
Ω = [
−
1
,
1]
×
[
−
1
,
1]
§
ε
= 0
.
01
§
ò
±
e
Ð
Š
A^
3
(2.1)
u
0
(
x,y
) =tanh
(
x
−
0
.
3)
2
+
y
2
−
0
.
25
2
/ε
tanh
(
x
+0
.
3)
2
+
y
2
−
0
.
3
2
/ε
,
(4.2)
3
ã
3
¥
§
w
«
Ø
Ó
ž
m
Ú
•
e
g
·
A
‚
Ú
ƒ
A
ê
Š
)
"
²
w
w
Ñ
‚
C
†
·
A
"
Y
²
8
5
K
"
d
3
ã
4
¥
Œ
±
*
l
Ñ
ž
m
C
z
L
§
§
ù
L
²
U
þ
‘
ž
m
P
~
"
ã
4
Ð
«
ž
m
†
!
:
ê
/
ž
m
Ú
•
ƒ
m
'
X
"
3
ê
Š
[
@
Ï
ã
§
ê
Š
)
C
z
´
d
ž
m
Ú
•
5
Ó
P
§
X
Ú
ˆ
-
½
žž
m
Ú
•
¬
C
'
5
•
Œ
"
Figure3.
Resultsofgridadaptiveandnumericalsolutions
ã
3.
Ž
~
4
.
2
(
CH
),
‚
g
·
A
Ú
ê
Š
)
(
J
DOI:10.12677/aam.2022.11118848364
A^
ê
Æ
?
Ð
X
©
ý
Figure4.
Fromlefttoright:Distributionofenergy,nodesandtimesteps
ã
4.
Ž
~
4
.
2
(
CH
),
l
†
m
:
U
þ
!
!
:
Ú
ž
m
Ú
•
©
Ù
œ
¹
5.
(
Ø
©
é
u
Cahn-Hilliard
•
§
l
Ñ
‚
ª
§
y
²
Ù
´
Ã
^
‡
U
þ
-
½
¿
…
ž
m
Ú
˜
m
þ
þä
k
°
Ý
"
,
½
Â
ž
m
Ú
˜
m
l
Ñ
Ž
f
§
|
^
Ä
u
SCR
g
·
A
•{
?
1
ž
˜
l
Ñ
§
•
Ï
L
ê
Š
¢
5
y
²
T
•{
k
5
"
—
3
d
a
ì
Ü
Ž
8I
3
Æ
Ä
7
‘
8
(No.2021-029)
†
ì
Ü
Ž
‰
E
Ü
Š
6
;
‘‘
8
(No.20210404
1101019)
|
±
§
±
9
•
ï
Ä
I
[
g
,
‰
Æ
Ä
7
‘
8
(No.12201010)
Ü
©
|
±
"
Ä
7
‘
8
ì
Ü
Ž
8I
3
Æ
Ä
7
‘
8
(No.2021-029)
¶
ì
Ü
Ž
‰
E
Ü
Š
6
;
‘‘
8
(No.202104041101019)
¶
I
[
g
,
‰
Æ
Ä
7
‘
8
(No.12201010)
"
ë
•
©
z
[1]Cahn, J.andHilliard, J.(1958)FreeEnergyofa NonuniformSystem.I.InterfacialFreeEnergy.
TheJournalofChemicalPhysics
,
28
,258-267.https://doi.org/10.1063/1.1744102
[2]Karma,A.andRappel,W.J.(1998)QuantitativePhase-FieldModelingofDendriticGrowth
inTwoandThreeDimensions.
PhysicalReviewE
,
57
,4323-4349.
https://doi.org/10.1103/PhysRevE.57.4323
[3]Allen,S.andCahn,J.(1979)AMicroscopicTheoryforAntiphaseBoundaryMotionandIts
ApplicationtoAntiphaseDomainCoarsening.
ActaMaterialia
,
27
,1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[4]Kobayashi, R. (1993) Modeling and NumericalSimulationsof DendriticCrystal Growth.
Phys-
icaD:NonlinearPhenomena
,
63
,410-423.https://doi.org/10.1016/0167-2789(93)90120-P
DOI:10.12677/aam.2022.11118848365
A^
ê
Æ
?
Ð
X
©
ý
[5]Gurtin,M.,Polignone, D. and Vinals,J.(1996) Two-Phase Binary Fluids and Immiscible Flu-
idsDescribed by anOrder Parameter.
MathematicalModelsandMethodsinAppliedSciences
,
6
,815-831.https://doi.org/10.1142/S0218202596000341
[6]Barret,J.,Blowey,J.andGarcke,H.(1999)FiniteElementApproximationoftheCahn-
HilliardEquationwithDegenerateMobility.
SIAMJournalonNumericalAnalysis
,
37
,286-
318.https://doi.org/10.1137/S0036142997331669
[7]Elliott,C.andFrench,D.(1989)ANonconformingFinite-ElementMethodfortheTwo-
DimensionalCahn-HilliardEquation.
SIAMJournalonNumericalAnalysis
,
26
,884-903.
https://doi.org/10.1137/0726049
[8]Elliott,C.andFrench,D.(1987)NumericalStudiesoftheCahn-HilliardEquationforPhase
Separation.
IMAJournalofAppliedMathematics
,
38
,97-128.
https://doi.org/10.1093/imamat/38.2.97
[9]Shen,J.,Xu,J.andYang,J.(2018)TheScalarAuxiliaryVariable(SAV)Approachfor
GradientFlows.
JournalofComputationalPhysics
,
353
,407-416.
https://doi.org/10.1016/j.jcp.2017.10.021
[10]Zhao,S.,Xiao,X.andFeng,X.(2020)AnEfficientTimeAdaptivityBasedonChemical
PotentialforSurfaceCahn-HilliardEquationUsingFiniteElementApproximation.
Applied
MathematicsandComputation
,
369
,ArticleID:124901.
https://doi.org/10.1016/j.amc.2019.124901
[11]Mao,D.,Shen,L.andZhou,A.(2006)AdaptiveFiniteElementAlgorithmsforEigenvalue
ProblemsBasedonLocalAveragingTypeaPosterioriErrorEstimates.
AdvancesinCompu-
tationalMathematics
,
25
,135-160.https://doi.org/10.1007/s10444-004-7617-0
[12]Chen,Y.,Huang,Y.andYi,N.(2021)ADecoupledEnergyStableAdaptiveFiniteEle-
mentMethodforCahn-Hilliard-Navier-StokesEquations.
CommunicationsinComputational
Physics
,
29
,1186-1212.https://doi.org/10.4208/cicp.OA-2020-0032
[13]Zhang,Z.andQiao,Z.(2012)AnAdaptiveTime-SteppingStrategyfortheCahn-Hilliard
Equation.
CommunicationsinComputationalPhysics
,
11
,1261-1278.
https://doi.org/10.4208/cicp.300810.140411s
[14]Huang,Y.andYi,N.(2010)TheSuperconvergentClusterRecoveryMethod.
JournalofSci-
entificComputing
,
44
,301-322.https://doi.org/10.1007/s10915-010-9379-9
[15]Chen,Y.,Huang,Y.andYi,N.(2019)ASCR-BasedErrorEstimationandAdaptiveFinite
Element Method for theAllen-Cahn Equation.
ComputersandMathematicswithApplications
,
78
,204-223.https://doi.org/10.1016/j.camwa.2019.02.022
[16]Guillen-Gonzalez,F.andTierra,G.(2014)SecondOrderSchemesandTime-StepAdaptivity
for Allen-Cahn and Cahn-HilliardModels.
ComputersandMathematicswithApplications
,
68
,
821-846.https://doi.org/10.1016/j.camwa.2014.07.014
[17]Feng, X. and Prohl, A. (2004) Error Analysisof a Mixed Finite Element Method for the Cahn-
HilliardEquation.
NumerischeMathematik
,
99
,47-84.
https://doi.org/10.1007/s00211-004-0546-5
DOI:10.12677/aam.2022.11118848366
A^
ê
Æ
?
Ð
X
©
ý
[18]Shen,J.andYang,X.(2010)NumericalApproximationsofAllen-CahnandCahn-Hilliard
Equations.
DiscreteandContinuousDynamicalSystems
,
28
,1669-1691.
https://doi.org/10.3934/dcds.2010.28.1669
[19]Li,C.,Huang,Y.andYi,N.(2019)AnUnconditionallyEnergyStableSecondOrderFinite
ElementMethod forSolving theAllen-Cahn Equation.
JournalofComputationalandApplied
Mathematics
,
353
,38-48.https://doi.org/10.1016/j.cam.2018.12.024
DOI:10.12677/aam.2022.11118848367
A^
ê
Æ
?
Ð