﻿ 基于Geom/G/1模型的Ad Hoc网络节点性能分析 Performance Analysis of Ad Hoc Network Node Based on Geom/G/1 Model

Computer Science and Application
Vol.07 No.05(2017), Article ID:20827,6 pages
10.12677/CSA.2017.75054

Performance Analysis of Ad Hoc Network Node Based on Geom/G/1 Model

Qin Luo, Suoping Li, Zufang Dou

School of Science, Lanzhou University of Technology, Lanzhou Gansu

Received: May 10th, 2017; accepted: May 28th, 2017; published: May 31st, 2017

ABSTRACT

In this paper, we consider each node in the network as a queuing system. Based on the Geom/G/1 queuing model, we give the average queue length in the buffer of node, and use the Little theorem to get the waiting delay of the packet. By calculating the average overhead of sending a packet, the method of calculating the average utilization of the channel is obtained, and which is applied to obtain the overhead and channel utilization of the Ad Hoc network.

Keywords:Geom/G/1, Ad Hoc, Delay, Channel Utilization

1. 引言

Ad Hoc网络是一种特殊的无线移动网络，被广泛应用于无法或不便预先铺设网络设施、或需要快速自动组网的场合等。如军事领域、传感器网络、以及地震、水灾、强热带风暴等自然灾害后的应急通信。Ad Hoc网络是动态网络，具有拓扑结构变化快的特性，对其拓扑结构的刻画、以及传输协议的改进都是非常具有挑战性的问题。为降低问题的复杂度，对于Ad Hoc网络拓扑结构的研究，大多数都停留在单跳，文献 [1] [2] [3] 的研究没有仅仅限于单跳， [1] 是对两跳中继的研究， [2] 和 [3] 则拓展到了对多跳的研究， [2] 侧重于对吞吐量的研究， [3] 侧重于对时延的研究。文献 [4] 对Ad Hoc网络的路由设计做了深入的研究，利用信道增益估计来为设备到用户设置了可靠的发射功率，网络信息以随机接入方式通过路由对报文进行了分发，以帮助建立两台设备之间的单跳或多跳路由。文献 [5] 和 [6] 对两跳多中继协同ARQ和选择重传ARQ (Automatic RepeatreQuest)做了深入研究获得了一系列性能指标。文献 [7] 是用于研究通信业物流的排队论的有用专著，也是我们研究通信系统有效的数学工具。

2. 基于Geom/G/1排队模型的队长分析

(1)

3. 基于Little定理的信道利用率

(2)

(3)

Figure 1. packet transmission in Ad Hoc network

(4)

5. 结论

Performance Analysis of Ad Hoc Network Node Based on Geom/G/1 Model[J]. 计算机科学与应用, 2017, 07(05): 444-449. http://dx.doi.org/10.12677/CSA.2017.75054

1. 1. Liu, J.J., Jiang, X.H., Nishiyama, H. and Kato, N. (2012) Performance Modeling for Relay Cooperation in Delay Tolerant Network. Mobile Network Applications, 18, 186-194. https://doi.org/10.1007/s11036-012-0357-3

2. 2. Hekmat, R. and Van Mieghem, P. (2004) Interference in Wireless Multi-Hop Ad Hoc Networks and Its Effect on Network Capacity. Wireless Networks, 10, 389-399. https://doi.org/10.1023/B:WINE.0000028543.41559.ed

3. 3. Ghadimi, E., Khonsari, A., Diyanat, A., Farmani, M. and Yazdani, N. (2011) An Analytical Model of Delay in Multi- Hop Wireless Ad Hoc Networks. Wireless Networks, 17, 1679-1697.

4. 4. Kaufman, B., Lilleberg, J. and Aazhang, B. (2013) Spectrum Sharing Scheme between Cellular Users and Ad-Hoc Device-to-Device Users. IEEE Transactions on Wireless Communications, 12, 1038-1049. https://doi.org/10.1109/TWC.2012.011513.120063

5. 5. Li, S.P., Zhou, Y., Peng, D., et al. (2016) Analysis of Du-al-Hop and Multiple Relays Cooperative Truncated ARQ with Relay Selection in WSNs. ActaInformatica, 53, 1-22. https://doi.org/10.1007/s00236-015-0232-3

6. 6. Li, S.P. and Zhou,Y.Q. (2014) Performance Analysis of SR-ARQ Based on Geom/G/1/Queue over Wireless Link. Applied Mathematics and Information Sciences, 7, 1969-1976.

7. 7. 田乃硕, 徐秀丽, 马占友. 离散时间排队论[M]. 北京: 科学出版社, 2008.

8. 8. Ghaffari, A. (2015) Congestion Control Mechanisms in Wireless Sensor Networks. Journal of Network and Computer Applications, 52, 101-115.

9. 9. Islam, A.B. and Raghunathan, V. (2015) ITCP: An Intelligent TCP with Neural Network Based End-to-End Congestion Control for Ad-Hoc Multi-Hop Wireless Mesh Networks. Wireless Networks, 21, 581-610. https://doi.org/10.1007/s11276-014-0799-6

10. 10. Sharma, V.K. and Kumar, M. (2017) Adaptive Congestion Control Scheme in Mobile Ad-Hoc Networks. Peer-to-Peer Networking and Applications, 10, 633-657.

11. 11. Almotairi, K.H. and Shen, X.S. (2015) A Distributed Multi-Channel MAC Protocol for Ad Hoc Wireless Networks. IEEE Transactions on Mobile Computing, 14, 1-13.https://doi.org/10.1109/TMC.2014.2316822