Advances in Clinical Medicine
Vol. 13  No. 04 ( 2023 ), Article ID: 63915 , 7 pages
10.12677/ACM.2023.134777

淋巴细胞胞浆蛋白2的功能及其在恶性肿瘤中的研究进展

陈静,张莉*

新疆医科大学第一附属医院综合内四科,新疆 乌鲁木齐

收稿日期:2023年3月11日;录用日期:2023年4月7日;发布日期:2023年4月14日

摘要

淋巴细胞胞浆蛋白2 (Lymphocyte cytoplasmic protein 2, LCP2,也称SLP-76)参与调控多种免疫细胞的活动,在T细胞激活中发挥着重要作用,介导T细胞生长发育过程中的多个信号转导过程,是多种疾病发展过程中的关键调节因子。其中,SLP-76可能与激活T细胞介导的抗肿瘤活性机制有关,在多种恶性肿瘤的发生和转移中发挥重要作用。本文归纳了SLP-76的结构域所参与免疫系统相关的调控机制以及对在肿瘤中的临床意义作一综述,为后续的研究提供参考。

关键词

淋巴细胞胞浆蛋白2,恶性肿瘤,免疫细胞,SLP-76

The Function of Lymphocyte Cytoplasmic Protein 2 and Its Research Progress in Malignant Tumors

Jing Chen, Li Zhang*

The Fourth Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Mar. 11th, 2023; accepted: Apr. 7th, 2023; published: Apr. 14th, 2023

ABSTRACT

Lymphocyte cytoplasmic protein 2 (LCP2, also known as SLP-76) participates in regulating the activities of various immune cells, plays an important role in the activation of T cells, mediates multiple signal transduction processes in the growth and development of T cells, and is a key regulatory factor in the development of various diseases. Among them, SLP-76 may be related to the mechanism of activating anti-tumor activity mediated by T cells and play an important role in the occurrence and metastasis of various malignant tumors. This article summarizes the regulatory mechanism of SLP-76 involved in the immune system and its clinical significance in cancer, providing a reference for future research.

Keywords:Lymphocyte Cytoplasmic Protein 2, Malignant Tumor, Immune Cells, SLP-76

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

淋巴细胞胞浆蛋白2是血源性细胞所特有的一种接头蛋白,相对分子质量为76,000,由533个氨基酸残基组成,已知在多种生化信号通路中起重要作用,并在除成熟B细胞外的所有造血谱系中表达 [1] [2] ,其通过多种机制参与了各种免疫反应,包括激活T细胞受体(T-cell receptor, TCR)、B细胞受体(B-cell receptor, BCR)信号和T/B/NK细胞介导的免疫反应等生物学功能,进而在自身免疫性疾病、肿瘤和炎症反应中发挥重要作用。免疫系统的激活在多种疾病状态中起作用,尤其是在抑制癌症发展中有重要作用,SLP-76在人类多种恶性肿瘤中异常表达,如食道癌、肝癌、肺癌、结肠癌、乳腺癌、恶性黑色素瘤等;且与多种恶性肿瘤的较好的预后相关。本文就SLP-76不同结构域的作用及其所参与调节免疫机制通路作一归纳总结,阐述SLP-76在恶性肿瘤中的诊断、预后和新药物研发的潜在临床意义。

2. SLP-76的信号结构域及其作用

SLP-76是TCR信号的中央调节器,它包含多个蛋白质相互作用结构域 [3] [4] [5] [6] ,分别是富含脯氨酸的中央区域;C端SH2结构域,在氨基(N)末端具有三个酪氨酸基序(Y113、Y128和Y145)和N端无菌α基序(SAM)结构域。通过以上四个不同的结构域,SLP-76与不同的信号蛋白形成多个信号转导复合体,并在免疫调节信号通路中起重要作用,这是由SLP-76的性质和特点所决定的。

2.1. 脯氨酸的结构域

SLP-76的富含脯氨酸的结构域可以与生长因子受体结合蛋白2 (growth factor receptor-bound protein 2, Grb2)的SH3结构域结合 [7] ,形成由多种接头蛋白组成的复合物,将细胞外的信号传递给Ras,后者进一步活化丝裂原活化蛋白激酶的激酶Raf,信号由高度保守的三级激酶模式(MKKK/MKK/MAPK)向下游传递,Raf可以磷酸化细胞外信号调控激酶1/2 (The extracellular signal-regulated kinase 1/2, ERK1/2),最终导致氧化应激和核因子κB (The nuclear factor-kappaB, NF-κB)等转录因子的活化,使得效应细胞细胞因子表达谱发生变化,可调控细胞的转化和凋亡,其激活可促使靶细胞中损伤反应基因的表达,在很多肿瘤的发展中起着非常重要的作用。

2.2. N端酪氨酸结构域和无菌α基序(SAM)结构域

SLP-76的N-末端SAM结构域对于最佳胸腺分化和细胞活化至关重要 [8] 。已知SAM结构域以同型或异型方式与自身或与其他含SAM结构的蛋白质或非含SAM的蛋白质相互作用。这种结合的多功能性调节T细胞活化过程中从信号转导到转录调节的多种生物学功能有独特作用。Thaker YR [9] 等研究首次报道T细胞中SAM结构域结合介导的激酶活性,验证了SLP-76的SAM结构域与激活的Cdc42相关酪氨酸激酶1 (CDC42-associated kinase 1, ACK1)结合形成结合伴侣,导致其N端(Tyr-113、Tyr-128和Tyr-145处)的关键酪氨酸残基磷酸化;进而激活下游信号通路介导适配器寡聚体的形成、活化T细胞核因子(the nuclear factor of activated T cells, NFAT)转录和白细胞介素-2 (Interleukin-2, IL-2)的产生 [10] 。此外,ACK1也可以与白细胞介素2酪氨酸激酶途径合作,ACK1介导的SLP-76酪氨酸磷酸化通过磷脂酶Cγ1-钙轴影响信号传导,从而增加活化T细胞核因子的核移位。Yan Z [11] 等研究证明SLP-76通过其无菌α基序(SAM)结合晚期糖基化终产物受体(receptor for advanced glycation end products, RAGE)以介导下游信号,将会增加丝裂原激活蛋白激酶(mitogen-activated protein kinase, MAPK)、ERK1/2和IκB激酶(I kappaB kinase α/β, IKK a/β)的磷酸化以及细胞因子的释放;这些发现揭示了SLP-76在RAGE介导的促炎症信号中的重要作用,并为SLP-76靶向治疗败血症的开发提供了线索。

2.3. SLP-76的C端SH2结构域

造血祖细胞激酶1(hematopoietic progenitor kinase 1, HPK1)和粘附和脱颗粒促进适配蛋白(Adhesion and degranulation promoting adapter protein, ADAP)与SLP-76C端SH2结构域相互作用 [12] ,参与整合素功能和激活T细胞的连接子(linker for activation of T-cells, LAT)微簇的形成,以及通过HPK1和CD6相互作用的结合形成负反馈环。由T细胞受体(TCR)进行的抗原识别过程被称为SLP-76微簇的基本信号复合物的组装。Hashimoto-Tane A [13] 等研究证实SLP-76与ADAP还参与TCR介导的“inside-out”信号,和整合素介导的“outside-in”的信号;两者相互作用能够形成持久性微簇和稳定T细胞接触,促进整合素非依赖性粘附与激活以及内外信号级联。一般情况认为,ADAP经常被描述为SLP-76的效应器,但Lewis JB [14] 等的研究结果表明,ADAP在SLP-76上游起作用,将不稳定的Ca2+活性微簇转化为具有增强信号电位的稳定粘附连接。可反向调节Zeta链相关蛋白激酶-70 (zeta-chain-associated protein kinase 70, Zap-70)微簇形成,保证级联信号平衡,以调节T细胞活化 [15] 。此外,造血祖细胞激酶1(HPK1)通过磷酸化SLP-76的Src同源性2 (SH2)结构域,负性调节T细胞信号传导;Lacey BM [16] 等发现HPK1功能丧失小鼠模型显示增强的免疫细胞活化和有益的抗肿瘤活性。

3. SLP-76常见参与分子途径通路及相关机制进展

3.1. 参与TCR信号级联通路

SLP-76在TCR信号级联涉中起着关键作用 [17] ,当同源肽主要组织相容性复合物与T细胞受体(TCR)结合后,T细胞的激活迅速导致大量磷酸化和质膜募集事件,被招募到此位点的淋巴细胞特异性蛋白酪氨酸激酶(Lymphocyte Cell-Specific Protein-Tyrosine Kinase, LCK)、ZAP-70磷酸化并被激活,与SLP-76和LAT组成的多蛋白信号体复合体相互作用;磷脂酶Cγ1 (phospholipase-Cγ1, PLC-γ1)向质膜的易位及其与Shc下游的Grb2相关适配器(Grb2-related adaptor downstream of Shc, Gads)、LAT和SLP-76的关联结合,在SLP-76的聚脯氨酸区域相互作用,从而形成四聚体LAT-Gads-SLP-76-PLC-γ1复合物 [18] 。IL-2诱导酪氨酸激酶(IL-2-inducible tyrosine kinase, ITK)通过结合LAT结合的SLP-76被招募到基于LAT的信号复合物中 [19] ,同时,ZAP-70介导的SLP-76酪氨酸残基113、128和145的磷酸化,进而与ITK相互作用而激活下游信号模块 [20] 。Hallumi E [21] 等提出了一种TCR信号模型,其诱导既取决于TCR诱导的Gads与LAT的结合,也取决于TCR诱导的ITK与SLP-76的相互作用。在活化的T细胞中,SLP-76结合Tec家族酪氨酸激酶ITK,通过白细胞介素-2诱导的T细胞激酶(interleukin-2-inducible T cell kinase, PTK-ITK)促使SLP-76 Y173和PLC-γ1 Y783磷酸化 [22] 来促进下游反应性,并且产生T细胞活化所需的磷酸肌醇裂解产物。这些裂解产物可作为信号分子和第二信使进一步触发多种远端信号事件,如NFAT激活和NF-κB途径激活、细胞骨架重排和整合素激活,最终导致新的基因转录、细胞因子产生和T细胞激活 [23] 。

3.2. 参与BCR信号级联通路

B细胞受体(BCR)信号是正常B细胞发育的重要组成部分,在成熟B细胞中,BCR的抗原结合诱导协调的下游信号级联 [24] [25] 。在B细胞中,SLP-76作为一种衔接蛋白,招募和激活多种的激酶和衔接分子,如脾酪氨酸激酶(Spleen tyrosine kinase, Syk)、Bruton酪氨酸激酶(bruton tyrosine kinase, BTK)、磷脂酰肌醇3-激酶(the phosphoinositide 3-kinases, PI3K)等。SLP-76在BCR交联后诱导磷脂酶Cγ2 (phospholipase-Cγ2, PLCγ2)的磷酸化,形成微信号体,使信号能够通过多个下游级联放大和传播 [26] ,其方式与T细胞中TCR激活时发生的方式类似;SLP-76和B细胞接头蛋白(B-cell linker protein, BLNK)是BCR诱导的NF-κB活化的特异性必需物质。Liu H [27] 等研究证明了SLP-76和BLNK具有重叠或互补活性,即协调调节BCR刺激的B细胞中NF-κB激活的BTK-PLCγ2轴。并阐明SLP76对诱导部分BCR激活分化、存活、增殖和抗体分泌中起着重要作用。

3.3. 参与FcεRI介导的炎症信号通路

当细胞表面的配体与受体相互作用,FcεRI-IgE变应原复合物聚集和Src家族激酶(如Fyn、Lyn和Syk)激活后 [28] ,下游信号分子(如LAT和SLP-76)被磷酸化和激活。磷酸化后的LAT与Grb2、Gads、PLC-γ1和鸟嘌呤交换因子VAV和SOS (SOS-VAV)结合,导致PI3K和MAPK依赖性途径的激活;这些分子的激活随后导致更多下游分子的募集、肥大细胞和NK细胞的脱颗粒以及细胞因子和二十烷酸的释放。新近研究发现 [29] NK细胞活化受体与靶细胞表面相应配体交联结合后可通过以SLP-76和Wiskott-Aldrich综合征蛋白(WASP)为核心的信号传递复合体及PI3K介导Rac/PAK/MEK/ERK途径发挥作用。SLP-76活性浓度的上升导致其募集的分子(包括VAV、NCK、ITK、Gads和PLC-γ1)的浓度增加,诱导NK细胞脱颗粒,释放穿孔素和颗粒酶诱导靶细胞凋亡。此外,嗜碱性粒细胞在其质膜上表达高亲和力IgE 的Fc受体(Fc-epsilon Receptor, FcεRI)。SLP-76是调节FcεRI诱导的嗜碱性细胞产生白细胞介素4 (Interleukin-4, IL-4)的重要信号成分 [30] ,嗜碱性粒细胞通过对蛋白酶过敏原产生的IL-4来驱动淋巴结中的原始T细胞向Th2细胞的分化,对Th2型免疫应答的启动起调节作用,因此,SLP-76可能参与Th2相关疾病的发病机制。此外,SLP-76在Ca2+的动员、细胞骨架重组和运动中也具有良好的作用 [31] 。

4. SLP-76相关的肿瘤疾病的研究进展

肿瘤的发展是一个多基因和多阶段的过程,免疫系统在肿瘤发生后起着关键作用,已有研究表明,SLP-76参与多种免疫途径,SLP-76介导激活T细胞能增强抗肿瘤活性 [32] ,可能在肿瘤发生和转移中发挥重要作用。并且也有报道称,SLP-76作为一种保护蛋白与大多数恶性肿瘤的良好预后相关。SLP-76在脑胶质瘤 [33] 、结肠癌 [34] [35] 中高表达,并参与结肠癌转移,且与乳腺癌 [36] 患者的良好的预后相关。在肺腺癌 [37] [38] 中,SLP-76高表达与较早的临床分期和无淋巴结转移相关,与总生存率增加相关,且SLP-76高表达与程序性死亡配体1 (programmed death-ligand 1, PD-L1)表达呈正相关,这也为肺癌的免疫治疗开辟了新途径。Wang Z [39] 等发现在转移性皮肤黑色素瘤患者中SLP-76的表达显著增加,SLP-76高表达与免疫检查点正相关且与良好的总体生存率相关。SLP-76可作为接受抗PD-L1免疫治疗的无进展生存的预后生物标志物;提示SLP-76可作为抗肿瘤免疫的预后生物标志物和治疗靶点。然而,Yao J [40] 等通过生物信息学分析并验证了食管癌样本中SLP-76的高表达与不良预后有关。总之,SLP-76在大多数恶性肿瘤中高表达,参与恶性肿瘤的进展,影响患者的预后。SLP-76由于其复杂的作用机制和参与众多免疫相关的信号通路,SLP-76仍需要进一步研究其在临床诊疗中的应用。

5. SLP-76相关的药物治疗等方面的探索

SLP-76参与激活T细胞的信号通路中起着关键作用,能够影响机体免疫系统,与抗肿瘤免疫应答发生有密切关系;开发能够调节T细胞活化的药物受到越来越多的关注。但迄今为止,尚未开发出针对恶性肿瘤的SLP-76抑制剂或激动剂,但针对自身免疫疾病药物的研发为其提供了抗癌的新思路,Iyer VS [41] 等开发了一组3’UTR靶向SLP-76 mRNA的反义寡核苷酸的新药物,应用在类风湿性关节炎和多发性硬化等自身免疫性疾病中,通过其调节T细胞活化的活性并取得较好的效果治疗。Mammadli M [42] 等开发了一种命名为SLP-76 145pTYR的肽抑制剂治疗移植物抗宿主病,意外发现在肿瘤转移前用SLP-76 145pTYR处理的小鼠可导致T细胞清除肿瘤细胞,增强其抗肿瘤活性,说明该药为恶性肿瘤的免疫治疗开辟了新的可能性。此外,Lu T [43] 等发现SLP-76是食管鳞状细胞癌mRNA疫苗的潜在抗原,抗原上调与预后不良、抗原呈递细胞高浸润和MHC II类基因高表达有关,这为针对食管鳞状细胞癌的mRNA疫苗提供了理论基础,有助于为患者制定个性化治疗方案。

6. 小结与展望

最近,越来越多的研究表明,SLP-76参与多种免疫细胞的激活及炎症因子的释放,与多种疾病的发生、发展有密切关联,细胞信号通路作为治疗疾病的重要靶点,为设计新的配体作为信号通路衔接分子的激动剂或拮抗剂提供新思路,但细胞信号网络的复杂性给设计靶向信号分子的新药带来了重大挑战。目前已有多项临床试验正在开展,了解SLP-76在免疫相关生物学过程中确切的机制,有望在临床诊断和治疗中发挥更大的作用,以更好实现个体化治疗。

文章引用

陈 静,张 莉. 淋巴细胞胞浆蛋白2的功能及其在恶性肿瘤中的研究进展
The Function of Lymphocyte Cytoplasmic Protein 2 and Its Research Progress in Malignant Tumors[J]. 临床医学进展, 2023, 13(04): 5494-5500. https://doi.org/10.12677/ACM.2023.134777

参考文献

  1. 1. Bounab, Y., Hesse, A.M., Iannascoli, B., et al. (2014) Proteomic Analysis of the SH2 Domain-Containing Leukocyte Protein of 76 kDa (SLP76) Interactome in Resting and Activated Primary Mast Cells. Molecular & Cellular Proteomics, 13, 678. https://doi.org/10.1074/mcp.A112.025908

  2. 2. Bezman, N.A., Lian, L., Abrams, C.S., et al. (2008) Re-quirements of SLP76 Tyrosines in ITAM and Integrin Receptor Signaling and in Platelet Function in Vivo. Journal of Experimental Medicine, 205, 1775-1788. https://doi.org/10.1084/jem.20080240

  3. 3. Poulin, B., Sekiya, F. and Rhee, S.G. (2005) Intramolecular Interaction between Phosphorylated Tyrosine-783 and the C-Terminal Src Homology 2 Domain Activates Phospholipase C-Gamma1. Proceedings of the National Academy of Sciences of the United States of America, 102, 4276-4281. https://doi.org/10.1073/pnas.0409590102

  4. 4. Athari, S.S. (2019) Targeting Cell Signaling in Allergic Asthma. Signal Transduction and Targeted Therapy, 4, 45. https://doi.org/10.1038/s41392-019-0079-0

  5. 5. Yablonski, D. (2019) Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Frontiers in Immunology, 10, 1704. https://doi.org/10.3389/fimmu.2019.01704

  6. 6. Dinur-Schejter, Y., Zaidman, I., Mor-Shaked, H. and Stepensky, P. (2021) The Clinical Aspect of Adaptor Molecules in T Cell Signaling: Lessons Learnt from Inborn Errors of Immunity. Frontiers in Immunology, 12, 701-704.

  7. 7. Gupta, R.W. and Mayer, B.J. (1998) Dominant-Negative Mutants of the SH2/SH3 Adapters Nck and Grb2 Inhibit MAP Kinase Activation and Mesoderm-Specific Gene Induction by eFGF in Xenopus. Oncogene, 17, 2155-2165. https://doi.org/10.1038/sj.onc.1202158

  8. 8. Xiong, Y., Ye, C., Yang, N., et al. (2017) Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. The Journal of Immunology, 199, 4142-4154. https://doi.org/10.4049/jimmunol.1700572

  9. 9. Thaker, Y.R., Recino, A., Raab, M., et al. (2017) Activated Cdc42-Associated Kinase 1 (ACK1) Binds the Sterile α Motif (SAM) Domain of the Adaptor SLP-76 and Phosphory-lates Proximal Tyrosines. Journal of Biological Chemistry, 292, 6281-6290. https://doi.org/10.1074/jbc.M116.759555

  10. 10. Barda-Saad, M., Shirasu, N., Pauker, M.H., et al. (2010) Coopera-tive Interactions at the SLP-76 Complex Are Critical for Actin Polymerization. EMBO Journal, 29, 2315-2328. https://doi.org/10.1038/emboj.2010.133

  11. 11. Yan, Z., Luo, H., Xie, B., et al. (2021) Targeting Adaptor Protein SLP76 of RAGE as a Therapeutic Approach for Lethal Sepsis. Nature Communications, 12, 308. https://doi.org/10.1038/s41467-020-20577-3

  12. 12. Eidell, K.P., Lovy, A., Sylvain, N.R., et al. (2021) LFA-1 and Kindlin-3 Enable the Collaborative Transport of SLP-76 Microclusters by Myosin and Dynein Motors. Journal of Cell Science, 134, jcs258602. https://doi.org/10.1242/jcs.258602

  13. 13. Hashimoto-Tane, A., Sakuma, M., Ike, H., et al. (2016) Micro-Adhesion Rings Surrounding TCR Microclusters Are Essential for T Cell Activation. Journal of Experimental Medicine, 213, 1609-1625. https://doi.org/10.1084/jem.20151088

  14. 14. Lewis, J.B., et al. (2018) ADAP Is an Upstream Regulator that Pre-cedes SLP-76 at Sites of TCR Engagement and Stabilizes Signaling Microclusters. Cell Science, 131, jcs215517. https://doi.org/10.1242/jcs.215517

  15. 15. Soini, L., Redhead, M., Westwood, M., et al. (2021) Identification of Mo-lecular Glues of the SLP76/14-3-3 Protein-Protein Interaction. RSC Medicinal Chemistry, 12, 1555-1564. https://doi.org/10.1039/D1MD00172H

  16. 16. Lacey, B.M., Xu, Z., Chai, X., et al. (2021) Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. SLAS Discovery, 26, 88-99. https://doi.org/10.1177/2472555220952071

  17. 17. Qu, X., Lan, X., Deng, C., et al. (2017) Molecular Mechanisms Underlying the Evolution of the slp76 Signalosome. Scientific Reports, 7, 1509. https://doi.org/10.1038/s41598-017-01660-0

  18. 18. Wada, J., Rathnayake, U., Jenkins, L.M., et al. (2022) In Vitro Reconstitution Reveals Cooperative Mechanisms of Adapter Protein-Mediated Activation of Phospholipase C-γ1 in T Cells. Journal of Biological Chemistry, 298, Article ID: 101680. https://doi.org/10.1016/j.jbc.2022.101680

  19. 19. Andreotti, A.H., Joseph, R.E., Conley, J.M., et al. (2018) Mul-tidomain Control over TEC Kinase Activation State Tunes the T Cell Response. Annual Review of Immunology, 36, 549-578. https://doi.org/10.1146/annurev-immunol-042617-053344

  20. 20. Mammadli, M., Huang, W., Harris, R., et al. (2020) Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Frontiers in Im-munology, 11, Article ID: 593863. https://doi.org/10.3389/fimmu.2020.593863

  21. 21. Hallumi, E., Shalah, R., Lo, W.L., et al. (2021) Itk Promotes the Integration of TCR and CD28 Costimulation through Its Direct Substrates SLP-76 and Gads. The Journal of Immunolo-gy, 206, 2322-2337. https://doi.org/10.4049/jimmunol.2001053

  22. 22. Athari, S.S., Athari, S.M., Beyzay, F., et al. (2017) Critical Role of Toll-Like Receptors in Pathophysiology of Allergic Asthma. European Journal of Pharmacology, 808, 21-27. https://doi.org/10.1016/j.ejphar.2016.11.047

  23. 23. Rudd, C.E. (2021) How the Discovery of the CD4/CD8-p56lck Complexes Changed Immunology and Immunotherapy. Frontiers in Cell and Developmental Biology, 9, Article ID: 626095. https://doi.org/10.3389/fcell.2021.626095

  24. 24. Yi, J., Balagopalan, L., Nguyen, T., et al. (2019) TCR Mi-croclusters Form Spatially Segregated Domains and Sequentially Assemble in Calcium-Dependent Kinetic Steps. Nature Communications, 10, 277. https://doi.org/10.1038/s41467-018-08064-2

  25. 25. Dezorella, N., Katz, B.Z., Shapiro, M., et al. (2016) SLP76 Inte-grates into the B-Cell Receptor Signaling Cascade in Chronic Lymphocytic Leukemia Cells and Is Associated with an Aggressive Disease Course. Haematologica, 101, 1553-1562. https://doi.org/10.3324/haematol.2015.139154

  26. 26. Lev, A., Lee, Y.N., Sun, G., et al. (2021) Inherited SLP76 De-ficiency in Humans Causes Severe Combined Immunodeficiency, Neutrophil and Platelet Defects. Journal of Experi-mental Medicine, 218, e20201062.

  27. 27. Liu, H., Thaker, Y.R., Stagg, L., et al. (2013) SLP-76 Sterile α Motif (SAM) and Individual H5 α Helix Mediate Oligomer Formation for Microclusters and T-Cell Activation. Journal of Biological Chemistry, 288, 29539-29549. https://doi.org/10.1074/jbc.M112.424846

  28. 28. Belmont, J., Gu, T., Mudd, A., et al. (2017) A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex. Journal of Proteome Research, 16, 2729-2742. https://doi.org/10.1021/acs.jproteome.6b01026

  29. 29. Tariq, F., Khan, W., Ahmad, W., et al. (2021) Effect of MHC Linked 7-Gene Signature on Delayed Hepatocellular Carcinoma Recurrence. Journal of Personalized Medicine, 11, 1129. https://doi.org/10.3390/jpm11111129

  30. 30. Chang, C.J., Wang, H.Q., Zhang, J., et al. (2021) Distinct Proteomic Profiling of Plasma Extracellular Vesicles from Moderate-to-Severe Atopic Dermatitis Patients. Clinical, Cosmetic and Investigational Dermatology, 14, 1033-1043. https://doi.org/10.2147/CCID.S325515

  31. 31. Dadwal, N., Mix, C., Reinhold, A., et al. (2021) The Multiple Roles of the Cytosolic Adapter Proteins ADAP, SKAP1 and SKAP2 for TCR/CD3-Mediated Signaling Events. Frontiers in Immunology, 12, Article ID: 703534. https://doi.org/10.3389/fimmu.2021.703534

  32. 32. Blomberg, O.S., Spagnuolo, L. and de Visser, K.E. (2018) Im-mune Regulation of Metastasis: Mechanistic Insights and Therapeutic Opportunities. Disease Models & Mechanisms, 11, dmm036236. https://doi.org/10.1242/dmm.036236

  33. 33. Moncayo, G., Grzmil, M., Smirnova, T., et al. (2018) SYK Inhibition Blocks Proliferation and Migration of Glioma Cells, and Modifies the Tumor Microenvironment. Neu-ro-Oncology, 20, 621-631. https://doi.org/10.1093/neuonc/noy008

  34. 34. Chu, S., Wang, H. and Yu, M. (2017) A Putative Molecular Network Associated with Colon Cancer Metastasis Constructed from Microarray Data. World Journal of Surgical Oncology, 15, 115. https://doi.org/10.1186/s12957-017-1181-9

  35. 35. Jiang, H., Dong, L., Gong, F., et al. (2018) Inflammatory Genes Are Novel Prognostic Biomarkers for Colorectal Cancer. International Journal of Molecular Medicine, 42, 368-380. https://doi.org/10.3892/ijmm.2018.3631

  36. 36. Zhang, J., Wang, L., Xu, X., et al. (2020) Transcriptome-Based Net-work Analysis Unveils Eight Immune-Related Genes as Molecular Signatures in the Immunomodulatory Subtype of Tri-ple-Negative Breast Cancer. Frontiers in Oncology, 10, 1787. https://doi.org/10.3389/fonc.2020.01787

  37. 37. Long, W., Li, Q., Zhang, J., et al. (2021) Identification of Key Genes in the Tumor Microenvironment of Lung Adenocarcinoma. Medical Oncology, 38, 83. https://doi.org/10.1007/s12032-021-01529-3

  38. 38. Huo, Y., Zhang, K., Han, S., et al. (2021) Lymphocyte Cytosolic Protein 2 Is a Novel Prognostic Marker in Lung Adenocarcinoma. Journal of International Medical Research, 49, No. 11. https://doi.org/10.1177/03000605211059681

  39. 39. Wang, Z. and Peng, M. (2021) A Novel Prognostic Biomarker LCP2 Correlates with Metastatic Melanoma-Infiltrating CD8+ T Cells. Scientific Reports, 11, 9164. https://doi.org/10.1038/s41598-021-88676-9

  40. 40. Yao, J., Duan, L., Huang, X., et al. (2021) Develop-ment and Validation of a Prognostic Gene Signature Correlated with M2 Macrophage Infiltration in Esophageal Squa-mous Cell Carcinoma. Frontiers in Oncology, 11, Article ID: 769727. https://doi.org/10.3389/fonc.2021.769727

  41. 41. Iyer, V.S., Boddul, S.V., Johnsson, A.K., et al. (2022) Modulating T-Cell Activation with Antisense Oligonucleotides Targeting Lymphocyte Cytosolic Protein 2. Journal of Autoimmunity, 131, Article ID: 102857. https://doi.org/10.1016/j.jaut.2022.102857

  42. 42. Mammadli, M., Huang, W., Harris, R., et al. (2021) Targeting SLP76:ITK Interaction Separates GVHD from GVL in Allo-HSCT. Science, 24, Article ID: 102286. https://doi.org/10.1016/j.isci.2021.102286

  43. 43. Lu, T., Xu, R., Wang, C.H., et al. (2022) Identification of Tumor Antigens and Immune Subtypes of Esophageal Squamous Cell Carcinoma for mRNA Vaccine Development. Frontiers in Genetics, 13, Article ID: 853113. https://doi.org/10.3389/fgene.2022.853113

  44. NOTES

    *通讯作者。

期刊菜单