设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(12),2133-2140
PublishedOnlineDecember2022inHans.http://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2022.1212229
\
Bergman
˜
m
þ
2
Â
Volterra
.
È
©
Ž
f
–––
’’’
¤¤¤
*
H
“
‰
Æ
§
2
À
Ö
ô
Â
v
F
Ï
µ
2022
c
11
24
F
¶
¹
^
F
Ï
µ
2022
c
12
22
F
¶
u
Ù
F
Ï
µ
2022
c
12
29
F
Á
‡
C
c
5
)
Û
¼
ê
˜
m
þ
2
Â
Volterra
.
È
©
Ž
f
k
.
5
Ú
;
5
Ú
å
¯
õ
Æ
ö
,
"
,
§
\
Bergman
˜
m
þ
2
Â
Volterra
.
Ž
f
ï
Ä
ÿ
™
õ
"
Ø
©
?
Ø
\
Bergman
˜
m
ƒ
m
2
Â
Volterra
.
È
©
Ž
f
k
.
5
Ú
;
5
¯
K
§
|
^
BergmanCarleson
ÿ
Ý
Ú
Littlewo od-Paley
ú
ª
‰
Ñ
\
Bergman
˜
m
ƒ
m
2
Â
Volterra
.
È
©
Ž
f
k
.
5
Ú
;
5
•
x
§
õ
\
Bergman
˜
m
þ
2
Â
Volterra
.
Ž
f
5
Ÿ
"
'
…
c
Bergman
˜
m
§
2
Â
Volterra
.
È
©
Ž
f
§
k
.
5
§
;
5
GeneralizedVolterraTypeIntegral
OperatorsbetweenWeighted
BergmanSpaces
YechengShi
SchoolofMathematicsandStatistics,LingnanNormalUniversity,ZhanjiangGuangdong
Received:Nov.24
th
,2022;accepted:Dec.22
nd
,2022;published:Dec.29
th
,2022
©
Ù
Ú
^
:
–
’
¤
.
\
Bergman
˜
m
þ
2
Â
Volterra
.
È
©
Ž
f
[J].
n
Ø
ê
Æ
,2022,12(12):2133-2140.
DOI:10.12677/pm.2022.1212229
–
’
¤
Abstract
Inrecentyears,theboundednessandcompactnessofgeneralizedVolterra-typeinte-
graloperatorsonanalyticfunctionspaceshaveattractedmanyscholars’interests,but
thestudyofthegeneralizedVolterra-typ eintegraloperatorsonweightedBergman
spaceisnotyetcomplete.Inthispaper,weconsidertheb oundednessandcom-
pactnessofGeneralizedVolterratypeintegraloperatorsbetweenweightedBergman
spaces.UsingtheBergmanCarlesonmeasureandLittlewood-Paleyformula,wechar-
acterizedtheboundednessandcompactnessofgeneralizedVolterra-typeoperators
weightedBergmanspace,andthepropertiesofgeneralizedVolterra-typeoperators
werefurtherimproved.
Keywords
BergmanSpaces,GeneralizedVolterraTypeIntegralOperators,Boundedness,
Compactness
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
D
´
E
²
¡
C
þ
ü
,
=
D
:=
{
z
∈
C
:
|
z
|
<
1
}
.
H
(
D
)
´
D
þ
)
Û
¼
ê
N
.
0
<p<
∞
,
−
1
<α<
∞
ž
,
\
Bergman
˜
m
A
p
α
½
Â
•
¤
k
L
p
(
D,dA
α
)
‰
ê
k
•
)
Û
¼
ê
N
,
=
µ
A
p
α
=
{
f
∈
H
(
D
) :
k
f
k
p
A
p
α
:=
Z
|
f
(
z
)
|
p
dA
α
(
z
)
<
∞}
.
ù
p
dA
α
(
z
) =
1
α
+1
(1
−|
z
|
2
)
α
dA
(
z
),
dA
(
z
) =
1
π
dxdy
´
D
þ
I
O
Lebanese
ÿ
Ý
.
ϕ
∈
H
(
D
)
…
ϕ
•
ü
D
þ
)
Û
g
N
,
E
Ü
Ž
f
C
ϕ
½
Â
•
(
C
ϕ
f
)(
z
) =
f
(
ϕ
(
z
))
,z
∈
D,f
∈
H
(
D
)
.
\
E
Ü
Ž
f
uC
ϕ
½
Â
•
DOI:10.12677/pm.2022.12122292134
n
Ø
ê
Æ
–
’
¤
uC
ϕ
(
f
)(
z
) =
u
(
z
)
f
(
ϕ
(
z
))
, z
∈
D,f
∈
H
(
D
)
.
ù
p
a
b
L
«
•
3
~
ê
C>
0
¦
C
−
1
b
≤
a
≤
Cb
.
g
∈
H
(),
½
Â
Volterra
È
©
Ž
f
T
g
•
T
g
f
(
z
) =
Z
z
0
f
(
ζ
)
g
0
(
ζ
)
dζ,f
∈
H
(
D
)
.
,
½
Â
È
©
Ž
f
S
g
•
(
S
g
f
)(
z
) =
Z
z
0
f
0
(
ζ
)
g
(
ζ
)
dζ, f
∈
H
(
D
)
.
Pommerenke[1]
3
1977
c
,
Ä
k
ï
Ä
È
©
Ž
f
T
g
3
Hardy
˜
m
H
2
k
.
5
¯
K
.
3
d
ƒ
,
N
õ
Æ
ö
ï
Ä
Ù
¦
Ø
Ó
)
Û
¼
ê
˜
m
þ
Volterra
È
©
Ž
f
.Li
Ú
Stevi´c
3
©
z
[2]
¥
Ú
\
¿
ï
Ä
2
Â
Volterra
.
È
©
Ž
f
T
ϕ
g
=
C
ϕ
◦
T
g
,
T
g,ϕ
=
T
g
◦
C
ϕ
,
S
ϕ
g
=
C
ϕ
◦
S
g
,
S
g,ϕ
=
S
g
◦
C
ϕ
.
‘
,
2
Â
Volterra
.
È
©
Ž
f
á
Ú
¯
õ
Æ
ö
'
5
Ú
ï
Ä
[3–9].
é
u
\
Bergman
˜
m
þ
•
x
¾
,ÿ
™
ï
Ä
.
©·
‚
Ì
‡
•
Ä
\
Bergman
˜
m
A
p
α
þ
2
Â
Volterra
.
È
©
Ž
f
k
.
5
Ú
;
5
¯
K
.
©
1
!0
y
²
©
Ì
‡
(
J
¤
I
‡
Littlewood-Paley
ú
ª
!
Bergman
Carleson
ÿ
Ý
Ú
Nevalinna
.
O
ê
¼
ê
ƒ
'
(
Ø
.
1
n
!
,
‰
Ñ
©
Ì
‡
(
J
9
Ù
y
²
.
2.
ý
•
£
Ä
k
,
·
‚
I
‡
e
¡
Littlewood-Paley
ú
ª
,
Œ
„
u
[10]
½
n
4.28.
Ú
n
2.1
b
0
<p<
∞
,
−
1
<α<
∞
.
e
f
∈
A
p
α
,
K
k
f
k
A
p
α
|
f
(0)
|
+
k
f
0
k
A
p
α
+
p
.
½
Â
2.2
b
0
<p,q<
∞
,
−
1
<α<
∞
,
P
λ
:=
p
q
.
µ
•
ü
D
þ
Borel
ÿ
Ý
,
e
i
\
N
I
:
A
p
α
→
L
q
(
dµ
)
´
k
.
,
K
¡
µ
´
(
λ,α
)
−
BergmanCarleson
ÿ
Ý
.
e
µ
•
ü
D
þ
Borel
ÿ
Ý
,
é
¤
k
{
f
n
}⊂
A
p
α
,
…
÷
v
{
f
n
}
3
D
þ
?
¿
;
f
8
˜
—
Â
ñ
u
0
¼
ê
{
f
n
}
,
k
lim
n
→∞
k
f
n
k
L
q
(
dµ
)
= 0
,
·
‚
K
¡
µ
´
ž
«
(
λ,α
)
−
BergmanCarleson
ÿ
Ý
.
z
∈
D
, 0
<r<
1,
^
4
(
z,r
)
L
«
±
z
•
%
,
r
•
Œ
»
[
V
-
.
·
‚
I
‡
e
¡
¯
¤
±
•
Bergman
˜
m
i
\
Ž
f
Carleson
.
ÿ
Ý
•
x
,
Œ
„
©
z
[11].
Ú
n
2.3
b
−
1
<α<
∞
,0
<p,q<
∞
,
-
µ
•
D
þ
Borel
ÿ
Ý
,
K
(1)
0
<p
≤
q<
∞
ž
,
DOI:10.12677/pm.2022.12122292135
n
Ø
ê
Æ
–
’
¤
(a)
I
:
A
p
α
→
L
q
(
dµ
)
´
k
.
Ž
f
…
=
sup
z
∈
D
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
q
p
(
α
+2)
<
∞
.
(b)
I
:
A
p
α
→
L
q
(
dµ
)
´
;
Ž
f
…
=
lim
|
z
|→
1
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
q
p
(
α
+2)
= 0
.
(2)
0
<q<p<
∞
ž
,
1
s
=
1
q
−
1
p
.
I
:
A
p
α
→
L
q
(
dµ
)
´
k
.
(
;
)
Ž
f
…
=
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
α
+2
∈
L
s
(
dA
α
)
.
5
µ
½
Â
‡
©
Ž
f
D
•
Df
=
f
0
.
d
Ú
n
2.1,
‡
©
Ž
f
D
:
A
p
α
→
L
q
(
µ
)
k
.
(
;
)
…
=
i
\
Ž
f
I
:
A
p
α
+
p
→
L
q
(
µ
)
k
.
(
;
).
b
−
1
<α<
∞
,
ϕ
´
ü
D
þ
)
Û
g
N
,
½
Â
Nevanlinna
.
O
ê
¼
ê
N
ϕ,α
+2
(
w
) =
P
z
∈
ϕ
−
1
(
w
)
log(
1
|
z
|
),
ù
p
w
∈
ϕ
(
D
)
…
w
6
=
ϕ
(0).
¿
-
N
ϕ,α
+2
(
w
)=0
,w/
∈
ϕ
(
D
).
d
Ú
n
2.1,
·
‚
ê
þ
k
e
¡
Ú
n
.
Ú
n
2.4
b
−
1
<α<
∞
,
ϕ
:
D
→
D
´
)
Û
N
,
g
∈
B
,
f
∈
A
2
α
.
K
k
T
ϕ
g
f
k
2
A
2
α
|
(
T
g
f
)(
ϕ
(0))
|
2
+
Z
D
|
f
(
w
)
|
2
|
g
0
(
w
)
|
N
ϕ,α
+2
(
w
)
dA
(
w
)
.
3.
k
.
5
Ú
;
5
•
x
|
^
±
þ
Ú
n
,
·
‚
y
3
y
²
©
Ì
‡
½
n
.
½
n
3.1
b
0
<p,q<
∞
,
−
1
<α,β<
∞
.
b
g,ϕ
∈
H
(),
ϕ
(
D
)
⊂
D
,
½
Â
ü
D
þ
Borel
ÿ
Ý
µ
β
g,ϕ
•
µ
(
E
) :=
µ
q,β
g,ϕ
(
E
) =
Z
ϕ
−
1
(
E
)
|
(
g
◦
ϕ
)
0
(
z
)
|
q
dA
β
+
q
(
z
)
,
ù
p
E
•
D
þ
?
˜
Borel
8
.
K
T
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
µ
´
(
ž
«
)(
p
q
,α
)-
BergmanCarleson
ÿ
Ý
.
=
µ
(1)
0
<p
≤
q<
∞
ž
,
(a)
T
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
Ž
f
…
=
sup
z
∈
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
α
+2
<
∞
.
(b)
T
ϕ
g
:
A
p
α
→
A
q
β
´
;
Ž
f
…
=
DOI:10.12677/pm.2022.12122292136
n
Ø
ê
Æ
–
’
¤
lim
|
z
|→
1
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
α
+2
<
∞
.
(2)
0
<q<p<
∞
ž
,
P
s
=
pq
p
−
q
.
K
T
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
µ
(
4
(
z,r
))
(1
−|
z
|
2
)
α
+2
∈
L
s
(
D,dA
α
)
y
²
:
T
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
Ž
f
d
u
k
T
ϕ
g
f
k
A
q
β
≤
C
k
f
k
A
p
α
.
Ø
”
ϕ
(0) = 0,
K
d
Ú
n
2.1
k
T
ϕ
g
f
k
q
A
q
β
=
Z
ϕ
(
z
)
0
f
(
ζ
)
g
0
(
ζ
)
dζ
q
A
q
β
k
(
f
◦
ϕ
))(
g
◦
ϕ
)
0
k
q
A
q
β
+
q
Z
D
|
f
(
ϕ
(
z
))
|
q
|
(
g
◦
ϕ
)
0
(
z
)
|
q
dA
β
+
q
=
Z
D
|
f
(
z
)
|
q
dµ
β
g,ϕ
(
z
)
.
·
‚
k
T
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
i
\
Ž
f
I
:
A
p
α
→
L
q
(
dµ
)
´
k
.
(
;
)
Ž
f
.
Ï
d
,
d
Ú
n
2.3,
½
n
y
.
½
n
3.2
b
0
<p,q<
∞
,
−
1
<α,β<
∞
.
b
g,ϕ
∈
H
(),
ϕ
(
D
)
⊂
D
,
½
Â
ü
D
þ
Borel
ÿ
Ý
µ
•
µ
(
E
) =
Z
ϕ
−
1
(
E
)
|
g
0
(
z
)
|
q
dA
β
+
q
(
z
)
,
ù
p
E
•
D
þ
?
˜
Borel
8
.
K
T
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
µ
´
(
ž
«
) (
p
q
,α
)-
BergmanCarleson
ÿ
Ý
.
y
²
:
T
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
Ž
f
d
u
k
T
g,ϕ
f
k
A
q
β
≤
C
k
f
k
A
p
α
.
K
k
T
g,ϕ
f
k
q
A
q
β
=
Z
z
0
f
(
ϕ
(
ζ
))
g
0
(
ζ
)
dζ
q
A
q
β
k
(
f
◦
ϕ
))
g
0
k
q
A
q
β
+
q
Z
D
|
f
(
ϕ
(
z
))
|
q
|
g
0
(
z
)
|
q
dA
β
+
q
=
Z
D
|
f
(
z
)
|
q
dµ
(
z
)
.
DOI:10.12677/pm.2022.12122292137
n
Ø
ê
Æ
–
’
¤
·
‚
k
T
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
i
\
Ž
f
I
:
A
p
α
→
L
q
(
dµ
)
´
k
.
(
;
)
Ž
f
.
Ï
d
,
d
Ú
n
2.3,
½
n
y
.
½
n
3.3
b
0
<p,q<
∞
,
−
1
<α,β<
∞
.
b
g,ϕ
∈
H
(),
ϕ
(
D
)
⊂
D
,
½
Â
ü
D
þ
Borel
ÿ
Ý
µ
•
µ
(
E
) =
Z
ϕ
−
1
(
E
)
|
g
(
ϕ
(
z
))
ϕ
0
(
z
)
|
q
dA
β
+
q
(
z
)
,
ù
p
E
•
D
þ
?
˜
Borel
8
.
K
S
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
µ
´
(
ž
«
) (
p
q
,α
+
p
)-
BergmanCarleson
ÿ
Ý
.
y
²
:
S
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
Ž
f
d
u
k
S
ϕ
g
f
k
A
q
β
≤
C
k
f
k
A
p
α
.
Ø
”
ϕ
(0) = 0,
K
k
S
ϕ
g
f
k
q
A
q
β
=
Z
ϕ
(
z
)
0
f
0
(
ζ
)
g
(
ζ
)
dζ
q
A
q
β
k
(
f
◦
ϕ
)
0
(
g
◦
ϕ
)
k
q
A
q
β
+
q
Z
D
|
(
f
◦
ϕ
)
0
(
z
))
|
q
|
g
(
ϕ
(
z
))
|
q
dA
β
+
q
=
Z
D
|
f
0
(
z
)
|
q
dµ
(
z
)
.
·
‚
k
S
ϕ
g
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
‡
©
Ž
f
D
:
A
p
α
→
L
q
(
dµ
)
´
k
.
(
;
)
Ž
f
.
Ï
d
,
d
Ú
n
2.3
9
Ù
5
,
½
n
y
.
½
n
3.4
b
0
<p,q<
∞
,
−
1
<α,β<
∞
.
b
g,ϕ
∈
H
(),
ϕ
(
D
)
⊂
D
,
½
Â
ü
D
þ
Borel
ÿ
Ý
µ
•
µ
(
E
) =
Z
ϕ
−
1
(
E
)
|
g
(
z
)
ϕ
0
(
z
)
|
q
dA
β
+
q
(
z
)
,
ù
p
E
•
D
þ
?
˜
Borel
8
.
K
S
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
µ
´
(
ž
«
) (
p
q
,α
+
p
)-
BergmanCarleson
ÿ
Ý
.
y
²
:
S
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
Ž
f
d
u
k
S
g,ϕ
f
k
A
q
β
≤
C
k
f
k
A
p
α
.
Ø
”
ϕ
(0) = 0,
K
k
S
g,ϕ
f
k
q
A
q
β
=
Z
z
0
(
f
◦
ϕ
)
0
(
ζ
)
g
(
ζ
)
dζ
q
A
q
β
k
(
f
◦
ϕ
)
0
g
k
q
A
q
β
+
q
Z
D
|
(
f
◦
ϕ
)
0
(
z
)
|
q
|
g
(
z
)
|
q
dA
β
+
q
(
z
)
=
Z
D
|
f
0
(
z
)
|
q
dµ
(
z
)
.
DOI:10.12677/pm.2022.12122292138
n
Ø
ê
Æ
–
’
¤
¤
±
,
·
‚
k
S
g,ϕ
:
A
p
α
→
A
q
β
´
k
.
(
;
)
Ž
f
…
=
‡
©
Ž
f
D
:
A
p
α
→
L
q
(
dµ
)
´
k
.
(
;
)
Ž
f
.
Ï
d
,
d
Ú
n
2.3
9
Ù
5
,
½
n
y
.
£
Bloch
˜
m
½
Â
.
d
¤
k
÷
v
sup
z
∈
D
|
f
0
(
z
)
|
(1
−|
z
|
2
)
<
∞
¤
k
)
Û
¼
ê
¤
˜
m
,
¡
•
Bloch
˜
m
,
P
Š
B
.
d
[12]
·
‚
•
µ
T
g
:
A
p
α
→
A
p
α
k
.
…
=
g
∈
B
.
g
∈
B
ž
,
·
‚
¦
^
©
z
[13]
•{
,
|
^
Nevanlinna
.
O
ê
¼
ê
•
x
2
Â
Volterra
.
È
©
Ž
f
T
ϕ
g
Ú
T
g,ϕ
k
.
5
Ú
;
5
•
x
.
•
u
Ÿ
Ì
,
·
‚
•
‰
Ñ
T
ϕ
g
;
5
•
x
.
½
n
3.5
b
0
<p<
∞
,
−
1
<α<
∞
.
b
ϕ
∈
H
(),
ϕ
(
D
)
⊂
D
,
g
∈
B
.
K
T
ϕ
g
:
A
p
α
→
A
p
α
´
;
Ž
f
…
=
|
g
0
(
z
)
|
2
N
ϕ,α
(
z
)
dA
(
z
)
´
ž
«
(1
,α
)-BergmanCarleson
ÿ
Ý
.
y
²
:
¿
©
5
:
Ä
k
•
Ä
p
=2
œ
¹
.
b
{
f
n
}⊂
A
2
α
,
÷
v
k
f
n
k
A
2
α
≤
1
…
f
n
3
D
;
f
8
þ
˜
—
Â
ñ
u
0.
@
o
,
n
→∞
ž
,
T
g
f
n
(
ϕ
(0)) =
Z
ϕ
(0)
0
f
n
(
w
)
g
0
(
w
)
dw
→
0
.
Ï
d
,
e
|
g
0
|
2
N
ϕ,α
dA
´
ž
«
(1
,α
)
−
BergmanCarleson
ÿ
Ý
,
K
i
\
N
A
2
α
→
L
2
(
D,
|
g
0
|
2
N
ϕ,α
dA
)
´
;
.
u
´
,
d
Ú
n
2.4,
k
T
ϕ
g
f
n
k
A
2
α
→
0,
n
→∞
.
¤
±
,
T
ϕ
g
:
A
2
α
→
A
2
α
´
;
Ž
f
.
du
g
∈
B
,
Œ
•
µ
é
?
¿
0
<p<
∞
,
T
ϕ
g
:
A
p
α
→
A
p
α
´
k
.
Ž
f
,
l
d
Krasnoselskii
Š
½
n
[14]
µ
T
ϕ
g
:
A
p
α
→
A
p
α
´
;
Ž
f
.
7
‡
5
µ
b
é
,
‡
p
∈
(0
,
∞
),
k
C
ϕ
T
g
:
A
p
α
→
A
p
α
´
;
Ž
f
,
@
o
d
Š
n
Ø
,
T
ϕ
g
´
A
2
α
þ
;
Ž
f
.
d
Ú
n
2.4,
Œ
•
i
\
N
A
2
α
→
L
2
(
D,
|
g
0
|
2
N
ϕ,α
dA
)
´
;
.
|
g
0
|
2
N
ϕ,α
+2
dA
´
ž
«
(1
,α
)-BergmanCarleson
ÿ
Ý
.
5
µ
g
∈
H
∞
ž
,
Ž
f
S
ϕ
g
,S
g,ϕ
:
A
p
α
→
A
p
α
•
k
ƒ
A
Ó
a
.
(
Ø
.
Ä
7
‘
8
Ø
©
É
*
H
“
‰
Æ
‰
ï
‘
8
(1170919634)
]
Ï
.
ë
•
©
z
[1]Pommerenke,C.(1977)SchlichteFunktionenundanalytischeFunktionenvonbeschr¨ankter
mittlererOszillation.
CommentariiMathematiciHelvetici
,
52
,591-602.
https://doi.org/10.1007/BF02567392
DOI:10.12677/pm.2022.12122292139
n
Ø
ê
Æ
–
’
¤
[2]Li,S.andStevi´c,S.(2008)ProductsofCompositionandIntegralTypeOperatorsfrom
H
∞
totheBlochSpace.
ComplexVariablesandEllipticEquations
,
53
,463-474.
https://doi.org/10.1080/17476930701754118
[3]Li,S. and Stevi´c, S. (2008) GeneralizedComposition Operators on Zygmund Spacesand Bloch
TypeSpaces.
JournalofMathematicalAnalysisandApplications
,
338
,1282-1295.
https://doi.org/10.1016/j.jmaa.2007.06.013
[4]Li,S.andStevi´c,S.(2009)ProductsofIntegral-TypeOperatorsandCompositionOperators
betweenBloch-Type Spaces.
JournalofMathematical Analysis and Applications
,
349
, 596-610.
https://doi.org/10.1016/j.jmaa.2008.09.014
[5]Mengestie, T.(2014)Productof VolterraTypeIntegralandComposition OperatorsonWeight-
edFockSpaces.
TheJournalofGeometricAnalysis
,
24
,740-755.
https://doi.org/10.1007/s12220-012-9353-x
[6]Mengestie,T.(2016)GeneralizedVolterraCompanionOperatorsonFockSpaces.
Potential
Analysis
,
44
,579-599.https://doi.org/10.1007/s11118-015-9520-3
[7]Mengestie,T.andWorku,M.(2018)TopologicalStructuresofGeneralizedVolterra-Type
IntegralOperators.
MediterraneanJournalofMathematics
,
15
,ArticleNo.42.
https://doi.org/10.1007/s00009-018-1080-5
[8]Tien,P.(2020)ProductsofVolterraTypeOperatorsandCompositionOperatorsbetween
FockSpaces.
ResultsinMathematics
,
75
,ArticleNo.104.
[9]Yang,Z.andZhou,Z.(2022)GeneralizedVolterra-TypeOperatorsonGeneralizedFockS-
paces.
MathematischeNachrichten
,
295
, 1641-1662.https://doi.org/10.1002/mana.202000014
[10]Zhu, K.H. (2007) Operator Theory in Function Spaces. American Mathematical Society, Prov-
idence.
[11]Pau, J. and Zhao, R.(2015) Carleson Measures and Toeplitz Operators for Weighted Bergman
SpacesontheUnitBall.
MichiganMathematicalJournal
,
64
,759-796.
https://doi.org/10.1307/mmj/1447878031
[12]Aleman,A.andSiskakis,A.G.(1997)IntegrationOperatorsonBergmanSpaces.
Indiana
UniversityMathematicsJournal
,
46
,337-356.
[13]Miihkinen,S.,Nieminen,P.,Saksman,E.,
etal.
(2018)StructuralRigidityofGeneralised
VolterraOperatorson
H
p
.
BulletindesSciencesMath´ematiques
,
148
,1-13.
https://doi.org/10.1016/j.bulsci.2018.06.005
[14]Krasnoselskii,M.(1960)OnaTheoremofM.Riesz.
SovietMath.Dokl
,
1
,229-231.
DOI:10.12677/pm.2022.12122292140
n
Ø
ê
Æ