Advances in Clinical Medicine
Vol. 11  No. 03 ( 2021 ), Article ID: 40817 , 6 pages
10.12677/ACM.2021.113123

甲状腺激素在心梗后心衰中的作用 进展

乔雅馨,高燕

延安大学附属医院心血管内科,陕西 延安

收稿日期:2021年2月3日;录用日期:2021年2月19日;发布日期:2021年3月8日

摘要

冠状动脉疾病是世界范围内致残和死亡的主要原因之一,冠心病的再灌注治疗和药物治疗成功地降低了主要不良心脏事件的发生率和全因死亡率。然而,冠心病患者在初次发作后仍有发生心血管事件的重大风险。因此,对冠心病患者进行个体化风险预测,以识别预后不良的冠心病患者,对优化高危患者的预后具有重要意义。心肌梗死(MI, Myocardial Infarction)是心血管疾病患者心衰的主要原因,随着冠心病发病率的逐年上升,心力衰竭患者逐年增加,慢性心力衰竭患者的年度死亡率高达60%。心血管系统是甲状腺激素作用的重要靶器官,在心肌梗死、心力衰竭等重大疾病的发展及预后中甲状腺激素起着关键性的作用。fT3作为主要的生物活性激素,通过基因组和非基因组途径,在提高心率和心脏收缩力以及降低全身血管阻力方面发挥重要作用,在严重的心血管疾病中,多种因素导致周围循环中T4向T3转化减少,从而导致低血清T3浓度。越来越多的研究表明,血清T3的降低与左心室功能不良有关,并作为慢性心力衰竭(CHF, Chronic heart failure)患者预后的一个强有力的预测因子。本文综述了甲状腺激素在心梗后心衰中的作用进展,希望为心梗后心衰的治疗提供新的方向。

关键词

冠心病,心肌梗死,心力衰竭,甲状腺激素

Advances in the Role of Thyroid Hormones in Heart Failure after Myocardial Infarction

Yaxin Qiao, Yan Gao

Department of Cardiology, Yan’an University Affiliated Hospital, Yan’an Shaanxi

Received: Feb. 3rd, 2021; accepted: Feb. 19th, 2021; published: Mar. 8th, 2021

ABSTRACT

Coronary artery disease is one of the leading causes of disability and death worldwide, and reperfusion therapy and pharmacotherapy of coronary artery disease have successfully reduced the incidence of major adverse cardiac events and all-cause mortality. Therefore, individualized risk prediction for CHD patients to identify CHD patients with poor prognosis is of great significance to optimize the prognosis of high-risk patients. Myocardial Infarction (MI) is the leading cause of heart failure in patients with cardiovascular disease. With the increasing incidence of coronary heart disease and heart failure, the annual mortality rate of patients with chronic heart failure is as high as 60%. Cardiovascular system is an important target organ of thyroid hormone, which plays a key role in the development and prognosis of myocardial infarction, heart failure and other major diseases. As a major bioactive hormone, FT3 plays an important role in increasing heart rate and cardiac systolic force and reducing systemic vascular resistance through genomic and non-genomic pathways. In severe cardiovascular diseases, a variety of factors lead to reduced T4 to T3 conversion in the peripheral circulation, resulting in low serum T3 concentration. A growing body of research has shown that decreased serum T3 is associated with left ventricular dysfunction and is a strong predictor of prognosis in patients with chronic heart failure (CHF). In this paper, the role of thyroid hormone in heart failure after myocardial infarction is reviewed, hoping to provide a new direction for the treatment of heart failure after myocardial infarction.

Keywords:Coronary Heart Disease, Myocardial Infarction, Heart Failure, Thyroid Hormone

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

冠状动脉疾病是世界范围内致残和死亡的主要原因之一。冠心病患者在初次发作后有发生心血管事件的重大风险 [1]。因此,对冠心病患者进行个体化风险预测,以识别预后不良的冠心病患者,对优化高危患者的预后具有重要意义。心肌梗死(MI, Myocardial Infarction)是心血管疾病患者心衰的主要原因,随着冠心病发病率的逐年上升,心力衰竭患者逐年增加,慢性心力衰竭患者的年度死亡率高达60% [2]。低T3综合征是一种以正常甲状腺激素分泌时周围T4向T3转化减少为特征的疾病 [3]。充血性心力衰竭(CHF, Chronic heart failure)患者甲状腺激素代谢改变,经常导致低血清T3浓度。越来越多的研究表明,血清T3的降低与左心室功能不良有关,并作为CHF患者短期预后的一个强有力的预测因子 [4]。本文将从以下几个方面阐述甲状腺激素在心梗后心衰的作用进展。

2. 心梗后心肌的病理生理改变

心肌缺血和/或梗死会严重损害心脏最基本的功能:收缩和舒张功能 [5]。在急性心肌梗死(AMI, Acute myocardial infarction)时,左室收缩力下降,导致每搏量和血压下降,从而加重冠脉低灌注状态,导致心肌细胞缺血坏死程度加重。在AMI后的亚急性期或慢性期,左室的结构改变可适应血流动力学/神经体液紊乱,包括梗死部位的愈合和瘢痕(纤维化)、残余存活心肌的机械伸展和偏心肥厚 [5] [6] [7]。另一方面,在AMI后心脏,左室舒张率降低,特别是在心率较快交感神经活动增加的情况下,由于收缩间肌动蛋白–肌球蛋白结合解耦,可能出现不完全舒张,在这种情况下,左室舒张末期可能不能完全放松,导致左室舒张末期舒张压升高和舒张壁应力升高,从而导致左室重构 [8]。在AMI后,心肌细胞大量坏死和凋亡,会导致肾素-血管紧张素及交感神经系统的过度激活,从而导致大量促炎症因子的释放,从而导致过激的炎症反应以及过度的氧化应激。大量研究表明,AMI后活性氧的主要来源包括线粒体代谢、NADPH氧化酶(NADPH oxidase)和黄嘌呤氧化酶,另外,心肌梗死后抗氧化剂的部分减弱,包括超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶活性减低,导致氧化还原失衡和脂质过氧化增加,从而加重心肌损伤 [9]。

3. 甲状腺激素在心血管系统中的作用

心脏和血管系统是甲状腺激素作用的重要靶器官,甲状腺激素在调节血管生成、心脏保护、心脏代谢和心肌细胞再生过程的分子机制中至关重要,可调节损伤后心功能的恢复和左心室重塑。两种主要的甲状腺激素T4和T3是甲状腺对促甲状腺激素(TSH, Thyroid stimulating hormone)刺激的反应而分泌的。T4和T3均有生物学作用,但T3被认为是活性激素。甲状腺激素的代谢是由一种叫做脱碘酶的酶来调节的,I型(DIO1)和II型碘甲状腺氨酸脱碘酶(DIO2)导致由前体T4产生甲状腺外T3。DIO1在肝脏和肾脏中活跃,产生总循环T3的15%~20%,而位于垂体、大脑、棕色脂肪组织和心脏的DIO2活动负责其余三分之二的T3产生,DIO3分解两种甲状腺激素并终止它们的作用 [10]。在心脏疾病中,如心力衰竭或急性心肌梗死,细胞内心肌细胞环境受到缺氧的影响,进而导致的炎症。缺氧和由此引起的炎症反应降低了心肌细胞的去碘酶活性,再加上血浆T3水平降低,导致细胞内T3生物利用度降低。此外,缺氧条件下DIO3基因表达增加导致T3降解为不活跃的代谢物 [8]。因此,在许多心脏情况下,心肌细胞的细胞内环境表现为T3可用性降低,从而导致代谢降低。

4. 甲状腺激素在AMI中的临床研究进展

急性心肌梗死后,活性氧和氧化应激在心力衰竭的进展中起重要作用。作为一种治疗替代,甲状腺激素(TH, Thyroid hormone)显示心肌梗死后的心脏保护作用,包括减少氧化应激。在急性心肌梗死中,疼痛发生后72小时内,TH水平变化迅速,在24~36小时期间变化最大,在多达20%的AMI患者中观察到低T3综合征,T3一定程度的下调与更高的心功能损害和更高的炎症反应相关 [11]。Brozaitiene的研究发现,与T3正常患者相比,低T3组患者有更严重的心肌损伤、炎症标志物增加更高、更长的住院时间和更高的住院死亡率 [12]。AMI后左室整体和局部功能在13周内逐渐恶化,瘢痕组织会随着时间的推移而扩大,心脏的功能参数会减低,而甲状腺激素可以抑制此类情况的发生,从而改善心功能 [13]。

多项研究发现,AMI患者fT3/fT4比值是1年全因死亡率的独立预测因子,fT3/fT4比值对于心肌梗死患者预后的预测作用优于单独的fT3、fT4及的单独的GRACE评分 [14] [15]。She研究发现急性心肌梗死患者血清FT3、T3、TSH与心脏射血分数(EF)以及NT-proBNP均呈正相关,表明血清FT3、T3、TSH水平与心功能中度相关,提示T3水平是急性心肌梗死期间改善心功能的潜在治疗靶点,但在2年的随访过程中发现T3和FT3对AMI患者的全因死亡率和MACE均无明显影响 [16]。Brozaitiene的研究也表明,年龄、NYHA级别、NT-proBNP、fT4和fT3/fT4比值是全因死亡的独立预测因子,而NYHA级别、NT-pro-BNP、fT4、fT3/fT4比值仍然是心脏相关死亡的独立预测因子 [17]。De Castro研究发现在心肌细胞中主要表达的toll样受体(TLR)为TLR2、TLR3和TLR4,在心肌梗死后,TLR4参与了心室功能障碍和心力衰竭的进展,TLR4可以启动炎性通路,促进细胞因子和趋化因子的表达,促进炎症和纤维化,导致病理性心脏重塑,T3和T4可减少促炎蛋白质TLR4的表达,同时也可降低了黄嘌呤氧化酶的表达,抑制炎症及氧化反应,改善了左心室的功能和形态学参数 [18]。多项研究数据显示,甲状腺激素改善梗死大鼠主动脉中的血管生成信号,促进血管内皮生长因子(VEGF)表达的增加,同时还发现AMI后心肌组织中甲状腺素受体增加,这表明甲状腺激素可促进新生血管形成,从而改善心室重塑 [19] [20]。本研究证实,甲状腺激素的使用促进了右心室氧化反应参数的改善,降低了过氧化氢水平,恢复了超氧化物歧化酶(SOD)活性 [21]。此外,激素增加了右室内皮一氧化氮合酶(eNOS)的表达,阻止了VEGF水平的降低 [22]。

甲状腺激素对急性心肌梗死后心功能的改善以及心室重构的抑制作用已被多项研究所证实,但对于AMI后发生低T3综合征是否使用甲状腺激素替代治疗,以及患者是否能从其中获益仍存在不同的看法。研究发现,在基线时使用L-T4替代治疗的HF患者和随访时使用L-T4治疗的HF患者均增加了全因死亡和MACE风险,因此本研究并不支持已知HF患者从L-T4替代治疗中获益的假设,一种解释可能是用L-T4替代的患者不耐受甲状腺激素替代治疗,因为他们潜在的心力衰竭病情没有分级,存在过度治疗的可能,另一种可能的解释是,接受L-T4治疗的患者整体病情可能较未接受治疗的患者差,而这些未测量的混杂因素都会对研究结果有偏倚 [23]。室壁运动积分指数(WMSI, Wall Motion Score Index)常用于临床评估左室功能不全程度,也是评估心肌损伤程度的间接指标,在的研究中发现WMSI除了可以评估坏死范围和左室扩大程度外,还具有预后作用,研究发现口服低剂量T3安全且能减少WMSI,改善局部功能障碍,对AMI患者的预后有益 [11]。Rajagopalan研究表明,在心肌梗死小鼠中给予低剂量T3 (5~8 ug/kg/d)口服,持续2个月后,T3组小鼠与对照组相比较,2个月的时间内其射血分数显著且持续改善,其1个月和2个月收缩期末体积分别显著降低29%和31% (P < 0.05),这些数据表明T3可防止心肌梗死后心功能恶化,改善心脏几何形状 [24]。甲状腺激素会提高心率,增加受损心肌的氧耗,这有可能会进一步加重心肌损伤,这是临床中使用甲状腺激素替代治疗最担心的问题。Vanessa研究表明卡维地洛与TH联合给药可改善AMI后氧化还原平衡和心脏功能,这种联合给药可以预防心肌梗死后心功能障碍和氧化还原失衡,同时也可抑制甲状腺激素替代治疗所带来的潜在的氧耗增加的风险 [25]。Zhang研究表明,AMI组小鼠给予T3以及美托洛尔处理过后与对照组相比,抑制了炎症因子的释放以及梗死面积的扩大,改善心室重构 [26]。Teixeira研究证明,使用低剂量的T3和T4激素治疗并没有改变下丘脑–垂体–甲状腺轴 [27]。

5. 结果与展望

目前多项研究都表明AMI后血清T3、FT3浓度会有所下降,并且T3、FT3与NYHA分级、NT-pro-BNP等都是预测心梗后心衰的独立预测因子。AMI患者血清甲状腺激素的持续降低往往预示着更严重的炎症反应及心室重构,提示这类患者的预后不佳。甲状腺激素的缺乏可导致许多不良的心血管影响,如心排量减低、血管阻力增加、损伤修复延迟、免疫紊乱等,但另一方面,甲状腺激素替代治疗会增加心肌收缩力及心率,从而增加氧耗,并有可能诱发心律失常,增加潜在风险。许多研究表明小剂量的甲状腺激素替代治疗,对短期内减少受损心肌的炎症因子释放,减轻氧化应激反应,抑制心肌梗死后心室重构及改善心功能具有有益作用。对于甲状腺激素替代剂量的安全范围仍没有明确的界限,此外,甲状腺激素替代治疗的持续时间以及其潜在风险都没有明确的研究数据支持。未来,对于甲状腺激素替代治疗,我们需要多中心、多样本的前瞻性研究。希望为心梗后心衰患者可以提供诊断和治疗的新思路,改善此类患者的预后。

文章引用

乔雅馨,高 燕. 甲状腺激素在心梗后心衰中的作用进展
Advances in the Role of Thyroid Hormones in Heart Failure after Myocardial Infarction[J]. 临床医学进展, 2021, 11(03): 866-871. https://doi.org/10.12677/ACM.2021.113123

参考文献

  1. 1. Liu, N.N., Hang, T., Gao, X., et al. (2020) The Association between Soluble Suppression of Tumorigenicity-2 and Long-Term Prognosis in Patients with Coronary Artery Disease: A Meta-Analysis. PLoS ONE, 15, e0238775. https://doi.org/10.1371/journal.pone.0238775

  2. 2. Qi, Z.W., Wu, D., Li, M., et al. (2020) The Pluripotent Role of Exosomes in Mediating Non-Coding RNA in Ventricular Remodeling after Myocardial Infarction. Life Sciences, 254, Article ID: 117761. https://doi.org/10.1016/j.lfs.2020.117761

  3. 3. Song, Y.B., Li, J.B., Bian, S.Z., et al. (2018) Association between Low Free Triiodothyronine Levels and Poor Prognosis in Patients with Acute ST-Elevation Myocardial Infarction. BioMed Research International, 2018, Article ID: 9803851. https://doi.org/10.1155/2018/9803851

  4. 4. Henderson, K.K., Danzi, S., Paul, J.T., et al. (2009) Physiological Replacement of T3 Improves Left Ventricular Function in an Animal Model of Myocardial Infarction-Induced Congestive Heart Failure. Circulation: Heart Failure, 2, 243-252. https://doi.org/10.1161/CIRCHEARTFAILURE.108.810747

  5. 5. Hieda, M. and Goto, Y. (2020) Cardiac, Mechanoenergetics in Patients with Acute Myocardial Infarction: From Pressure-Volume Loop Diagram Related to Cardiac Oxygen Consumption. Heart Failure Clinics 16, 255-269. https://doi.org/10.1016/j.hfc.2020.02.002

  6. 6. Jankauskiene, E., Orda, P., Barauskiene, G., et al. (2016) Relationship between Left Ventricular Mechanics and Low Free Triiodothyronine Levels after Myocardial Infarction: A Prospective Study. Internal and Emergency Medicine, 11, 391-398. https://doi.org/10.1007/s11739-015-1370-x

  7. 7. de Castro Alexandre, L., Fernandes, R.O., Ortiz, V.D., et al. (2016) Thyroid Hormones Improve Cardiac Function and Decrease Expression of Pro-Apoptotic Proteins in the Heart of Rats 14 Days after Infarction. Apoptosis, 21, 184-194. https://doi.org/10.1007/s10495-015-1204-3

  8. 8. Razvi, S. (2019) Novel Uses of Thyroid Hormones in Cardiovascular Conditions. Endocrine, 66, 115-123. https://doi.org/10.1007/s12020-019-02050-4

  9. 9. Antonio, Mancini, Chantal, et al. (2016) Thyroid Hormones, Oxidative Stress, and Inflammation. Mediators of inflammation, 2016, Article ID: 6757154. https://doi.org/10.1155/2016/6757154

  10. 10. Pantos, C., Mourouzis, I. and Cokkinos, D.V. (2011) New Insights into the Role of Thyroid Hormone in Cardiac Remodeling: Time to Reconsider? Heart Failure Reviews, 16, 79-96. https://doi.org/10.1007/s10741-010-9185-3

  11. 11. Pingitore, A., Mastorci, F., Piaggi, P., et al. (2019) Usefulness of Triiodothyronine Replacement Therapy in Patients with ST Elevation Myocardial Infarction and Borderline/Reduced Triiodothyronine Levels (from the THIRST Study). The American Journal of Cardiology, 123, 905-912. https://doi.org/10.1016/j.amjcard.2018.12.020

  12. 12. Brozaitiene, J., Skiriute, D., Burkauskas, J., et al. (2017) Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction. Genetic Testing and Molecular Biomarkers, 22, 270-278. https://doi.org/10.1089/gtmb.2017.0283

  13. 13. Ioanna, I., Iordanis, M., George, L., et al. (2018) Time Dependent and Independent Effects of Thyroid Hormone Administration Following Myocardial Infarction in Rats. Molecular Medicine Reports, 18, 864-876.

  14. 14. Chang, X., Zhang, S., Zhang, M., et al. (2018) Free Triiodothyronine and Global Registry of Acute Coronary Events Risk Score on Predicting Long-Term Major Adverse Cardiac Events in STEMI Patients Undergoing Primary PCI. Lipids in Health and Disease, 17, 234. https://doi.org/10.1186/s12944-018-0881-7

  15. 15. Yu, T., et al. (2018) Value of the fT3/fT4 Ratio and Its Combination with the GRACE Risk Score in Predicting the Prognosis in Euthyroid Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention: A Prospective Cohort Study. BMC Cardiovascular Disorders, 18, 181.

  16. 16. She, J.Q., Feng, J.H., Deng, Y.Y., et al. (2018) Correlation of Triiodothyronine Level with In-Hospital Cardiac Function and Long-Term Prognosis in Patients with Acute Myocardial Infarction. Disease Markers, 2018, Article ID: 5236267. https://doi.org/10.1155/2018/5236267

  17. 17. Brozaitiene, J., Mickuviene, N., Podlipskyte, A., et al. (2016) Relationship and Prognostic Importance of Thyroid Hormone and N-Terminal Pro-B-Type Natriuretic Peptide for Patients after Acute Coronary Syndromes: A Longitudinal Observational Study. BMC Cardiovascular Disorders, 16, 45. https://doi.org/10.1186/s12872-016-0226-2

  18. 18. de Castro Alexandre, L., Fernandes, R.O., Ortiz, V.D., et al. (2018) Thyroid Hormones Decrease the Proinflammatory TLR4/NF-κβ Pathway and Improve Functional Parameters of the Left Ventricle of Infarcted Rats. Molecular and Cellular Endocrinology, 461, 132-142. https://doi.org/10.1016/j.mce.2017.09.003

  19. 19. Ortiz, V.D., de Castro Alexandre, L., Campos, C., et al. (2016) Effects of Thyroid Hormones on Aortic Tissue after Myocardial Infarction in Rats. European Journal of Pharmacology, 791, 788-793. https://doi.org/10.1016/j.ejphar.2016.10.022

  20. 20. Cokkinos, D.V. and Chryssanthopoulos, S. (2016) Thyroid Hormones and Cardiac Remodeling. Heart Failure Reviews, 21, 365-372. https://doi.org/10.1007/s10741-016-9554-7

  21. 21. Corssac, G.B., et al. (2016) Thyroid Hormones Effects on Oxidative Stress and Cardiac Remodeling in the Right Ventricle of Infarcted Rats. Life Sciences, 146, 109-116. https://doi.org/10.1016/j.lfs.2015.12.052

  22. 22. Iwamiya, T., Segard, B.D., Matsuoka, Y., et al. (2020) Human Cardiac Fibroblasts Expressing VCAM1 Improve Heart Function in Postinfarct Heart Failure Rat Models by Stimulating Lymphangiogenesis. PLoS ONE, 15, e0237810. https://doi.org/10.1371/journal.pone.0237810

  23. 23. Einfeldt, M.N., Olsen, A.-M.S., Kristensen, S.L., et al. (2019) Long-Term Outcome in Patients with Heart Failure Treated with Levothyroxine: An Observational Nationwide Cohort Study. The Journal of Clinical Endocrinology & Metabolism, 104, 1725-1734. https://doi.org/10.1210/jc.2018-01604

  24. 24. Rajagopalan, V., Zhang, Y.H., Ojamaa, K., et al. (2016) Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects. PLoS ONE, 11, e0151413. https://doi.org/10.1371/journal.pone.0151413

  25. 25. Ortiz, V.D., Türck, P., Teixeira, R., et al. (2019) Carvedilol and Thyroid Hormones Co-Administration Mitigates Oxidative Stress and Improves Cardiac Function after Acute Myocardial Infarction. European Journal of Pharmacology, 854, 159-166. https://doi.org/10.1016/j.ejphar.2019.04.024

  26. 26. Zhang, K., Tang, Y.-D., Zhang, Y.H., et al. (2018) Comparison of Therapeutic Triiodothyronine versus Metoprolol in the Treatment of Myocardial Infarction in Rats. Thyroid, 28, 799-810. https://doi.org/10.1089/thy.2017.0544

  27. 27. Teixeira, R.B., Zimmer, A., de Castro, A.L., et al. (2018) Exercise Training versus T3 and T4 Hormones Treatment: The Differential Benefits of Thyroid Hormones on the Parasympathetic Drive of Infarcted Rats. Life Sciences, 196, 93-101. https://doi.org/10.1016/j.lfs.2018.01.018

期刊菜单