Advances in Psychology
Vol. 14  No. 04 ( 2024 ), Article ID: 84112 , 8 pages
10.12677/ap.2024.144193

动机对错误加工影响的研究综述

李俊燕1,蒋军2,陈小异1

1重庆师范大学教育科学学院,重庆

2陆军军医大学医学心理学系,重庆

收稿日期:2024年2月18日;录用日期:2024年3月28日;发布日期:2024年4月9日

摘要

错误加工是个体不断优化行为表现并适应环境以实现目标行为的重要加工机制。以往的研究发现,动机会对个体的错误加工造成影响。本文总结了错误加工的机制以及动机对错误加工的影响。错误加工主要有两个ERP成分,分别是错误相关负波(ERN)和错误相关正波(Pe)。研究表明动机对错误加工的ERN和Pe都有影响。这可能是因为动机加强了错误与正确行为之间的冲突并且增加了对错误的注意力。未来的研究可以探讨在积极和消极的混合动机下的错误加工,以及对意识到和未意识到错误的影响。

关键词

错误加工,ERN,Pe,动机

Review of the Effects of Motivation on Error Processing

Junyan Li1, Jun Jiang2, Xiaoyi Chen1

1School of Educational Sciences, Chongqing Normal University, Chongqing

2Department of Medical Psychology, Army Medical University, Chongqing

Received: Feb. 18th, 2024; accepted: Mar. 28th, 2024; published: Apr. 9th, 2024

ABSTRACT

Error processing is an important processing mechanism for individuals to continuously optimize their behavioral performance and adapt to their environment to achieve their target behavior. Previous studies have found that motivation can have an impact on an individual’s error processing. This paper summarizes the mechanisms of error processing and the effects of motivation on error processing. Error processing has two main ERP components, the error-related negative (ERN) and the error-related positive (Pe). Studies have shown that motivation has an effect on both ERN and Pe of error processing. This may be because motivation reinforces the conflict between error and correct behavior and increases attention to the error. Future research could explore error processing under a mixture of positive and negative motivation, as well as the effects on both conscious and unconscious errors.

Keywords:Error Processing, ERN, Pe, Motivation

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人非圣贤,孰能无过。错误伴随着我们所有的行为活动,例如做作业时粗心大意,打字的时候敲错键盘等等。当我们意识到自己做错的时候,就会及时地调整自己的行为,改正错误,如更加细心地对待作业,打字出错后放慢速度等等。错误检测十分重要,对错误行为及时察觉,能够减轻错误带来后果。错误加工是认知控制的重要功能之一,它涉及一系列连续的认知加工过程,主要可以概括为错误检测(error monitoring)与错误后调整(post-error adjustment)。许多研究发现,在意识到错误后会出现相应的行为调节,而没有意识到错误则较少出现行为调整(Wessel, Danielmeier, & Ullsperger, 2011),可见意识到错误是个体学习和优化行为的前提。

2. 错误加工的脑电成分

2.1. 错误相关负波

错误负波(Falkenstein et al., 1991)或错误相关负波(Gehring et al., 1993)是前中央电极上的负偏转,在错误反应后50毫秒左右达到峰值,产生于内侧额叶皮层(Iannaccone et al., 2014)。早期的理论认为Ne/ERN反映了正确反应与实际反应之间的不匹配(Scheffers & Coles, 2000),后来又有人认为它代表了反应后冲突(Yeung et al., 2004)或预测错误(Holroyd & Coles, 2002)。所有这些说法的共同点是,Ne/ERN是基于在错误处理的早期阶段发现预期正确反应和实际反应之间的差异。

2.2. 错误相关正波

Ne/ERN之后是错误正向性(Pe),即在错误发生后约200~500毫秒出现的顶叶正偏转(Falkenstein et al., 1991; Overbeek et al., 2005)。在一些任务中,被试必须报告他们的反应是正确还是错误的信号,而当被试意识到他们的错误时,Pe会变大(Nieuwenhuis et al., 2001; Endrass et al., 2007)。因此,Pe被认为是错误意识(Steinhauser & Yeung, 2010; Ullsperger et al., 2014)或对反应正确性的信心(Boldt & Yeung, 2015)的相关因素,代表了错误处理的后期阶段。

3. 错误加工理论

3.1. 错误检测论

错误检测理论是最早解释错误加工的理论之一,也称为表征失匹配理论(mismatch theory),该理论认为Ne/ERN只是作为大脑的错误检测网络而存在(Gehring et al., 1993; Coles et al., 2001)。它认为ACC通过对应该的、正确的反应和实际的反应表征进行比较,检测到其中存在不匹配而产生ERN,不匹配程度越大,ERN越大。ERN很早就出现表明正确反应的表征来自于“传出命令”(efference copy),而不是来自于本体感受的反馈;或者ACC面对错误时提供一种情感的或动机的信号来解决冲突。

然而,这一理论引发了一些疑问:如果大脑能及时发现错误怎么会在一开始就犯错误呢?同样,这个“正确”的反应到底储存在哪里?之前的研究表明,即使被试没有意识到他们犯了错误,也会诱发Ne/ERN (Nieuwenhuis et al., 2001; Endrass et al., 2007; O’Connell et al., 2007)。这同样提出一个问题,如果没有意识到错误,大脑接受到的错误信息是如何处理的?当然也有研究表明Ne/ERN的发生并不需要有意识地识别错误,那么在没有意识到的情况下人类如何纠正这些错误?也有研究得出不一样的结果,认为错误意识与Ne/ERN振幅大小相关(Scheffers & Coles, 2000; Ullsperger & Von Cramon, 2004)。

总之,尽管这一假设在早期得到了支持,但仍有足够多的未能解决的问题,使得许多人开始怀疑其合理性。此外,这一假设很难检验。考虑到当时的技术进步,人们如何知道大脑是否“存储”了正确的反应(Charles et al., 2014)?这些问题引发了关于Ne/ERN产生的另一种理论——冲突监测理论。

3.2. 冲突检测论

根据冲突监测理论,ERN被认为是在犯错过程中发生的反应冲突的标志,通常出现在紧接着执行错误反应之前或期间。在执行错误反应时,当错误反应与继续处理目标刺激时排队等候的正确反应发生冲突时,就会出现反应冲突(Yeung et al., 2004)。因此,正确反应和错误反应之间的冲突程度应反映在ERN的振幅上,冲突越大,ERN振幅越负(Botvinick et al., 2001)。从理论上讲,这些反应冲突的改变是其他脑区的信号,如背外侧前额叶皮层(dlPFC)或腹外侧前额叶皮层(vlPFC),这些脑区参与实施更大的认知控制并触发行为调整(Kerns, 2006; MacDonald et al., 2000)。

冲突监测理论的一个关键假设是ERN振幅反映了反应冲突的动态变化。错误加工系统能够调用各种资源来监控环境并发现冲突信号,如果ERN的振幅对冲突程度敏感,那么振幅就会根据任务的冲突程度而产生变化。当任务强调准确性的时候,注意资源更多地几种在正确的反应上导致ERN振幅增大(Yeung et al., 2004),同样,在不一致试验之前的不一致试验中所犯的错误与在一致试验之前的不一致试验中所犯的错误相比,ERN幅度更负。这是由于在不一致试次后分配了更多的认知资源,从而导致对目标刺激的注意更多,以提高任务绩效(Larson et al., 2012)。这种注意力控制的转移有利于更大程度地检测到正确的目标刺激与错误反应之间的冲突,从而导致ERN振幅增大。因此,在认知冲突加剧的试验中,ERN振幅更大。

Hughes和Yeung (2011)将冲突条件下的试次(使用传统的Flanker任务)与掩蔽条件下的试次进行了比较。在掩蔽条件下,不一致试次被替换为一致试次,这样掩蔽试次产生的错误比例和反应时间与冲突条件下不一致刺激产生的错误比例和反应时间相同。这样,冲突条件下的错误是由于正确/不正确刺激之间的反应冲突造成的,而掩蔽条件下的错误则是由于刺激消退造成的。与掩蔽条件相比,在冲突条件下发生错误的ERN振幅明显更大,这表明弱化的反应刺激降低了正确反应的激活水平,从而导致冲突激活的整体降低。这些发现表明,在反应选择过程中,ERN对竞争性反应选项的激活程度非常敏感。

研究还表明,ERN振幅反映了正确和错误反应选项之间的竞争程度。一项研究根据Stop-Signal任务中刺激开始不同步的变化测量了ERN振幅的差异,并假设随着停止信号呈现延迟的增加,冲突也会增加,这是因为正确的反应选项会增加注意力,然后与错误的反应发生冲突(Stahl & Gibbbons, 2007)。同时还观察到,相对于错误试验(短延时非停止试次),正确反应试验(长延时停止试次)的ERN更大,这与ERN对反应冲突变化敏感的假设是一致的,因为ERN会增加对冲突的正确反应选项的注意。在Flanker任务中当侧翼刺激间隔较远和侧翼刺激尺寸较大时,错误的ERN振幅分别较大。当侧翼刺激物距离目标刺激物较远或较小时,较少的注意力会被引导到侧翼刺激物上,而更多的注意力会被引导到正确反应的目标上。因此,当错误发生时,正确反应和错误反应之间的冲突更大,导致ERN振幅相对于目标刺激受到较少注意的试验更大(Danielmeier et al., 2009; Maier et al., 2012)。这些研究共同证明,通过参数操纵增加对正确反应的注意,可能会导致正确反应选项的更大激活,从而导致更大的认知冲突和错误发生后更大的ERN振幅。

ERN对任务中冲突反应的变化很敏感,当更加关注正确反应的时候,ERN的振幅最大,包括更加关注正确刺激的情况(Maier et al., 2012)、强调准确性的情况(Gehring et al., 1993; Yeung et al., 2004)或正确和不正确的反应选项都增强的情况(Hughes & Yeung, 2011)。

3.3. 强化学习理论

人类会从自己行为的后果中学习。桑代克最初用他的效果律描述了这一现象,一个行为将随着行为结果的满意度而发生变化,伴随着满意感的行为更有可能在未来再次发生,而伴随着负面结果的行为不太可能再次发生。

强化学习理论(Holroyd & Coles, 2002)表明,Ne/ERN是当结果比预期的更糟时,从中脑多巴胺系统发送到ACC的负强化学习信号的结果,然后,ACC利用该信号来提高任务性能并避免未来的错误。当事件比预期中的坏时,多巴胺相位的降低解除了对ACC的抑制,引起更大的ERN;当事件比预期中的好时,多巴胺相位的增加抑制了ACC,引起更小的ERN;ACC使用该多巴胺信号用来改进当前行为。

当个体实时收到关于其表现的反馈时,他们的错误监控过程从外部反馈转移到内部监控,反映了学习过程。以前的研究已经证明,Ne/ERN的振幅会随着个体学习任务而增加(Bultena et al., 2017)。同样,也有研究表明,当被试更多地依赖外部反馈时,他们的Ne/ERN较小(Holroyd & Coles, 2002; Nieuwenhuis et al., 2002)。

反馈相关负波是强化学习理论所重点关注的。对反馈刺激进行事件相关电位分析,发现在230~270 ms负反馈比正反馈引发了更负的波形,被称为反馈错误相关负波(feedback ERN, fERN)或反馈相关负波(feedback-related negativity, FRN)。最初认为,Ne/ERN和FRN都反映了一个单一的、广义的错误监控系统(Holroyd & Coles, 2002; Holroyd et al., 2003)。然而,随着时间的推移,越来越多的研究表明,反馈锁定成分不是反馈相关的消极情绪,而是奖励相关的积极情绪,与消极或中性反馈相比,它对积极奖励反馈的敏感性不同(Holroyd et al., 2008; Proudfit, 2015)。

4. 动机对错误加工的影响

在日常生活中,我们经常根据受到的动机情况来决定认知资源的分配,特别是遇到高要求的任务时。这些动机包括两类,一类是完成任务带来的积极结果(如奖金,赞赏等);一类是没有完成任务的消极结果(如罚款,批评等)。在面对不同任务根据动机来调整认知资源的能力会深刻地影响一个人的学习、工作,对未来的发展具有重要的意义(Bonner & Sprinkle, 2002; Duckworth et al., 2007),同时通过对不同动机的研究,有助于了解临床疾病中认知缺陷的产生(Barch et al., 2015; Jean-Richard-Dit-Bressel et al., 2018)。

4.1. 动机对ERN的影响

一些研究表明,动机可以影响ERN (Boksem et al., 2006; Hajcak et al., 2005),这表明行为监测系统执行的功能不仅仅是简单的检测行为错误或调解竞争反应选项之间的关系,可能是在动机目标的背景下对执行行为的进一步评估。研究发现,与低价值奖励相比,做出正确反应的高价值金钱奖励增加了ERN振幅,当对被试的表现做出评价时,ERN振幅会增加(Hajcak et al., 2005)。其他研究也证实了对ERN的激励作用。

一项研究在四组选择字母的任务中,通过对一种类型的字母进行金钱奖励,从而改变了错误的价值(Pailing & Segalowitz, 2004)。Hajcak等(2005)还调查了ERN是否对动机价值敏感。他们通过对被试进行金钱惩罚程度来操纵动机,高价值错误的ERN显著大于低价值错误。Ullsperger和Von Cramon (2004)进行了一项fMRI研究,其中他们通过金钱奖励来调节错误相关负波。他们发现,前额叶后内侧皮质中与错误相关的激活受到错误相关负波的调节。

个体的差异也会导致动机对ERN影响幅度的变化。抑郁的个体和具有边缘性人格障碍的个体对错误产生较低的ERN幅度(Ruchsow et al., 2006),而强迫症患者和自我报告强迫性人格特质得分高的个体相比具有大的ERN振幅(Gehring et al., 2000; Hajcak & Simons, 2002),这可能是因为他们对结果的关注度不同。Luu等人(2000)发现,在自我报告的负面影响中得分高的个体在实验阶段的早期试验中ERN较大,在后期试验中ERN较小,并将其解释为表明这些个体在实验阶段早期更有动力避免产生错误,但后来,一旦他们发现他们无法完全避免犯错误,他们在动机上脱离了任务(即停止关心)。

4.2. 动机对Pe的影响

同时之前的研究也指出动机会影响Pe,认为Pe反映了错误的显著性或错误的动机意义。金钱惩罚增加了Pe的振幅,Pe反映了对错误行为的觉察(Endrass et al., 2010)。在惩罚和奖励条件下,Pe的振幅比在控制条件下更大(Maruo et al., 2016),惩罚条件下的Pe的提高可能是由于主观错误显著性的增强,因此错误意识也在惩罚条件下更高。在应急等负面状态下个体对错误的动机性或者情绪性关注的Pe成分显著变大(Wu et al., 2014; Wu, Feng, Liu, Fang, & Duan, 2019)。

对错误的更高关注度也会诱发更大的Pe。然而,这种相关性只存在于神经质得分较高的被试中。对完美主义的研究表明,对错误的更高水平的关注与更大的Pe有关(Tops, Koole, & Wijers, 2013)。一项相关的研究表明,对绩效持有更高的标准或期望与更大的Pe有关(Stahl, Acharki, Kresimon, Voller, & Gibbons, 2015)。与具有固定能力心态(与无助和减少努力相关)的个体相比,具有成长能力心态(与持久性和成功动机相关)的个体表现出对Pe的错误影响增强。对结果持有更高的标准或期望会产生更大的Pe相关(Stahl, Acharki, Kresimon, Voller, & Gibbons, 2015)。人们可能会对那些自己擅长(或期望成功)的某项活动表现出更强的关注,以便他们能够利用各种信息进行自己的行为适当的调整,使自己能够完美地完成这项任务,这种态度可能表现在更大的Pe。

5. 未来研究展望

以上的研究表明,动机会对错误加工造成一定的影响。以往的研究主要集中在积极或者消极的动机对错误加工的影响,不同的动机均会造成错误加工中ERN和Pe成分振幅变大,这可能是因为动机导致了任务冲突加剧或者是对错误关注度更高。

并非所有的错误都能被我们意识到,而没有被察觉到的错误可能会对执行的任务造成严重的影响。一些研究发现只有在意识到错误条件下才可观察到错误后减慢等错误加工现象,而动机对意识到的错误和未意识到的错误的影响并没有深入的研究。

目前动机研究多数是积极或者消极的单因素动机影响,但是在日常生活中动机往往是更多面临的情况是正负动机的混合,这些动机会会共同作用于人们的行为,例如,获得提成和避免被裁员的双重动机可能会促使员工付出更多的努力来提升自己的业绩。在混合的动机中人们怎么分配注意力和认知资源来进行错误加工仍待深入研究。

文章引用

李俊燕,蒋 军,陈小异. 动机对错误加工影响的研究综述
Review of the Effects of Motivation on Error Processing[J]. 心理学进展, 2024, 14(04): 47-54. https://doi.org/10.12677/ap.2024.144193

参考文献

  1. 1. Barch, D. M., Pagliaccio, D., & Luking, K. (2015). Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. Behavioral Neuroscience of Motivation, 27, 411-449. https://doi.org/10.1007/7854_2015_376

  2. 2. Boksem, M. A. S., Tops, M., Wester, A. E., Meijman, T. F., & Lorist, M. M. (2006). Error-Related ERP Components and Individual Differences in Punishment and Reward Sensitivity. Brain Research, 1101, 92-101. https://doi.org/10.1016/j.brainres.2006.05.004

  3. 3. Boldt, A., & Yeung, N. (2015). Shared Neural Markers of Decision Confidence and Error Detection. Journal of Neuroscience, 35, 3478-3484. https://doi.org/10.1523/JNEUROSCI.0797-14.2015

  4. 4. Bonner, S. E., & Sprinkle, G. B. (2002). The Effects of Monetary Incentives on Effort and Task Performance: Theories, Evidence, and a Framework for Research. Accounting, Organizations and Society, 27, 303-345. https://doi.org/10.1016/S0361-3682(01)00052-6

  5. 5. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict Monitoring and Cognitive Control. Psychological Review, 108, 624-652. https://doi.org/10.1037/0033-295X.108.3.624

  6. 6. Bultena, S., Danielmeier, C., Bekkering, H., & Lemhöfer, K (2017). Electrophysiological Correlates of Error Monitoring and Feedback Processing in Second Language Learning. Frontiers in Human Neuroscience, 11, Article 29. https://doi.org/10.3389/fnhum.2017.00029

  7. 7. Charles, L., King, J. R., & Dehaene, S. (2014). Decoding the Dynamics of Action, Intention, and Error Detection for Conscious and Subliminal Stimuli. Journal of Neuroscience, 34, 1158-1170. https://doi.org/10.1523/JNEUROSCI.2465-13.2014

  8. 8. Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why Is There an ERN/Ne on Correct Trials? Response Representations, Stimulus-Related Components, and the Theory of Errorprocessing. Biological Psychology, 56, 191-206. https://doi.org/10.1016/S0301-0511(01)00076-X

  9. 9. Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the Error-Related Negativity by Response Conflict. Psychophysiology, 46, 1288-1298. https://doi.org/10.1111/j.1469-8986.2009.00860.x

  10. 10. Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and Passion for Long-Term Goals. Journal of Personality and Social Psychology, 92, 1087-1101. https://doi.org/10.1037/0022-3514.92.6.1087

  11. 11. Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP Correlates of Conscious Error Recognition: Aware and Unaware Errors in an Antisaccade Task. European Journal of Neuroscience, 26, 1714-1720. https://doi.org/10.1111/j.1460-9568.2007.05785.x

  12. 12. Endrass, T., Schuermann, B., Kaufmann, C., Spielberg, R., Kniesche, R., & Kathmann, N. (2010). Performance Monitoring and Error Significance in Patients with Obsessive-Compulsive Disorder. Biological Psychology, 84, 257-263. https://doi.org/10.1016/j.biopsycho.2010.02.002

  13. 13. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of Crossmodal Divided Attention on Late ERP Components II. Error Processing in Choice Reaction Task. Electroencephalography and Clinical Neurophysiology, 78, 447-455. https://doi.org/10.1016/0013-4694(91)90062-9

  14. 14. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A Neural System for Error Detection and Compensation. Psychological Science, 4, 385-390. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x

  15. 15. Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-Monitoring Dysfunction in Obsessive-Compulsive Disorder. Psychological Science, 11, 1-6. https://doi.org/10.1111/1467-9280.00206

  16. 16. Hajcak, G., & Simons, R. F. (2002). Error-Related Brain Activity in Obsessive-Compulsive Undergraduates. Psychiatry Research, 110, 63-72. https://doi.org/10.1016/S0165-1781(02)00034-3

  17. 17. Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the Significance of Errors. Psychophysiology, 42, 151-160. https://doi.org/10.1111/j.1469-8986.2005.00270.x

  18. 18. Holroyd, C. B., & Coles, M. G. H. (2002). The Neural Basis of Human Error Processing: Reinforcement Learning, Dopamine, and the Error-Related Negativity. Psychological Review, 109, 679-709. https://doi.org/10.1037/0033-295X.109.4.679

  19. 19. Holroyd, C. B., Nieuwenhuis, C. A. S., Yeung, N., & Cohen, J. D. (2003). Errors in Reward Prediction Are Reflected in the Event-Related Brain Potential. Neuroreport, 14, 2481-2484. https://doi.org/10.1097/00001756-200312190-00037

  20. 20. Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The Feedback Correct-Related Positivity: Sensitivity of the Event-Related Brain Potential to Unexpected Positive Feedback. Psychophysiology, 45, 688-697. https://doi.org/10.1111/j.1469-8986.2008.00668.x

  21. 21. Hughes, G., & Yeung, N. (2011). Dissociable Correlates of Response Conflict and Error Awareness in Error-Related Brain Activity. Neuropsychologia, 49, 405-415. https://doi.org/10.1016/j.neuropsychologia.2010.11.036

  22. 22. Iannaccone, R., Hauser, T. U., Staempfli, P., Walitza, S., Brandeis, D., & Brem, S (2014). Conflict Monitoring and Error Processing: New Insights from Simultaneous EEG-FMRI. NeuroImage, 105, 395-407. https://doi.org/10.1016/j.neuroimage.2014.10.028

  23. 23. Jean-Richard-Dit-Bressel, P., Killcross, S., & McNally, G. P. (2018). Behavioral and Neurobiological Mechanisms of Punishment: Implications for Psychiatric Disorders. Neuropsychopharmacology, 43, 1639-1650. https://doi.org/10.1038/s41386-018-0047-3

  24. 24. Kerns, J. G. (2006). Anterior Cingulate and Prefrontal Cortex Activity in an FMRI Study of Trial-to-Trial Adjustments on the Simon Task. NeuroImage, 33, 399-405. https://doi.org/10.1016/j.neuroimage.2006.06.012

  25. 25. Larson, M. J., Clayson, P. E., & Baldwin, S. A. (2012). Performance Monitoring Following Conflict: Internal Adjustments in Cognitive Control? Neuropsychologia, 50, 426-433. https://doi.org/10.1016/j.neuropsychologia.2011.12.021

  26. 26. Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, Personality, and Self-Monitoring: Negative Affect and Emotionality in Relation to Frontal Lobe Mechanisms of Error Monitoring. Journal of Experimental Psychology, 129, 43-60. https://doi.org/10.1037/0096-3445.129.1.43

  27. 27. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the Role of the Dorsolateral Prefrontal Cortex in Cognitive Control. Science, 288, 1835-1838. https://doi.org/10.1126/science.288.5472.1835

  28. 28. Maier, M. E., Di Pellegrino, G., & Steinhauser, M. (2012). Enhanced Error-Related Negativity on Flanker Errors: Error Expectancy or Error Significance? Psychophysiology, 49, 899-908. https://doi.org/10.1111/j.1469-8986.2012.01373.x

  29. 29. Maruo, Y., Schacht, A., Sommer, W., & Masaki, H. (2016). Impacts of Motivational Valence on the Error-Related Negativity Elicited by Full and Partial Errors. Biological Psychology, 114, 108-116. https://doi.org/10.1016/j.biopsycho.2015.12.004

  30. 30. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-Related Brain Potentials Are Differentially Related to Awareness of Response Errors: Evidence from an Antisaccade Task. Psychophysiology, 38, 752-760. https://doi.org/10.1111/1469-8986.3850752

  31. 31. Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, M. G., Holroyd, C. B., Kok, A. et al. (2002). A Computational Account of Altered Error Processing in Older Age: Dopamine and the Error-Related Negativity. Cognitive, Affective, & Behavioral Neuroscience, 2, 19-36. https://doi.org/10.3758/CABN.2.1.19

  32. 32. O’Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., & Foxe, J. J. (2007). The Role of Cingulate Cortex in the Detection of Errors with and without Awareness: A High-Density Electrical Mapping Study. European Journal of Neuroscience, 25, 2571-2579. https://doi.org/10.1111/j.1460-9568.2007.05477.x

  33. 33. Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable Components of Error Processing: on the Functional Significance of the Pe vis-à-vis Ern/Ne. Journal of Psychophysiology, 19, 319-329. https://doi.org/10.1027/0269-8803.19.4.319

  34. 34. Pailing, P. E., & Segalowitz, S. J. (2004). The Error-Related Negativity as a State and Trait Measure: Motivation, Personality, and the ERPs in Response to Errors. Psychophysiology, 41, 84-95. https://doi.org/10.1111/1469-8986.00124

  35. 35. Proudfit, G. H. (2015). The Reward Positivity: From Basic Research on Reward to a Biomarker for Depression. Psychophysiology, 52, 449-459. https://doi.org/10.1111/psyp.12370

  36. 36. Ruchsow, M., Herrnberger, B., Beschoner, P., Gron, G., Spitzer, M., & Kiefer, M. (2006). Error Processing in Major Depressive Disorder: Evidence from Event-Related Potentials. Journal of Psychiatric Research, 40, 37-46. https://doi.org/10.1016/j.jpsychires.2005.02.002

  37. 37. Scheffers, M. K., & Coles, M. G. H. (2000). Performance Monitoring in a Confusing World: Error-Related Brain Activity, Judgments of Response Accuracy, and Types of Errors. Journal of Experimental Psychology Human Perception & Performance, 26, 141-151. https://doi.org/10.1037/0096-1523.26.1.141

  38. 38. Stahl, J., & Gibbons, H. (2007). Event-Related Brain Potentials Support Episodic-Retrieval Explanations of Flanker Negative Priming. Experimental Brain Research, 181, 595-606. https://doi.org/10.1007/s00221-007-0951-y

  39. 39. Stahl, J., Acharki, M., Kresimon, M., Voller, F., & Gibbons, H. (2015). Perfect Error Processing: Perfectionism-Related Variations in Action Monitoring and Error Processing Mechanisms. International Journal of Psychophysiology, 97, 153-162. https://doi.org/10.1016/j.ijpsycho.2015.06.002

  40. 40. Steinhauser, M., & Yeung, N. (2010). Decision Processes in Human Performance Monitoring. Journal of Neuroscience, 30, 15643-15653. https://doi.org/10.1523/JNEUROSCI.1899-10.2010

  41. 41. Tops, M., Koole, S. L., & Wijers, A. A. (2013). The Pe of Perfectionism: Concern Over Mistakes Predicts the Amplitude of a Late Frontal Error Positivity. Journal of Psychophysiology, 27, 84-94. https://doi.org/10.1027/0269-8803/a000090

  42. 42. Ullsperger, M., & Cramon, D. Y. V. (2004). Neuroimaging of Performance Monitoring: Error Detection and Beyond. Cortex, 40, 593-604. https://doi.org/10.1016/S0010-9452(08)70155-2

  43. 43. Ullsperger, M., Fischer, A. G., Nigbur, R., & Endrass, T. (2014). Neural Mechanisms and Temporal Dynamics of Performance Monitoring. Trends in Cognitive Sciences, 18, 259-267. https://doi.org/10.1016/j.tics.2014.02.009

  44. 44. Wessel, J. R., Danielmeier, C., & Ullsperger, M. (2011). Error Awareness Revisited: Accumulation of Multimodal Evidence from Central and Autonomic Nervous Systems. Journal of Cognitive Neuroscience, 23, 3021-3036. https://doi.org/10.1162/jocn.2011.21635

  45. 45. Wu, J., Feng, M., Liu, Y., Fang, H., & Duan, H. (2019). The Relationship between Chronic Perceived Stress and Error Processing: Evidence from Event-Related Potentials. Scientific Reports, 9, Article No. 11605. https://doi.org/10.1038/s41598-019-48179-0

  46. 46. Wu, J., Yuan, Y., Duan, H., Qin, S., Buchanan, T. W., Zhang, K., & Zhang, L. (2014). Long-Term Academic Stress Increases the Late Component of Error Processing: An ERP Study. Biological Psychology, 99, 77-82. https://doi.org/10.1016/j.biopsycho.2014.03.002

  47. 47. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The Neural Basis of Error Detection: Conflict Monitoring and the Error-Related Negativity. Psychological Review, 111, 931-959. https://doi.org/10.1037/0033-295X.111.4.931

期刊菜单