设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2022,12(12),2045-2060
PublishedOnlineDecember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1212221
äklÑž¢Caputo©ê‡©•§
-½5
ÁÁÁ•••
®e>ŒÆ§nÆ§®
ÂvFϵ2022c1026F¶¹^Fϵ2022c1128F¶uÙFϵ2022c125F
Á‡
©|^ØÄ:½n§ïáÕžmlѩٞ¢©ê‘Ň©•§§Ì‡ïÄÕžm«
mSäkÙK$ÄÚlѩٞ¢Caputo©ê‡ ©•§)•35!•˜5ÚìC-½5"
Ù¥§$^Ø NnÚMittag-Lefler¼ê°OO"•ª§$^‡y{y² ÑìC-½
5"
'…c
©ê‘Ň©•§§ìC-½5§ØÄ:½n
StabilityofCaputoFractionalDifferential
EquationswithDiscreteDelay
WeiZhu
SchoolofScience,BeijingUniversityofPostsandTelecommunications,Beijing
Received:Oct.26
th
,2022;accepted:Nov.28
th
,2022;published:Dec.5
th
,2022
Abstract
In this paper,we establish infinite time discretefractional stochastic differential equa-
©ÙÚ^:Á•.äklÑž¢Caputo©ê‡©•§-½5[J].nØêÆ,2022,12(12):2045-2060.
DOI:10.12677/pm.2022.1212221
Á•
tionswithdistributeddelaysbyusingthefixedpointtheorem.Wemainlystudythe
existence,uniquenessandasymptoticstability ofsolutionsofCaputofractionaldiffer-
ential equations withBrownian motion anddiscretedistributeddelays in infinitetime
intervals.Amongthem,thecompressionmappingprincipleandaccurateestimation
ofMittagLefflerfunctionareused.Finally,theasymptoticstabilityisprovedbythe
methodofcontradiction.
Keywords
FractionalStochasticDifferentialEquations,AsymptoticStability,FixedPoint
Theorems
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3LA›c¥§©ê‡©•§ïÄ2•mЧ¿…ƒA/)Nõ©êa."
©ê‡©•§)•3•˜5´-‡ïÄ••"3©z[1]¥§ÏLA^ØÄ:½ny²k
•žm«mSCaputo©êêXÚ)•35Ú•˜5"éuHilfer©ê‡©•§§ÏLA
^[2]¥Åg%C?ØCauchy.¯K)3k•žm«mS•35Ú•˜5"d§„Œ±
•Ä©ê‡©•§5Ÿ§ X-½5"[3]ÏL|©/A ^Mittag-Lefler¼êìCÐm§
‚5Riemann-Liouville©ê‡©XÚÚCaputo©ê‡©•§|-½5ÚìC-½5^‡§
¿…?ØäkRiemannõLiouville©êê‚5‡©XÚ-½5ÚìC-½5"
©Ì‡ïÄÕžm«mSäkÙK$ÄÚlѩٞ¢Caputo©ê‡©•§)•
35!•˜5ÚìC-½5"du·‚•ÄÕ«m§Ïd·‚ I‡c[OŽOŠ"†þã©
Ùï㇧Ïd·‚$^Mittag-Lefler¼ê5Ÿ"·‚•ÄÕ«•¥Mittag-Lefler¼ê
¦Š"éuŒ‡¼êf: [0,∞) →R§pfCaputo[4]êdeª‰Ñ
∂
p
t
f(t) =
1
Γ(1−p)
d
dt
Z
t
0
(t−s)
−p
(f(s)−f(0))ds,
Ù¥0<p61ÚΓ(s) :=
R
∞
0
t
s−1
e
−t
dt"
DOI:10.12677/pm.2022.12122212046nØêÆ
Á•
·‚òïıe©ê‡©•§



















∂
β
t

x
i
(t)−
n
P
j=1
d
ij
x
j
(t−τ
j
(t))

=
n
P
j=1
c
ij
x
j
(t)+
n
P
j=1
a
ij
f
j
(x
j
(t))
+
n
P
j=1
b
ij
g
j
(x
j
(t−τ
j
(t)))+
n
P
j=1
l
ij
R
t
t−r(t)
h
j
(x
j
(s))ds
+
n
P
j=1
∂
γ
t
R
t
0
σ
ij
(s,x
j
(s),x
j
(s−τ(s)))dW
j
(s),t>0,
x
i
(t) = φ
i
(t),t∈[ϑ,0],
(1)
Ù¥§∂
β
t
Ú∂
γ
t
L«©êê§β ∈(
1
2
,1)§γ∈(
1
2
,β+
1
2
)§±9x(t)=φ(t),t∈[ϑ,0]´
•§(1)Щ^‡§Ù¥t7−→φ=(φ
1
(t),···,φ
n
(t))
T
Úx(t)=(x
1
(t),···,x
n
(t))
T
∈R
n
¥
´† ²ƒ'•þ¶C =diag(c
1
,c
2
,···,c
n
)¶·‚¦^A=(a
ij
)
n×n
!B =(b
ij
)
n×n
!
C =(c
ij
)
n×n
!D=(d
ij
)
n×n
ÚL=(l
ij
)
n×n
L«ØÓÝ¶·‚˜f
j
!g
j
Úh
j
-¹
¼ê§Ù¥f(x(t))=(f
1
(x(t)),···,f
n
(x(t)))
T
∈R
n
,g(x(t))=(g
1
(x(t)),···,g
n
(x(t)))
T
∈
R
n
,h(x(t))=(h
1
(x(t)),···,h
n
(x(t)))
T
∈R
n
¶lÑžCò´Ú©ÙªžCò´.L«
•τ(t)Úr(t)"4·‚IPϑ=inf
t>0
{t−τ(t),t−r(t)}"dτ(t)Úr(t)´šKëY¼ê"d§
w(t) = (w
1
(t),w
2
(t),···,w
n
(t))
T
∈R
n
´Vǘm(Ω,F,P)¥n‘ÙK$Ä"
Ø©Ù{Ü©|„Xe"312!¥§·‚‰Ñ'uMittag-Lefler¼êb¿O˜
(J"1n!|^ØÄ:½n?ØäklÑÚ©Ùž¢Caputo©ê‘Ň©•§)•
35!•˜5ÚìC-½5"
2.ý•£
•¢y·‚̇8I§·‚Œ±b÷v±e^‡µ
(A1) ò´τ(t)§r(t)´ëY¼ê§÷vt−τ(t) →∞Út−r(t) →∞ast→∞"
(A2)Nf
j
(·)!g
j
(·)Úh
j
(·)§÷vf(0)≡0,g(0)≡0,h(0)≡0§σ
ij
(t,0,0)≡0Úä
kLipschitz~êÛLipschiz¼êα
j
§β
j
±9γ
j
Ù¥j= 1,2···n,
(A3) éuz‡i,j= 1,2,···,n§•3~êµ
j
andυ
j
§¦
(σ
ij
(t,x,y)−σ
ij
(t,u,v))
2
6µ
j
(x
j
−u
j
)
2
+υ
j
(y
j
−v
j
)
2
.
f
j
(·),g
j
(·),h
j
(·)andσ
ij
(t,·,·)¼êäkÛÜLipschitzÚ‚5O•Œ±(•§(1))•35Ú
•˜5^‡"
½Â2.1.[5]Mittag-Lefler¼êa.Vëê¼êd?êÐm½Â
E
α,β
(z) =
∞
X
k=0
z
k
Γ(kα+β)
,α,β>0,z∈C.
DOI:10.12677/pm.2022.12122212047nØêÆ
Á•
Ún2.1.[6]bE
α,β
´Mittag-Leffler¼ê§·‚Œ±
Z
∞
0
e
−st
t
β−1
E
α,β
(±at
α
)dt=
s
α−β
(s
α
∓a)
,<(α)>0,<(β)>0,<(s)>0,
,
L

t
β−1
E
α,β
(±at
α
)

(s) =
s
α−β
(s
α
∓a)
,<(α)>0,<(β)>0,<(s)>0,
Ù¥<L«¢Ü§LL«.Ê.dC†"
Ún2.2.[7]XJ0<α<2,β´?¿˜‡ê,πα/2<µ<min{π,πα},,•3M>0÷v
E
α,β
(z) 6
M
1+|z|
,µ<|arg(z)|<π,|z|>0.
Ún2.3.[7]bE
α,β
´Mittag-Leffler¼ê,·‚Œ±
Z
t
0
E
α,β
(λs
α
)s
β−1
ds= t
β
E
α,β+1
(λt
α
),α>0,β>0.
Ún2.4.[7]bE
α,β
´Mittag-Leffler¼ê,·‚Œ±
1
Γ(γ)
Z
t
0
(t−s)
γ−1
E
α,β
(λs
α
)s
β−1
ds= t
β+γ−1
E
α,β+γ
(λt
α
),α>0,β>0,γ>0.
Ún2.5.[8]b(X,Σ,µ)´σk•ÿݘm,M´ëYÛÜ,[M] : [0,T]×Ω →R
+
´§g
C"eψ: X×[0,T]×Ω →R,T∈(0,∞)ŒÅÚÿþ§éuω∈Ω,
Z
X

Z
T
0
|ψ(x,t,ω)|
2
d[M](t,ω)

1
2
dµ(x)<∞,
@oéuA¤kω∈Ωéu¤kt∈[0,T],
Z
X
Z
t
0
ψ(x,r,ω)dM(r)dµ(x) =
Z
t
0
Z
X
ψ(x,t,ω)dµ(x)dM(r).
3©¥§·‚ò•ıe˜mþ•§(1))"½ÂS
φ
´F
0
·AL§˜mµϕ(t,ω):
[ϑ,∞)×Ω →R
n
÷vϕ∈C

[ϑ,∞),L
P
F
0
(Ω;R
n
)

‰ê½ÂXeµ
kϕk
p
:= sup
t>ϑ
E
n
X
i=1
|ϕ
i
(t)|
p
!
.
,,·‚-ϕ(t,·) = φ(t)3t∈[ϑ,0]þ…
P
n
i=1
E|ϕ
i
(t)|
p
→0t→∞,S
φ
´˜‡˜m"
3.̇(J
4˜c
i,i
(·)=c
i,i
(·)+λ
i
Ù¥λ
i
´ê…˜c
i,j
(·)=c
i,j
(·)Ù¥i6=j,i,j=1,2,···,n.XÚ(1)U
DOI:10.12677/pm.2022.12122212048nØêÆ
Á•
‰































∂
β
t

x
i
(t)−
n
P
j=1
d
ij
x
j
(t−τ
j
(t))

= −λ
i

x
i
(t)−
n
P
j=1
d
ij
x
j
(t−τ
j
(t))

−λ
i
n
P
j=1
d
ij
x
j
(t−τ
j
(t))+
n
P
j=1
˜c
ij
x
j
(t)+
n
P
j=1
a
ij
f
j
(x
j
(t))
+
n
P
j=1
b
ij
g
j
(x
j
(t−τ
j
(t)))+
n
P
j=1
l
ij
R
t
t−r(t)
h
j
(x
j
(s))ds
+
n
P
j=1
∂
γ
t
R
t
0
σ
ij
(s,x
j
(s),x
j
(s−τ(s)))dW
j
(s),t>0,
x
i
(t) = φ
i
(t),t∈[ϑ,0].
Ún3.1.^±e/ªL«Caputo©ê‘Ň©XÚ
(
∂
β
t
ϕ(t) = λϕ(s)+af(ϕ(t))+∂
α
t
R
t
0
B(s)dW
s
,
ϕ(0) = ϕ
0
,
Ù¥a´~ê…B(s) : [0,∞) →R,@o§ù‡XÚduÈ©•§
ϕ(s) =ϕ
0
E
β,1
(λt
β
)+a
Z
t
0
(t−s)
β−1
E
β,β
(λ(t−s)
β
)f(ϕ(s))ds
+
Z
t
0
(t−s)
β−α
E
β,β−α+1
(λ(t−s)
β
)B(s)dW
s
.
Proof.ÏL½ÂCaputo©êê§·‚Œ±
1
Γ(1−β)
d
dt
Z
t
0
(t−s)
−β
(ϕ(s)−ϕ(0))ds=λϕ(s)+af(ϕ(t))
+
1
Γ(1−α)
d
dt
Z
t
0
(t−s)
−α
Z
s
0
B(u)dW
u
ds.
éªü>È©¿…¦^½n2.5,
1
Γ(1−β)
Z
t
0
(t−s)
−β
(ϕ(s)−ϕ(0))ds= ∗λ
Z
t
0
ϕ(s)ds+a
Z
t
0
f(ϕ(s))ds
+
1
Γ(2−α)
Z
t
0
(t−s)
1−α
B(s)dW
s
.
,
1
Γ(1−β)
Z
t
0
(t−s)
−β
ϕ(s)ds=
ϕ(0)
(1−β)Γ(1−β)
t
1−β
+λ
Z
t
0
ϕ(s)ds+a
Z
t
0
f(ϕ(s))ds
+
1
Γ(2−α)
Z
t
0
(t−s)
1−α
B(s)dW
s
.
DOI:10.12677/pm.2022.12122212049nØêÆ
Á•
3ü>¦^.Ê.dC†§·‚Œ±
1
Γ(1−β)
Γ(1−β)
s
1−β
ˆϕ(s) =
ϕ(0)
(1−β)Γ(1−β)
Γ(2−β)
s
2−β
+λ
1
s
ˆϕ(s)+a
1
s
ˆ
f(ϕ(s))
+
1
Γ(2−α)
Γ(2−α)
s
2−α
Z
∞
0
e
−st
B(t)dW
t
,
'u
R
t
0
(t−s)
1−α
B(s)dW
s
.Ê.dC†,·‚¦^Ún2.5§
Z
∞
0
e
−st
Z
t
0
(t−v)
1−α
B(v)dW
v
dt
=
Z
∞
0
B(v)dW
v
Z
∞
v
e
−st
(t−v)
1−α
dt
=
Z
∞
0
B(v)dW
v
Z
∞
0
e
−s(u+v)
u
1−α
du
=
Z
∞
0
e
−sv
B(v)dW
v
Z
∞
0
e
−su
u
1−α
du,
Ïd,
ˆϕ(s) =
s
β−1
s
β
−λ
ϕ(0)+
1
s
β
−λ
ˆ
f(ϕ(s))+
s
α−1
s
β
−λ
Z
∞
0
e
−st
B(t)dW
t
.
ü>_.Ê.dC†±9ŠâÚn2.1,·‚
ϕ(s) =ϕ
0
E
β,1
(λt
β
)+a
Z
t
0
(t−s)
β−1
E
β,β
(λ(t−s)
β
)f(ϕ(s))ds
+
Z
t
0
(t−s)
β−α
E
β,β−α+1
(λ(t−s)
β
)B(s)dW
s
.
•{B,P
˜
E
α,β
(t) =t
β−1
E
α,β
(−λ
i
t
α
)"Ïd§·‚Œ±ÏL†Ú n3.1y²aq•{-
•§(1)"
x
i
(t)=

φ
i
(0)−
n
X
j=1
d
ij
φ
j
(0−τ
j
(0))

E
β,1
(−λ
i
t
β
)+
n
X
j=1
d
ij
x
j
(t−τ
j
(t))
−λ
i
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
d
ij
x
j
(s−τ
j
(s))ds+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
˜c
ij
x
j
(s)ds
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
a
ij
f
j
(x
j
(s))ds+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
b
ij
g
j
(x
j
(s−τ
j
(s)))ds
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
l
ij
Z
s
s−r(s)
h
j
(x
j
(u))duds
+
Z
t
0
˜
E
β,β−γ+1
(t−s)
n
X
j=1
σ
ij
(s,x
j
(s),x
j
(s−τ(s)))dW
j
(s).
DOI:10.12677/pm.2022.12122212050nØêÆ
Á•
ÏL(Qϕ)(t) = φ(t)½ÂŽf§Ù¥t∈[−τ,0],t>0,i= 1,2,3,···,n,
(Qϕ)
i
(t)=

φ
i
(0)−
n
X
j=1
d
ij
φ
j
(0−τ
j
(0))

E
β,1
(−λ
i
t
β
)+
n
X
j=1
d
ij
ϕ
j
(t−τ
j
(t))
−λ
i
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
d
ij
ϕ
j
(s−τ
j
(s))ds(2)
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
˜c
ij
ϕ
j
(s)ds(3)
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
a
ij
f
j
(ϕ
j
(s))ds(4)
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
b
ij
g
j
(ϕ
j
(s−τ
j
(s)))ds
+
Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
l
ij
Z
s
s−r(s)
h
j
(ϕ
j
(u))duds
+
Z
t
0
˜
E
β,β−γ+1
(t−s)
n
X
j=1
σ
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))dW
j
(s)
=:
8
X
k=1
J
ki
.
½n3.1.b£A1¤-£A3¤¤á¿…÷v±e^‡§
(i)¼êr(t)±~êr•.§Ù¥>0;
(ii)•3T
1
>0,÷v
8
p−1
n
X
i=1
(
n
X
j=1
|d
ij
|
q
!
p
q
+

M
λ
i

p
"
λ
p
i
n
X
j=1
|d
ij
|
q
!
p
q
+
n
X
j=1
|˜c
ij
|
q
!
p
q
(5)
+
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
+
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
+r
p
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
#
+n
p−1
2
p
2
−1

µ
p
2
+υ
p
2


M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1

p
2
)
<1,
Ù¥M´½n2.2¥,µ= max{µ
1
,µ
2
,···,µ
n
},ν= max{ν
1
,ν
2
,···,ν
n
},Q:S
φ
→S
φ
´Ø
N…•§(1))´•˜¿…3pÝ¥ìC-½.
Proof.·‚ò¦^ØÄ:½n5l±eÚ½y²"
DOI:10.12677/pm.2022.12122212051nØêÆ
Á•
Ú½1.·‚y²ëY5"4x∈S
φ
,t
1
>0,r∈R…|r|v¿…r>0t
1
=0.dÚn2.2,¦
^H¨olderØª,·‚k
E
"
n
X
i=1
|J
3i
(t
1
+r)−J
3i
(t
1
)|
p
#
=E

n
X
i=1




λ
i
Z
t
1
0
h
˜
E
β,β
(t
1
−s)−
˜
E
β,β
(t
1
+r−s))
i
n
X
j=1
d
ij
ϕ
j
(s−τ(s))ds
−λ
i
Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)
n
X
j=1
d
ij
ϕ
j
(s−τ(s))ds




p

6(2n)
p−1
n
X
i=1
n
X
j=1
λ
p
i
E





Z
t
1
0
h
˜
E
β,β
(t
1
−s)−
˜
E
β,β
(t
1
+r−s))
i
d
ij
ϕ
j
(s−τ(s))ds




p

+(2n)
p−1
n
X
i=1
n
X
j=1
λ
p
i
E





Z
t
1
+r
t
1
˜
E
β,β−γ+1
(t
1
+r−s)d
ij
ϕ
j
(s−τ(s))ds




p

=:(2n)
p−1
n
X
i=1
n
X
j=1
λ
p
i
I
1
+(2n)
p−1
n
X
i=1
n
X
j=1
λ
p
i
I
2
.
y3·‚?Ø
I
1
62
p−1

E





Z
t
1
0

(t
1
−s)
β−1
E
β,β
(−λ
i
(t
1
−s)
β
)
−(t
1
−s)
β−1
E
β,β
(−λ
i
(t
1
+r−s)
β
)

×d
ij
ϕ
j
(s−τ(s))ds




p

+E





Z
t
1
0

(t
1
−s)
β−1
E
β,β
(−λ
i
(t
1
+r−s)
β
)
−(t
1
+r−s)
β−1
E
β,β
(−λ
i
(t
1
+r−s)
β
)

×d
ij
ϕ
j
(s−τ(s))ds




p

=:2
p−1
I
11
+2
p−1
I
12
.
¦^H¨olderØª,·‚
I
11
=E





Z
t
1
0

(t
1
−s)
β−1

E
β,β
(−λ
i
(t
1
−s)
β
)−E
β,β
(−λ
i
(t
1
+r−s)
β
)

d
ij
ϕ
j
(s−τ(s))ds




p

=E





Z
t
1
0

(t
1
−s)
β−1
q
(t
1
−s)
β−1
p

E
β,β
(−λ
i
(t
1
−s)
β
)
−E
β,β
(−λ
i
(t
1
+r−s)
β
)

d
ij
ϕ
j
(s−τ(s))ds




p

6E






Z
t
1
0
(t
1
−s)
(β−1)
ds

p
q
Z
t
1
0
(t
1
−s)
(β−1)

E
β,β
(−λ
i
(t
1
−s)
β
)
−E
β,β
(−λ
i
(t
1
+r−s)
β
)

d
ij
ϕ
j
(s−τ(s))

p
ds





6

t
β
1
β

p−1
d
p
ij
Z
t
1
0
(t
1
−s)
(β−1)
E





ϕ
j
(s−τ(s))




p

ds
×sup
06s6t
1





E
β,β
(−λ
i
(t
1
−s)
β
)−E
β,β
(−λ
i
(t
1
+r−s)
β
)

p




.
Ï•(E
β,β
(−λ
i
(t
1
−s)
β
)´ëY…E




ϕ
j
(s−τ(s))




p
k.,¤±·‚N´I
11
→0,r→0.
DOI:10.12677/pm.2022.12122212052nØêÆ
Á•
¦^H¨olderØªÚÚn2.2,
I
12
=E





Z
t
1
0

(t
1
−s)
β−1
−(t
1
+r−s)
β−1

E
β,β
(−λ
i
(t
1
+r−s)
β
)d
ij
ϕ
j
(s−τ(s))ds




p

6E






Z
t
1
0

(t
1
−s)
β−1
−(t
1
+r−s)
β−1

ds

p
q
×
Z
t
1
0

(t
1
−s)
β−1
−(t
1
+r−s)
β−1

E
β,β
(−λ
i
(t
1
+r−s)
β
)d
ij
ϕ
j
(s−τ(s))

p
ds





=

1
β
t
β
1
+
1
β
r
β
−
1
β
(t
1
+r)
β

p
q
×E





Z
t
1
0

(t
1
−s)
β−1
−(t
1
+r−s)
β−1

E
β,β
(−λ
i
(t
1
+r−s)
β
)d
ij
ϕ
j
(s−τ(s))

p
ds





6

1
β
t
β
1
+
1
β
r
β
−
1
β
(t
1
+r)
β

p
q
×E





Z
t
1
0

(t
1
−s)
β−1
−(t
1
+r−s)
β−1

M
(1+λ
i
(t
1
+r−s)
β
)
p
[d
ij
ϕ
j
(s−τ(s))]
p
ds





6

1
β
t
β
1
+
1
β
r
β
−
1
β
(t
1
+r)
β

p
d
p
ij
M
(1+λ
i
(r)
β
)
p




E[|ϕ
j
(s−τ(s))|
p
]




.

1
β
t
β
1
+
1
β
r
β
−
1
β
(t
1
+r)
β

→0,r→0…ϕ∈S
φ
,E





ϕ
j
(s−τ(s))




p

k.§Œ±I
12
→0,
r→0.¤±I
1
→0,r→0.
éuI
2
,·‚ƒÓ?Ø
E





Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)d
ij
ϕ
j
(s−τ(s))ds




p

=E





Z
t
1
+r
t
1
h
˜
E
β,β
(t
1
+r−s)
i
1
q
h
˜
E
β,β
(t
1
+r−s)
i
1
p
d
ij
ϕ
j
(s−τ(s))ds




p

6E






Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)ds

p
q
Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)d
p
ij
ϕ
j
(s−τ(s))
p
ds





6

Z
t
1
+r
t
1
(t
1
+r−s)
β−1
1+λ
i
(t
1
+r−s)
β
ds

p
q
E





Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)d
p
ij
ϕ
j
(s−τ(s))
p
ds





6d
p
ij
(
1
λ
i
β
)
(p−1)
(ln(1+λ
i
r
β
))
p−1




Z
t
1
+r
t
1
˜
E
β,β
(t
1
+r−s)E[|ϕ
j
(s−τ(s))|
p
]ds




.
w,,ln(1+λ
i
r)→0r→0…ϕL
P
-‰êk.,·‚I
2
→0r→0.nþ¤,
E[
P
n
i=1
|J
3i
(t
1
+r)−J
3i
|
p
] →0,r→0.
aq/§·‚Œ±
E
"
n
X
i=1
|J
4i
(t
1
+r)−J
4i
(t
1
)|
p
#
→0,r→0,E
"
n
X
i=1
|J
5i
(t
1
+r)−J
5i
(t
1
)|
p
#
→0,r→0,
E
"
n
X
i=1
|J
6i
(t
1
+r)−J
6i
(t
1
)|
p
#
→0,r→0,E
"
n
X
i=1
|J
7i
(t
1
+r)−J
7i
(t
1
)|
p
#
→0,r→0.
DOI:10.12677/pm.2022.12122212053nØêÆ
Á•
¦^Burkh¨olderØª§·‚Œ±
E
"
n
X
i=1
|J
8i
(t
1
+r)−J
8i
(t
1
)|
p
#
=E

n
X
i=1




Z
t
1
0
h
˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)
i
n
X
j=1
σ
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))dw
j
(s)
+
Z
t
1
+r
t
1
˜
E
β,β−γ+1
(t
1
+r−s)
n
X
j=1
σ
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))dw
j
(s)




p

6c
p
(2n)
p−1
n
X
i=1
n
X
j=1
E





Z
t
1
0
h
˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)
i
2
σ
2
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))ds




p
2

+(2n)
p−1
E





Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
σ
2
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))ds




p
2

.
Šâ^‡(A3)ÚH¨olderØª§Ù¥
1
p
0
+
1
q
0
= 1,p
0
=
p
p−2
,q
0
=
p
2
§·‚Œ±
E
"
n
X
i=1
|J
8i
(t
1
+r)−J
8i
(t
1
)|
p
#
6c
p
(2n)
p−1
2
p
2
−1
n
X
i=1
n
X
j=1
E
"




Z
t
1
0
h
˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)
i
2
µ
j
ϕ
j
(s)
2
ds




p
2
#
+c
p
(2n)
p−1
2
p
2
−1
n
X
i=1
n
X
j=1
E





Z
t
1
0

˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)

2
×υ
j
ϕ
j
(s−τ(s))
2
ds




p
2

+(2n)
p−1
2
p
2
−1
E
"




Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
µ
j
ϕ
j
(s)
2
ds




p
2
#
+(2n)
p−1
2
p
2
−1
E
"




Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
υ
j
ϕ
j
(s−τ(s))
2
ds




p
2
#
6c
p
(2n)
p−1
2
p
2
−1
n
X
i=1
n
X
j=1
E
"




Z
t
1
0
h
˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)
i
2
µ
j
ϕ
j
(s)
2
ds




p
2
#
+c
p
(2n)
p−1
2
p
2
−1
n
X
i=1
n
X
j=1
E





Z
t
1
0
h
˜
E
β,β−γ+1
(t
1
+r−s)−
˜
E
β,β−γ+1
(t
1
−s)
i
2
υ
j
ϕ
j
(s−τ(s))
2
ds




p
2

+(2n)
p−1
2
p
2
−1

Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
ds

p−2
2
E





Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
µ
p
2
j
ϕ
j
(s)
p
ds





+(2n)
p−1
2
p
2
−1

Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
ds

p−2
2
×E





Z
t
1
+r
t
1
h
˜
E
β,β−γ+1
(t
1
+r−s)
i
2
υ
p
2
j
ϕ
j
(s−τ(s))
p
ds





.
DOI:10.12677/pm.2022.12122212054nØêÆ
Á•
du
Z
t
1
+r
t
1
(t−s)
2(β−γ)
E
β,β−γ+1
(−λ
i
(t
1
+r−s)
β
)
2
ds6
Z
t
1
+r
t
1
M
2
(t
1
+r−s)
2β−2γ
(1+λ
i
(t
1
+r−s)
β
)
2
ds
6M
2
Z
t
1
+r
t
1
(t
1
+r−s)
2β−2γ
ds
=
M
2
2β−2γ+1
r
2β−2γ+1
→0,asr→0,
…(t
1
+r−s)
β−γ
E
β,β−γ+1
(−λ
i
(t
1
+r−s)
β
)ëY,¤±·‚§
r→0,E[
P
n
i=1
|J
8i
(t
1
+r)−J
8i
(t
1
)|
p
] →0.
Ïd,QëY"
Ú½2.·‚y²Q(S
φ
) ⊆S
φ
.·‚m©?رeØªmý,
n
X
i=1
E|((Qϕ)
i
(s))|
p
=
n
X
i=1
E
"





8
X
k=1
J
ki
(s)





p
#
68
p−1
8
X
k=1
n
X
i=1
E[|J
ki
(s)|
p
].
dH¨olderØª
E
"
n
X
i=1
|J
3i
|
p
#
=E
"
n
X
i=1
λ
p
i





Z
t
0
˜
E
β,β
(t−s)
1
q
˜
E
β,β
(t−s)
1
p
n
X
j=1
d
ij
ϕ
j
(s−τ(s))
!
ds





p
#
6
n
X
i=1
λ
p
i

Z
t
0
˜
E
β,β
(t−s)ds

p
q
E
"





Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
d
ij
ϕ
j
(s−τ(s))
!
p
ds





#
6
n
X
i=1
λ
p
i
n
X
j=1
d
q
ij
!
p
q

Z
t
0
˜
E
β,β
(t−s)ds

p
q
n
X
j=1
E





Z
t
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





.
Ï
P
n
i=1
E|ϕ
i
(t)|
p
→0t→∞,éu>0,•3t÷vt>T
1
L²
P
n
i=1
E|ϕ
i
(t)|
p
<.ÏLÚn2.2
Ú2.3,
E
"
n
X
i=1
|J
3i
|
p
#
6
n
X
i=1
λ
p
i
n
X
j=1
d
q
ij
!
p
q

Z
t
0
˜
E
β,β
(t−s)ds

p
q
n
X
j=1
E





Z
t
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





=
n
X
i=1
λ
p
i
n
X
j=1
d
q
ij
!
p
q

t
β
E
β,β+1

−λ
i
t
β

p−1
E





Z
t
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





6
n
X
i=1
λ
p
i
n
X
j=1
d
q
ij
!
p
q

Mt
β
1+λ
i
t
β

p−1
E





Z
t
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





.
DOI:10.12677/pm.2022.12122212055nØêÆ
Á•
4·‚?Ø
E





Z
t
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





6E





Z
T
1
0
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





+E





Z
t
T
1
˜
E
β,β
(t−s)(ϕ
j
(s−τ(s)))
p
ds





6sup
06s6T
1
[E[(ϕ
j
(s−τ(s)))
p
]]
Z
T
1
0
˜
E
β,β
(t−s)ds+
Z
t
T
1
˜
E
β,β
(t−s)ds
6sup
06s6T
1
[E[(ϕ
j
(s−τ(s)))
p
]]
Z
T
1
0
M(t−s)
(β−1)
1+λ
i
(t−s)
β
ds+

Mt
β
1+λ
i
t
β

.
Ïd,E[
P
n
i=1
|J
3i
|
p
] →0t→∞.
Ï
P
n
i=1
E|ϕ
i
(t)|
p
→0t→∞,éu?Û>0,•3t÷vt>T
2
L²
P
n
i=1
E|ϕ
i
(t)|
p
<.¦^Itˆoå
úª,H¨olderØª§Ù¥
1
p
0
+
1
q
0
= 1,p
0
=
p
p−2
,q
0
=
p
2
Ú^‡(A3),
E
"
n
X
i=1
|J
8i
|
p
#
6n
p−1
n
X
i=1
n
X
j=1
E
"




Z
t
0
˜
E
β,β−γ+1
(t−s)σ
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))dW
j
(s)




p
#
=n
p−1
n
X
i=1
n
X
j=1
E





Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
σ
2
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))ds





p
2
6n
p−1
n
X
i=1
n
X
j=1
E





Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2−
4
p
h
˜
E
β,β−γ+1
(t−s)
i
4
p
×

µ
j
ϕ
2
j
(s)+υ
j
ϕ
2
j
(s−τ(s))

ds




p
2

6n
p−1
n
X
i=1
n
X
j=1
2
p
2
−1

Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
ds

p−2
2
×E





Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2

µ
p
2
j
ϕ
p
j
(s)

ds





+n
p−1
n
X
i=1
n
X
j=1
2
p
2
−1

Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
ds

p−2
2
×E





Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2

υ
p
2
j
ϕ
p
j
(s−τ(s))

ds





6n
p−1
n
X
i=1
2
p
2
−1

µ
p
2
+υ
p
2

×

Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
ds

p−2
2
Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
n
X
j=1
E|ϕ
j
(s)|
p
ds
6n
p−1
n
X
i=1
2
p
2
−1

µ
p
2
+υ
p
2


M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1

p−2
2
×

Z
T
1
0

Mt
β−1
1+λ
i
t
β

2
n
X
j=1
sup
06s6T
1

E

ϕ
p
j
(s)

ds
+

M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1



.
DOI:10.12677/pm.2022.12122212056nØêÆ
Á•
3þ˜‡Øª¥§·‚/ÏÚn2.2Ú0<T
1
<t¦^±eO§
Z
t
0
(t−s)
2β−2γ

E
β,β−γ+1
(−λ(t−s)
β
)

2
ds
=
Z
t
0
s
2β−2γ

E
β,β−γ+1
(−λs
β
)

2
ds
=
Z
T
1
0
s
2β−2γ

E
β,β−γ+1
(−λs
β
)

2
ds+
Z
t
T
1
s
2β−2γ

E
β,β−γ+1
(−λs
β
)

2
ds
6
Z
T
1
0
M
2
s
(2β−2γ)
(1+λs
β
)
2
ds+
Z
t
T
1
M
2
s
(2β−2γ)
(1+λs
β
)
2
ds
6M
2
Z
T
1
0
s
(2β−2γ)
ds+M
2
Z
t
T
1
s
(2β−2γ)
λ
2
s
2β
ds
=M
2

1
2β−2γ+1
T
2β−2γ+1
1
+
1
(2γ−1)λ
2
(
1
T
2γ−1
1
−
1
t
2γ−1
)

6M
2

1
2β−2γ+1
T
2β−2γ+1
1
+
1
(2γ−1)λ
2
T
2γ−1
1

.
Ïd,E[
P
n
i=1
|J
8i
|
p
]→0,t→∞.¦^aqØ:§·‚
P
n
i=1
E[|(Qϕ)
i
(s)|
p
]→0t→
∞.Ïd,Q(S
φ
) ⊆S
φ
.
Ú½3.·‚y²Q´˜‡Ø N"éu?¿ϕ,ψ∈S
φ
,
sup
t>0
(
E
"
n
X
i=1
|(Pϕ)
i
(t)−(Pψ)
i
(t)|
p
#)
67
p−1
sup
t>0
(
E
"
n
X
i=1





n
X
j=1
d
ij
(ϕ
j
(t−τ(t))−ψ
j
(t−τ(t)))





p
#)
+7
p−1
sup
t>0

E

n
X
i=1




λ
i
Z
t
0
(t−s)
β−1
E
β,β
(−λ
i
(t−s)
β
)
n
X
j=1
d
ij
(ϕ
j
(s−τ(s))−ψ
j
(s−τ(s)))ds




p

+7
p−1
sup
t>0
(
E
"
n
X
i=1





Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
˜c
ij
(ϕ
j
(s)−ψ
j
(s))ds





p
#)
+7
p−1
sup
t>0
(
E
"
n
X
i=1





Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
a
ij
(f
j
(ϕ
j
(s))−f
j
(ψ
j
(s)))ds





p
#)
+7
p−1
sup
t>0

E

n
X
i=1




Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
b
ij
(g
j
(ϕ
j
(s−τ(s))−g
j
(ψ
j
(s−τ(s))))ds




p

+7
p−1
sup
t>0

E

n
X
i=1




Z
t
0
˜
E
β,β
(t−s)
n
X
j=1
l
ij
Z
s
s−r(s)
(h
j
(ϕ
j
(u))−h
j
(ψ
j
(u)))duds




p

+7
p−1
sup
t>0
(
E
"
n
X
i=1





Z
t
0
˜
E
β,β−γ+1
(t−s)
×
n
X
j=1
"
σ
ij
(s,ϕ
j
(s),ϕ
j
(s−τ(s)))−σ
ij
(s,ψ
j
(s),ψ
j
(s−τ(s)))
#
dW
j
(s)





p
#)
.
DOI:10.12677/pm.2022.12122212057nØêÆ
Á•
ÏLÚ½2§·‚
E
"
n
X
i=1
|J
4i
|
p
#
6
n
X
i=1
n
X
j=1
|˜c
ij
|
q
!
p
q
n
X
j=1

Mt
β
1+λ
i
t
β

p−1
E

Z
t
0
˜
E
β,β
(t−s)|ϕ
j
(s)|
p
ds

,
E
"
n
X
i=1
|J
5i
|
p
#
6
n
X
i=1
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
n
X
j=1

Mt
β
1+λ
i
t
β

p−1
E

Z
t
0
˜
E
β,β
(t−s)|ϕ
j
(s)|
p
ds

,
E
"
n
X
i=1
|J
6i
|
p
#
6
n
X
i=1
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
n
X
j=1

Mt
β
1+λ
i
t
β

p−1
E

Z
t
0
˜
E
β,β
(t−s)|ϕ
j
(s−τ(s))|
p
ds

,
E
"
n
X
i=1
|J
7i
|
p
#
6r
p
n
X
i=1
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
n
X
j=1

Mt
β
1+λ
i
t
β

p−1
E

Z
t
0
˜
E
β,β
(t−s)|ϕ
j
(s)|
p
ds

.
Ïd§·‚k
sup
t>0
(
E
"
n
X
i=1
|(Pϕ)
i
(t)−(Pψ)
i
(t)|
p
#)
67
p−1
n
X
i=1
(
n
X
j=1
|d
ij
|
q
!
p
q
+

Z
t
0
˜
E
β,β
(t−s)ds

p
"
λ
p
i
n
X
j=1
|d
ij
|
q
!
p
q
+
n
X
j=1
|˜c
ij
|
q
!
p
q
+
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
+
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
+r
p
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
#
+n
p−1
2
p
2
−1

µ
p
2
+υ
p
2


Z
t
0
h
˜
E
β,β−γ+1
(t−s)
i
2
ds

p
2
)
sup
t>0
(
E
"
n
X
i=1
|ϕ
i
(t)−ψ
i
(t)|
p
#)
67
p−1
n
X
i=1
(
n
X
j=1
|d
ij
|
q
!
p
q
+

M
λ
i

p
"
λ
p
i
n
X
j=1
|d
ij
|
q
!
p
q
+
n
X
j=1
|˜c
ij
|
q
!
p
q
+
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
+
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
+r
p
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
#
+n
p−1
2
p
2
−1

µ
p
2
+υ
p
2


M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1

p
2
sup
t>0
(
E
"
n
X
i=1
|ϕ
i
(t)−ψ
i
(t)|
p
#)
.
Ïd§d(5),·‚Q: S
φ
→S
φ
´Ø N"dÚn2.2ÚØ Nn,·‚ uyQäk •˜
ØÄ:x(t)´•§(1))"
Ú½4.·‚ y² •§)´pÝ-½"dÚ n2.2,4·‚ ÀJδ∈(0,)÷v8
p−1
M
p
δ<(1−α),
Ù¥α´•§(5)†>..XJx(t)= (x
1
(t),···,x
n
(t))
T
´•§(1))…÷vkφk
p
<δ,¤±x(t)=
(Qx)(t).·‚½Â
P
n
i=1
E|x
i
(t)|
p
<éu¤kt>0.·‚b•3t
∗
>0÷v
P
n
i=1
E|x
i
(t
∗
)|
p
=
DOI:10.12677/pm.2022.12122212058nØêÆ
Á•
…
P
n
i=1
E|x
i
(t)|
p
<éuϑ6t<t
∗
.·‚y3O
P
n
i=1
E|x
i
(t
∗
)|
p
n
X
i=1
E|x
i
(t
∗
)|
p
68
p−1
E

n
X
i=1




φ
i
(0)−
n
X
j=1
d
ij
φ
j
(0−τ
j
(0))




p




E
β,1
(−λ
i
t
∗β
)




p

+8
p−1
E

n
X
i=1




n
X
j=1
d
ij
x
j
(t
∗
−τ(t
∗
))




p

+8
p−1
E

n
X
i=1




λ
i
Z
t
∗
0
(t
∗
−s)
β−1
E
β,β
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
d
ij
x
j
(s−τ(s))ds




p

+8
p−1
E

n
X
i=1




Z
t
∗
0
(t
∗
−s)
β−1
E
β,β
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
˜c
ij
x
j
(s)ds




p

+8
p−1
E

n
X
i=1




Z
t
∗
0
(t
∗
−s)
β−1
E
β,β
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
a
ij
f
j
(x
j
(s))ds




p

+8
p−1
E

n
X
i=1




Z
t
∗
0
(t
∗
−s)
β−1
E
β,β
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
b
ij
g
j
(x
j
(s−τ(s))ds




p

+8
p−1
E

n
X
i=1




Z
t
∗
0
(t
∗
−s)
β−1
E
β,β
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
l
ij
Z
s
s−r(s)
h
j
(x
j
(v)dvds




p

+8
p−1
E
"
n
X
i=1





Z
t
∗
0
(t
∗
−s)
β−γ
E
β,β−γ+1
(−λ
i
(t
∗
−s)
β
)
n
X
j=1
σ
ij
(s,x
j
(s),x
j
(s−τ(s)))dW
j
(s)





p
#
.
d(5)Út
∗
ߎ,Œ±
n
X
i=1
E|x
i
(t
∗
)|
p
68
p−1
E
"
n
X
i=1





φ
i
(0)−
n
X
j=1
d
ij
φ
j
(t
∗
−τ
j
(0))





p


E
β,1
(−λ
i
t
∗β
)


p
#
+8
p−1
n
X
i=1
(
n
X
j=1
|d
ij
|
q
!
p
q
+

Mt
β
1+λ
i
t
β

p
"
λ
p
i
n
X
j=1
|d
ij
|
q
!
p
q
+
n
X
j=1
|˜c
ij
|
q
!
p
q
+
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
+
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
+r
p
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
#
+n
p−1
2
p
2
−1

µ
p
2
+υ
p
2


M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1

p
2
)

68
p−1
M
p
δ+8
p−1
n
X
i=1
(
n
X
j=1
|d
ij
|
q
!
p
q
+

M
λ
i

p
"
λ
p
i
n
X
j=1
|d
ij
|
q
!
p
q
+
n
X
j=1
|˜c
ij
|
q
!
p
q
+
n
X
j=1
|a
ij
|
q
|α
j
|
q
!
p
q
+
n
X
j=1
|b
ij
|
q
|β
j
|
q
!
p
q
+r
p
n
X
j=1
|l
ij
|
q
|γ
j
|
q
!
p
q
#
+n
p−1
2
p
2
−1

µ
p
2
+υ
p
2


M
2
2β−2γ+1
T
2β−2γ+1
1
+
M
2
(2γ−1)λ
2
i
T
2γ−1
1

p
2
)

<(1−α)+α= ,
DOI:10.12677/pm.2022.12122212059nØêÆ
Á•
´gñ"Ïd§•§(1)²…)3pÝ¥´ìC-½"
y²(å"
4.(Ø
3ù‘óŠ¥§·‚|^ØÄ:½nïÄÕžm¥äklÑÚ©Ùž¢©ê‘Ň
© •§)•35!•˜5ÚìC-½5"3ØÓ˜ mÚ5‰e§ù‘óŠŒU¬ØÓ
(J§·‚ò3™5UY?˜ÚïÄ"
ë•©z
[1]Anber,A.,Belarbi,S.andDahmani,Z.(2013)NewExistenceandUniquenessResultsfor
FractionalDifferentialEquations.Analele¸stiint¸ificealeUniversit˘at¸ii“Ovidius”Constant¸a.
SeriaMatematic˘a,21,33-41.https://doi.org/10.2478/auom-2013-0040
[2]Dhaigude,D.andBhairat,S.(2017)ExistenceandUniquenessofSolutionofCauchy-Type
Problem for Hilfer Fractional Differential Equations.CommunicationsinAppliedAnalysis, 22,
121-134.
[3]Zhang,F.R.andLi,C.P.(2011)StabilityAnalysisofFractionalDifferentialSystemswith
OrderLyingin(1,2).AdvancesinDifferenceEquations,2011,ArticleNo.213485.
https://doi.org/10.1155/2011/213485
[4]Chen,Z.Q.,Kim,K.H.andKim,P.(2015)FractionalTimeStochasticPartialDifferential
Equations.StochasticProcessesandTheirApplications,125,1470-1499.
https://doi.org/10.1016/j.spa.2014.11.005
[5]Chaurasia,V. andPandey,S. (2010)Onthe FractionalCalculusof GeneralizedMittag-Leffler
Function.SCIENTIA.SeriesA:MathematicalSciences,20,113-122.
[6]Mathai,A.andHaubold,H.(2008)Mittag-LefflerFunctionsandFractionalCalculus.In:
SpecialFunctionsforAppliedScientists,Springer,NewYork,79-134.
https://doi.org/10.1007/978-0-387-75894-72
[7]Podlubny,I.(1999)FractionalDifferentialEquations:AnIntroductiontoFractionalDeriva-
tives,FractionalDifferentialEquations,toMethodsofTheirSolutionandSomeofTheir
Applications.Elsevier,Amsterdam.
[8]Veraar,M.(2012)TheStochasticFubiniTheoremRevisited.Stochastics:AnInternational
JournalofProbabilityandStochasticProcesses,84,543-551.
https://doi.org/10.1080/17442508.2011.618883
DOI:10.12677/pm.2022.12122212060nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2021 Hans Publishers Inc. All rights reserved.