Pure Mathematics
Vol. 14  No. 05 ( 2024 ), Article ID: 88729 , 9 pages
10.12677/pm.2024.145212

Clifford半群上的罗巴算子

龚晓倩,尹碟

云南师范大学数学学院,云南 昆明

收稿日期:2024年4月12日;录用日期:2024年5月15日;发布日期:2024年5月31日

摘要

代数上的罗巴算子的理论已有丰富的成果。2021年,Guo,Lang和Sheng提出了群上罗巴算子的概念。最近,作为群上罗巴算子的推广,Catino,Mazzotta和Stefanelli又提出了Clifford半群上的(权为1的)罗巴算子。本文首先给出了Clifford半群上罗巴算子的一些新性质和新构造方法,然后提出了Clifford半群上权为−1的罗巴算子的概念,证明了Clifford半群上的罗巴算子和权为−1的罗巴算子之间存在一一对应关系,推广了群上罗巴算子的相关结果。

关键词

Clifford半群,罗巴算子

Rota-Baxter Operators on Clifford Semigroups

Xiaoqian Gong, Die Yin

School of Mathematics, Yunnan Normal University, Kunming Yunnan

Received: Apr. 12th, 2024; accepted: May 15th, 2024; published: May 31st, 2024

ABSTRACT

The theory of Rota-Baxter operators on algebras has been fruitful. In 2021, Guo, Lang and Sheng have introduced the notion of Rota-Baxter operators on groups. Recently, as a generalization of Rota-Baxter operators on groups, Catino, Mazzotta, and Stefanelli have proposed Rota-Baxter operators with weight 1 on Clifford semigroups. In this paper, we first give some new properties and construction methods of Rota-Baxter operators with weight 1 on Clifford semigroups, then propose the concept of Rota-Baxter operators with weight −1 on Clifford semigroups, and prove that there is a one-to-one correspondence between Rota-Baxter operators of weight 1 and −1 on Clifford semigroups. This extends the results of Rota-Baxter operators on groups.

Keywords:Clifford Semigroups, Rota-Baxter Operators

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言和预备

1960年,Baxter在 [1] 中首次考虑了交换代数上的罗巴算子。随后,许多作者对罗巴算子理论的发展做出了贡献,详情参见 [2] 。2021年,Guo,Lang和Sheng [3] 引入了群和李群上罗巴算子的概念,并给出这些算子的一些基本例子和性质。在 [4] 中取得初步突破后不久,许多作者在这个方向上进行了相当多的研究(参见 [5] - [12] )。具体来说,Bardakov和Gubarev [5] 研究了斜左括号与罗巴群之间的关系,并证明了每个罗巴群都会产生一个斜左括号且每个斜左括号都可以嵌入到一个罗巴群中。2023年,Bardakov和Gubarev [6] 给出了群上罗巴算子的不同构造。在 [8] 中,Das和Rathee研究了罗巴群的扩展和自同构。另一方面,Gao,Guo,Liu和Zhu [9] 构造了自由罗巴群,Goncharov [10] 研究了上交换Hopf代数上的罗巴算子。最近,Li和Wang在 [11] 中引入了罗巴系统,并研究了罗巴系统与罗巴群之间的关系。

2023年,Catino,Mazzotta和Stefanelli [7] 定义了Clifford半群上的罗巴算子,并将 [5] 中的一些结果推广到了Clifford半群。本文的目的是在文献 [7] 结论的基础上进一步讨论Clifford半群上的罗巴算子。在给出一些基本概念和结果后,给出了Clifford半群上罗巴算子的一些性质和构造方法,然后提出了Clifford半群上权为−1的罗巴算子的概念,证明了Clifford半群上的罗巴算子和权为−1的罗巴算子之间存在一一对应,推广了文献 [1] 中的某些结果。

下面回顾Clifford半群及其上面的罗巴算子的一些基本概念和结果。据文献 [13] ,半群S称为逆半群,若对于每个 a S ,存在S的唯一的元素 a 使得 a = a + ( a ) + a a = a + a + ( a ) 。我们称这样的元素 a 为a的逆,对所有 a , b S ,记 a + ( b ) = a b 。显然有 ( a + b ) = b a ( a ) = a 。逆半群S的幂等元的集合记为 E ( S ) 。显然,对每个 e E ( S ) ,有 e = e ,易见, E ( S ) = { a a | a S } = { a + a | a S } 。逆半群S称为Clifford半群,若

( a S ) a a = a + a .

此时,我们记 a = a + a = a a 。设 b S ,若对任意 a S ,都有 a b = b a ,则元素b是中心的。中心元素的集合构成了S的一个子半群,称为S的中心,记为 C ( S )

设Y是半格, G α , α Y 是一族群。设对Y中的每一对满足条件 α β 的元素 α , β ,均存在同态 φ α , β : G α G β 使得

(1) 对每个 α Y φ α , α G α 的恒等自同构;

(2) 对所有满足条件 α β γ 的元素 α , β , γ Y ,有 φ β , γ φ α , β = φ α , γ

S = α Y G α 上定义运算

a + b = φ α , α β ( a ) + φ β , α β ( b ) , a G α , b G β .

则S关于该运算形成Clifford半群,称其为群 G α 的强半格,通常记为 S = [ Y , G α , φ α , β ]

引理1.1 [13] 设S是半群,那么下列条件等价,

(1) S是Clifford半群。

(2) S是群的强半格。

(3) S是逆半群且S的幂等元都是中心的。

定义1.2 [7] 设S是Clifford半群,R是S到S的映射。称R是S上的权为1的罗巴算子,若对任意的 a , b S ,有

R ( a ) + R ( b ) = R ( a + R ( a ) + b R ( a ) ) , a + R ( a ) = a .

S上的权为1的罗巴算子简称为S上的罗巴算子。

命题1.3 ( [7] ,命题10,注1) 设R是Clifford半群S上的罗巴算子,那么

(1) R ( a ) = R ( a ) .

(2) R ( a ) + R ( a ) = R ( a + R ( a ) a R ( a ) ) .

(3) R ( a ) + R ( R ( a ) ) = R ( a + R ( a ) ) .

(4) R ( a ) = R ( R ( a ) a + R ( a ) ) .

2. 主要结果及其证明

本节首先给出Clifford半群上罗巴算子的一些性质和构造方法,然后介绍这类半群上权为−1的罗巴算子,最后给出罗巴算子和权为−1的罗巴算子的一一对应关系。

命题2.1 设R是Clifford半群S上的罗巴算子, φ 是S的自同构,则 R ( φ ) = φ 1 R φ 也是S上的罗巴算子。

证明. 设 a , b S ,则

φ ( R ( φ ) ( a ) + R ( φ ) ( b ) ) = φ ( φ 1 ( R ( φ ( a ) ) ) + φ 1 ( R ( φ ( b ) ) ) ) = R ( φ ( a ) ) + R ( φ ( b ) ) = R ( φ ( a ) + R ( φ ( a ) ) + φ ( b ) R ( φ ( a ) ) ) = R φ ( a + φ 1 ( R ( φ ( a ) ) ) + b + φ 1 ( R ( φ ( a ) ) ) ) = φ φ 1 R φ ( a + φ 1 ( R ( φ ( a ) ) ) + b φ 1 ( R ( φ ( a ) ) ) ) = φ ( R ( φ ) ( a + R ( φ ) ( a ) + b R ( φ ) ( a ) ) ) .

φ 是双射知 R ( φ ) ( a ) + R ( φ ) ( b ) = R ( φ ) ( a + R ( φ ) ( a ) + b R ( φ ) ( a ) ) 。另一方面,

a + R ( φ ) ( a ) = a + R ( φ ) ( a ) R ( φ ) ( a ) = a + φ 1 ( R ( φ ( a ) ) ) φ 1 ( R ( φ ( a ) ) ) = a + φ 1 ( R ( φ ( a ) ) ) + φ 1 ( R ( φ ( a ) ) ) = φ 1 ( φ ( a ) + R ( φ ( a ) ) R ( φ ( a ) ) ) = φ 1 ( φ ( a ) ) = a .

故结论成立。

命题2.2 设R是Clifford半群S上的罗巴算子, φ 是S的自同构且 R 1 ( a ) = a + R ( a ) a S ,则 ( R 1 ) ( φ ) = ( R ( φ ) ) 1

证明. 设 a S ,则

( R 1 ) ( φ ) ( a ) = φ 1 ( R 1 ( φ ( a ) ) ) = φ 1 ( φ ( a ) + R ( φ ( a ) ) ) = φ 1 ( φ ( a ) + R ( φ ( a ) ) ) = a + φ 1 ( R ( φ ( a ) ) ) = a + R ( φ ) ( a ) = ( R ( φ ) ) 1 ( a ) .

故结论成立。

命题2.3 设 S = U + V + T 是Clifford半群,其中 U , V , T 是S的Clifford子半群且分解形式唯一,设L是V上的一个罗巴算子,且 U V = V U L ( V ) T = T L ( V ) ,则

R : S S , u a + v a + t a L ( v a ) t a

是S上的罗巴算子。

证明. 设 u a + v a + t a = u b + v b + t b ,由分解唯一可知 u a = u b v a = v b t a = t b ,进而 L ( v a ) t a = L ( v b ) t b ,故R是良定义的。

另外,设 a = u a + v a + t a , b = u b + v b + t b S ,有

R ( a ) + R ( b ) = R ( u a + v a + t a ) + R ( u b + v b + t b ) = L ( v a ) t a + L ( v b ) t b = L ( v a ) + L ( v b ) t a t b = L ( v a + L ( v a ) + v b L ( v a ) ) ( t b + t a ) = R ( u a + u b + v a + L ( v a ) + v b L ( v a ) + t b + t a ) ,

R ( a + R ( a ) + b R ( a ) ) = R ( u a + v a + t a + L ( v a ) t a + u b + v b + t b + t a L ( v a ) ) = R ( u a + v a + L ( v a ) + t a t a + u b + v b L ( v a ) + t b + t a ) = R ( u a + v a + L ( v a ) + u b + v b L ( v a ) + t b + t a ) = R ( u a + u b + v a + L ( v a ) + v b L ( v a ) + t b + t a ) = R ( a ) + R ( b ) ,

a + R ( a ) = a + R ( a ) R ( a ) = u a + v a + t a + L ( v a ) t a + t a L ( v a ) = u a + v a + t a + L ( v a ) L ( v a ) = u a + v a + t a = a .

综上可知R是S上的罗巴算子。

引理2.4 设R是Clifford半群S上的罗巴算子, a , b S ,若 R ( a ) E ( S ) ,则

R ( a + b ) = R ( a ) + R ( b ) .

证明. 设 a , b S ,则

R ( a + b ) = R ( a + R ( a ) R ( a ) + b ) = R ( a + R ( a ) + b R ( a ) ) = R ( a ) + R ( b ) .

故结论成立。

命题2.5 设R是Clifford半群S上的罗巴算子且R是S的自同构, a S ,则

R ( a + R ( a ) ) C ( S ) .

证明. 设 a S x S ,由R是自同构可设 x = R ( b ) b S 。又因R是罗巴算子且R是同态,故

R ( a ) + R ( b ) = R ( a + R ( a ) + b R ( a ) ) = R ( a ) + R ( R ( a ) ) + R ( b ) R ( R ( a ) ) .

在上式两边同时右加 R ( R ( a ) ) ,有

R ( a ) + R ( b ) + R ( R ( a ) ) = R ( a ) + R ( R ( a ) ) + R ( b ) .

在上式两边同时左加 R ( a ) ,有

R ( a ) + R ( a ) + R ( b ) + R ( R ( a ) ) = R ( a ) + R ( a ) + R ( R ( a ) ) + R ( b ) .

x = R ( b ) ,可知

x + R ( a ) + R ( R ( a ) ) = R ( a ) + R ( R ( a ) ) + x .

由引理2.4和x的任意性知 R ( a + R ( a ) ) = R ( a ) + R ( R ( a ) ) C ( S )

命题2.6 设 ( S , + ) 是Clifford半群,n是正整数,则

R : S S , a n a = a + a + + a n

是S上的罗巴算子当且仅当对任意的 a , b S ,有 n ( a + b ) = n b + n a

证明. 设 a , b S ,则 a + R ( a ) = a + R ( a ) R ( a ) = a + n a n a = a + a = a 。另外,

R ( a + R ( a ) + b R ( a ) ) = n ( a + n a + b n a ) = ( n + 1 ) a + b n a + ( n + 1 ) a + b n a + + ( n + 1 ) a + b n a = n a + a + b + a + b + + a + b n a = n a + n ( a + b ) n a .

于是,

R ( a ) + R ( b ) = R ( a + R ( a ) + b R ( a ) ) n a + n b = n a + n ( a + b ) n a n a + n a + n b = n ( a + b ) n a n a + n a + n b + n a = n ( a + b ) n a + n a n b + n a = n ( a + b ) + a = n ( a + b ) .

故结论成立。

命题2.7 设 S = [ Y , G α , φ α , β ] 是Clifford幺半群, 1 G α 且1是单位元, b S ,则映射

R : S S , a b a + b

是S上的罗巴算子当且仅当 b G α { b x + b + x | x S } C ( S )

证明. 当R是S上的罗巴算子时,设 x , y S ,则

x + R ( x ) = x b x + b b + x + b = x b x + x + b = x b + b = x .

因此 x + b = x ,由x的任意性可知 b = 1 ,即 b G α 。另一方面,

R ( x ) + R ( y ) = R ( x + R ( x ) + y R ( x ) ) b x + b b y + b = b ( x b x + b + y b + x + b ) + b b ( y + x ) + b = b b x + b + x x y b + x + b x + b x y = ( b x + b + x ) x y + ( b + x + b x ) ( b x + b + x ) x y = x y + ( b + x + b x ) x + ( b + x + b x ) y = x y + ( b + x + b x ) x x + ( b + x + b x ) y = x x y + ( b + x + b x ) ( b + x + b x ) y = y + ( b + x + b x ) .

于是由y的任意性知 b + x + b x C ( S ) ,进而由x的任意性知 { b x + b + x | x S } C ( S )

反过来,若 b G α { b x + b + x | x S } C ( S ) ,则

a + R ( a ) = a b a + b b + a + b = a b a + a + b = a b + b = a ,

R ( x ) + R ( y ) = b x + b b y + b = b x y + b ,

R ( x + R ( x ) + y R ( x ) ) = b ( x b x + b + y b + x + b ) + b = b b x + b y b + x + b x + b = b b x + b b + x + b x y + b = b b x + x + b x y + b = b b + b x y + b = b x y + b .

于是 R ( x ) + R ( y ) = R ( x + R ( x ) + y R ( x ) ) ,故R是S上的罗巴算子。

命题2.8 设 S = [ Y , G α , φ α , β ] 是Clifford半群, a , b S ,则

R : S S , x a + x + b

是S上的罗巴算子当且仅当 a , b G α α 是Y的最大值, b = a G α C ( S ) 。此时 R = i d S

证明. 不妨记 a G α b G β ,则

R ( a ) = a + a + b R ( a ) G α β , a + R ( a ) G α β .

由R是S的罗巴算子知 a + R ( a ) = a ,又Y是半格,则

G α β = G α α β = α α β .

同理可证 α β ,于是 α = β ,因此记 a , b G α 。另一方面,设 x G γ S γ Y ,则

R ( x ) = a + x + b R ( x ) G α γ α γ γ α γ = γ α γ .

x , γ 的任意性知 α 是Y的最大值,进而

e α = R ( e α ) = a + e α + b = a + b a = a + e α = a + a + b = b b = a .

又设 y S ,则

R ( a ) + R ( y ) = R ( a + R ( a ) + y R ( a ) ) a + a a + a + y a = a + a + a + a a + y + a a a a a + a + y a = a + a + a + y a a a + y = a + a + y a y + a = a + y .

a , y 的任意性知 G α C ( S ) 。反过来,设 x , y S ,则

x + R ( x ) = x + a + x a + a x a = x + a + x x a = x + a a = x ,

R ( x ) + R ( y ) = a + x a + a + y a = a + x + y a = a a + x + y = x + y ,

R ( x + R ( x ) + y R ( x ) ) = a + x + a + x a + y ( a + x a ) a = a + a + x a ( a + x a ) a + x + y ( a + x a G α ) = a + a + x a + a x a a + x + y = a + x + y = x + y .

于是 R ( x ) + R ( y ) = R ( x + R ( x ) + y R ( x ) ) ,所以R是S上的罗巴算子。此时

R ( x ) = a + x a = a a + x = x = i d S ( x ) .

R = i d S

下面介绍Clifford半群上的权为−1的罗巴算子。

定义2.9 设S是Clifford半群,L是S到S的映射。称L是S上的权为−1的罗巴算子,若对任意的 a , b S ,有

L ( a ) + L ( b ) = L ( L ( a ) + b L ( a ) + a ) , a + L ( a ) = a .

命题2.10 设L是Clifford半群S上的权为−1的罗巴算子,则

L ˜ : S S , a a + L ( − a )

也是S上的权为−1的罗巴算子。

证明. 设 a , b S ,则

L ˜ ( a ) + L ˜ ( b ) = a + L ( a ) + b + L ( b ) = a + L ( a ) L ( a ) + L ( a ) + b + L ( b ) ( L ( a ) = L ( a ) L ( a ) + L ( a ) ) = a + L ( a ) + b L ( a ) + L ( a ) + L ( b ) ( L ( a ) + L ( a ) E ( S ) ) = a + L ( a ) + b L ( a ) + L ( L ( a ) b L ( a ) a ) ( L 1 ) = a + L ( a ) + b L ( a ) + L ( ( a + L ( a ) + b L ( a ) ) ) = L ˜ ( a + L ( a ) + b L ( a ) ) ( L ˜ ) = L ˜ ( a + L ( a ) + b L ( a ) a + a ) ( a = a a + a , a + a E ( S ) ) = L ˜ ( L ˜ ( a ) + b L ˜ ( a ) + a ) . ( L ˜ )

另一方面,

a + L ˜ ( a ) = a + L ˜ ( a ) L ˜ ( a ) = a + a + L ( a ) L ( a ) a = a + a a + L ( a ) L ( a ) = a + a a = a a + a = a .

故结论成立。

命题2.11 设R是Clifford半群S上的罗巴算子,则

L : S S , a R ( − a )

是S上的权为−1的罗巴算子。

证明. 设 a , b S ,则由R是罗巴算子知

L ( a ) + L ( b ) = R ( a ) + R ( b ) = R ( a + R ( a ) b R ( a ) ) = R ( ( R ( a ) + b R ( a ) + a ) ) = L ( R ( a ) + b R ( a ) + a ) = L ( L ( a ) + b L ( a ) + a ) ,

a + L ( a ) = a + L ( a ) L ( a ) = a + R ( a ) R ( a ) = a a + a + R ( a ) R ( a ) = a a + R ( a ) R ( a ) + a = a a + a = a .

故结论成立。

命题2.12 设R是Clifford半群S上的罗巴算子,则

L : S S , a a + R ( a )

是S上的权为−1的罗巴算子。

证明. 设 a , b S ,则由R是罗巴算子知

L ( a ) + L ( b ) = a + R ( a ) + b + R ( b ) = a + R ( a ) + b R ( a ) + R ( a ) + R ( b ) = a + R ( a ) + b R ( a ) + R ( a + R ( a ) + b R ( a ) ) = L ( a + R ( a ) + b R ( a ) ) = L ( a + R ( a ) + b R ( a ) a + a ) = L ( L ( a ) + b L ( a ) + a ) ,

a + L ( a ) = a + L ( a ) L ( a ) = a + a + R ( a ) R ( a ) a = a + a a = a a + a = a .

故结论成立。

下面的命题给出了罗巴算子和权为−1的罗巴算子之间的关系。

命题2.13 设 S = [ Y , G α , φ α , β ] 是Clifford半群,记

R = { R | R S , R ( G α ) G α , α Y } ,

则存在 R L 的双射。

证明. 定义 φ : R L , R φ ( R ) ,其中对任意 a S φ ( R ) ( a ) = a + R ( a ) 。下证 φ R L 的双射。

首先,若 R R ,则由命题2.12知 φ ( R ) 是S上的权为−1的罗巴算子。又对任意的 α Y , a G α ,由 R ( G α ) G α φ ( R ) ( a ) = a + R ( a ) G α ,即 φ ( R ) ( G α ) G α ,所以 φ ( R ) L ,故 φ 是映射。

其次,若 R 1 , R 2 R R 1 R 2 ,则存在 α Y a G α S 使得 R 1 ( a ) R 2 ( a ) ,其中 R 1 ( a ) , R 2 ( a ) G α ,于是

φ ( R 1 ) ( a ) = a + R 1 ( a ) a + R 2 ( a ) = φ ( R 2 ) ( a ) .

因此 φ ( R 1 ) φ ( R 2 ) ,故 φ 是单射。

最后,若 L L ,则对任意的 a S ,不妨设 a G α , α Y ,由 L ( G α ) G α a a + L ( a ) = L ( a ) ,定义S到S的映射 R : a R ( a ) = a + L ( a ) a S ,则

a + R ( a ) = a a + L ( a ) = L ( a ) .

R ( a ) = a + L ( a ) G α ,故 R ( G α ) G α 。另外,对任意的 a , b S ,则有

R ( a ) + R ( b ) = a + L ( a ) b + L ( b ) = a + L ( a ) b L ( a ) + L ( a ) + L ( b ) = ( L ( a ) + b L ( a ) + a ) + L ( L ( a ) + b L ( a ) + a ) = R ( L ( a ) + b L ( a ) + a ) = R ( a a + L ( a ) + b L ( a ) + a ) = R ( a + R ( a ) + b R ( a ) ) ,

a + R ( a ) = a a + L ( a ) L ( a ) + a = L ( a ) L ( a ) + a = a + L ( a ) L ( a ) = a .

因此R是S上的罗巴算子,于是 R R ,且 φ ( R ) = L 。故 φ 是满射。综上所述, φ R L 的双射。

文章引用

龚晓倩,尹 碟. Clifford半群上的罗巴算子
Rota-Baxter Operators on Clifford Semigroups[J]. 理论数学, 2024, 14(05): 590-598. https://doi.org/10.12677/pm.2024.145212

参考文献

  1. 1. Baxter, G. (1960) An Analytic Problem Whose Solution Follows from a Simple Algebraic Identity. Pacific Journal of Mathematics, 10, 731-742. https://doi.org/10.2140/pjm.1960.10.731

  2. 2. Guo, L. (2012) An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics. Vol. 4, International Press/ Higher Education Press, Somerville/Beijing.

  3. 3. Guo, L., Lang, H. and Sheng, Y. (2021) Integration and Geometrization of Rota-Baxter Lie Algebras. Advances in Mathematics, 387, 107834. https://doi.org/10.1016/j.aim.2021.107834

  4. 4. Guarnieri, L. and Vendramin, L. (2017) Skew Braces and Yang-Baxter Equation. Mathematics of Computation, 86, 2519-2534. https://doi.org/10.1090/mcom/3161

  5. 5. Bardakov, V.G. and Gubarev, V. (2022) Rota-Baxter Groups, Skew Left Braces, and the Yang-Baxter Equation. Journal of Algebra, 596, 328-351. https://doi.org/10.1016/j.jalgebra.2021.12.036

  6. 6. Bardakov, V.G. and Gubarev, V. (2023) Rota-Baxter Operators on Groups. Proceedings Mathematical Sciences, 133, Article Number 4. https://doi.org/10.1007/s12044-023-00723-9

  7. 7. Catino, F., Mazzotta, M. and Stefanelli, P. (2023) Rota-Baxter Operators on Clifford Semigroups and the Yang-Baxter Equation. Journal of Algebra, 622, 587-613. https://doi.org/10.1016/j.jalgebra.2023.02.013

  8. 8. Das, A. and Rathee, N. (2023) Extensions and Automorphisms of Rota-Baxter Groups. Journal of Algebra, 636, 626-665. https://doi.org/10.1016/j.jalgebra.2023.09.006

  9. 9. Gao, X., Guo, L., Liu, Y. and Zhu, Z.C. (2023) Operated Groups, Differential Groups and Rota-Baxter Groups with an Emphasis on the Free Objects. Communications in Algebra, 51, 4481-500. https://doi.org/10.1080/00927872.2023.2212775

  10. 10. Goncharov, M. (2021) Rota-Baxter Operators on Cocommutative Hopf Algebras, Journal of Algebra, 582, 39-56. https://doi.org/10.1016/j.jalgebra.2021.04.024

  11. 11. Li, Z. and Wang, S. (2023) Rota-Baxter Systems and Skew Trusses. Journal of Algebra, 623, 447-480. https://doi.org/10.1016/j.jalgebra.2023.02.022

  12. 12. Rathee, N. and Singh, M. (2023) Relative Rota-Baxter Groups and Skew LEF Braces. arXiv:2305.00922.

  13. 13. Howie, J.M. (1995) Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, Vol. 12, The Clarendon Press, Oxford University Press, New York.

期刊菜单