Advances in Clinical Medicine
Vol. 11  No. 11 ( 2021 ), Article ID: 46225 , 5 pages
10.12677/ACM.2021.1111713

抑郁症患者脂质代谢紊乱的研究进展

徐琪坤1*,郝贵生2#

1青海大学研究生院,青海 西宁

2青海省人民医院,青海 西宁

收稿日期:2021年10月2日;录用日期:2021年10月27日;发布日期:2021年11月3日

摘要

目前抑郁症的发病机制尚不明确,大量研究提示脂质代谢异常与抑郁症的发病关系密切。本文系统综述抑郁症与脂质代谢的研究进展,为抑郁症的研究提供新的思路。

关键词

抑郁症,脂质代谢,总胆固醇,不饱和脂肪酸

Research Progress of Lipid Metabolism Disorder in Patients with Depression

Qikun Xu1*, Guisheng Hao2#

1Qinghai University, Xining Qinghai

2Qinghai Provincial People’s Hospital, Xining Qinghai

Received: Oct. 2nd, 2021; accepted: Oct. 27th, 2021; published: Nov. 3rd, 2021

ABSTRACT

At present, the pathogenesis of depression is not clear, a large number of studies suggest that abnormal lipid metabolism is closely related to the onset of depression. This paper systematically reviews the research progress of depression and lipid metabolism, and provides new ideas for the study of depression.

Keywords:Depression, Lipid Metabolism, Total Cholesterol, Omega-3 Polyunsaturated Fatty Acids

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

抑郁症作为一种常见的精神障碍疾病,对很多家庭造成了重大的心身负担,也是导致年轻人死亡的主要病因之一。国内外很多研究发现抑郁症患者存在代谢水平的改变,这对揭示抑郁症的发病机理可能有着重要的意义。大量研究表明,抑郁症患者往往存在脂质代谢失调,这被证明与抑郁症的发病关系密切,脂质代谢相关研究将对抑郁症的诊治和预防具有重要临床意义。本文将对抑郁症与脂质代谢的研究进展进行综述。

2. 脂质代谢与抑郁症的发病

2.1. 中枢神经系统中的脂质代谢异常

脂质代谢对于中枢神经系统的正常发育有着重要的作用,在脊椎动物的大脑发育过程中,少突胶质细胞覆盖轴突,聚集大量致密的髓鞘并形成白质。髓鞘对电信号的快速跳跃传导至关重要。

髓鞘中的胆固醇已被证明对于大脑成熟过程中髓鞘膜生长起到了关键作用 [1]。此外,质膜中胆固醇的浓度影响其流动性,进而影响膜结合蛋白和离子通道的调节,同时也影响了突触传递 [2]。大脑中的胆固醇占全身胆固醇的20%,由于有血脑屏障的存在,这部分胆固醇代谢与体内其他部分是独立进行的,脑胆固醇代谢缺陷被证明与众多神经系统疾病的发病有关 [2]。在许多精神疾病中发现存在髓鞘形成和少突胶质细胞功能障碍 [3],并且在抑郁症患者中明确提示存在髓鞘形成减少的现象 [4]。

2.2. 嗅球与海马的脂质代谢

大脑中特定区域的代谢一直是抑郁症发病原因研究的焦点,越来越多的证据表明嗅球(olfactory bulb, OB)和海马与抑郁症的发病密切相关 [5],而这一观点也被证明可能与脂质代谢联系密切。He等针对抑郁模型小鼠嗅球结构代谢特点进行研究,发现OB组织中有8种脂质相关物发生了改变,具体为甾醇和甘油-1,3-二磷酸表达水平上调,半胱氨酸亚磺酸、乙醇酸、油酸、花生四烯酸(arachidonic acid, AA)和二十二碳六烯酸(docosahexaenoic acid, DHA)表达水平下调。它们被认为是与抑郁小鼠OB功能障碍相关的关键途径 [6]。

在人的一生中,在海马中都有大量的神经发生(成年人海马体每天约产生700个新生神经元),而成年海马神经发生现象被认为与人类大脑神经功能息息相关 [7]。大量研究提示抑郁症患者会出现海马体积缩小 [8]。在临床前模型中,已证明海马神经发生在抑郁症病理生理学和抗抑郁药物治疗中的作用 [9]。有证据表明压力和抑郁情绪会通过影响海马体对人们的学习和记忆起作用,它还通过调节下丘脑促肾上腺皮质激素释放因子的释放,在大脑对心理社会应激的反应中发挥重要作用 [9]。

作为脂质代谢产物之一的多不饱和脂肪酸(polyunsaturated fatty acids, PUFA),可通过β-氧化分解为乙酰辅酶A,参与机体的能量供应 [10]。PUFA也是神经细胞细胞膜的重要组成部分,通过调节离子通道来调节神经元的电流 [11] [12]。Venna等人通过实验发现长期补充PUFA诱导了抑郁模型小鼠海马体积的增加,并且补充多PUFA的小鼠大脑中新生细胞的数量显著增加,并有分化为神经细胞的迹象 [13]。PUFA还可以改变脂质合成相关基因的转录 [14],并且已知在MDD病人中会出现调节失调 [15],部分研究也指出摄入较多的ω-3多不饱和脂肪酸(omega-3 polyunsaturated fatty acids, ω-3 PUFA)可以降低抑郁症发病的风险 [16] [17]。

3. 脂质代谢与抑郁症的诊断

抑郁症的严重程度与血清载脂蛋白B水平的升高和血清载脂蛋白A水平的降低也有关系 [15]。BHARTI V等人发现与健康对照组相比抑郁症患者的血脂指标失调,抑郁症患者的总胆固醇(TC)和极低密度脂蛋白水平显著降低,而甘油三酯水平较健康对照组偏高 [18]。Segoviano-mendoza等人的临床研究发现抑郁症患者外周血TC和低密度脂蛋白水平低于健康对照组 [19];这与此前EKINCI等人研究的结果一致。他们认为TC指标有希望作为抑郁症的潜在标志物帮助提高诊断准确率 [20]。Scharnholz等人研究抑郁症病人代谢紊乱时发现抑郁症人群的高密度脂蛋白也低于正常人群 [21]。Wu等人也发现血清TC水平与抑郁症患者的自杀倾向呈负相关 [22]。

抑郁症病人的脂质代谢往往存在一定程度的紊乱。神经递质受体集中在神经细胞膜的特定区域叫做脂筏,有学者认为胆固醇含量改变会降低神经细胞膜的流动性,这样会改变和破坏脂筏的功能,也会改变了脂筏中5-羟色胺受体的构象和功能。5-羟色胺受体的功能异常引起了抑郁症状的出现 [23]。

同时有研究表明TC水平在主要抑郁症中较低,但在精神分裂症中较高 [24],说明TC水平对于精神疾病的鉴别诊断也有一定的价值。

4. 脂质代谢与抑郁症的治疗

一些脂质代谢相关物质已经被证明和抑郁症的药物治疗有密切联系,研究人员希望可以通过对脂质代谢的研究帮助提高抑郁症的治疗效果。慢性不可预测的轻度应激(chronic unpredictable mild stress,CUMS)大鼠是应用广泛的啮齿动物抑郁模型之一,它的特点是给予大鼠一些不可预测的、温和的应激,以模拟人类生活中遇到的应激源 [25]。Levant等人发现CUMS大鼠的与对照组大鼠相比,嗅球中AA和DHA水平显著降低。他们认为DHA降低与抑郁症的病因有关 [26]。Venugopal等人通过以小鼠为抑郁模型的基础实验发现补充ω-3 PUFA会表现出抗抑郁作用,他们使用富含ω-3 PUFA的食物喂养实验组小鼠后,实验组小鼠的抑郁表现显著下降 [13]。有研究表明抑郁症患者的自杀倾向于外周血浆中的PUFA代谢异常也存在一定的联系,在预测抑郁症自杀倾向上有一定的研究价值 [27]。但是脂代谢产物如何调节抑郁症的机制仍需进一步进行研究,以明确具体生理变化过程。

ω-3 PUFA能够调节大脑中许多基因的表达,包括一些控制突触可塑性的基因 [28]。Sonawalla等人发现胆固醇水平升高的抑郁症患者与胆固醇水平未升高的抑郁症患者相比,对氟西汀治疗无效的可能性显著增加 [29]。长期补充ω-3 PUFA可以减少抑郁小鼠的相关抑郁表现 [30]。一些研究报告称,补充ω-3 PUFA具有抗抑郁症状的作用。SSRI耐药的青少年患者表现出DHA缺乏的趋势,而补充ω-3 PUFA的10周后病人抑郁症状严重程度评分明显降低 [29]。Nemets等人通过研究证明加用ω-3PUFA后可以提高抗抑郁药物的治疗有效率 [31]。从临床角度来看,这些结果支持了使用ω-3 PUFA作为辅助疗法治疗抑郁症,改善治疗效果的可能性 [13]。

脂质代谢因子对于提高抗抑郁药物的治疗效果有着重要的意义,也为相关药物作用机制与发病机制的研究提供了新的方向。

5. 总结与展望

抑郁症脂质代谢紊乱对于抑郁症发病病理机制的研究有着重要意义。外周血循环中的脂质如TC、PUFA等对于抑郁症的诊断及治疗效果的预测价值意义重大,进一步研究脂质代谢相关因子与抑郁症发病的联系可以帮助抑郁症患者得到更有效的治疗。

文章引用

徐琪坤,郝贵生. 抑郁症患者脂质代谢紊乱的研究进展
Research Progress of Lipid Metabolism Disorder in Patients with Depression[J]. 临床医学进展, 2021, 11(11): 4861-4865. https://doi.org/10.12677/ACM.2021.1111713

参考文献

  1. 1. Saher, G., Brugger, B., Lappe-Siefke, C., et al. (2005) High Cholesterol Level Is Essential for Myelin Membrane Growth. Nature Neuroscience, 8, 468-475. https://doi.org/10.1038/nn1426

  2. 2. Zhang, J. and Liu, Q. (2015) Cholesterol Metabolism and Homeostasis in the Brain. Protein Cell, 6, 254-264. https://doi.org/10.1007/s13238-014-0131-3

  3. 3. Nave, K.A. and Ehrenreich, H. (2014) Myelination and Oligodendrocyte Functions in Psychiatric Diseases. JAMA Psychiatry, 71, 582-584. https://doi.org/10.1001/jamapsychiatry.2014.189

  4. 4. Ghosh, S., Dyer, R.A. and Beasley, C.L. (2017) Evidence for Altered Cell Membrane Lipid Composition in Postmortem Prefrontal White Matter in Bipolar Disorder and Schizophrenia. Journal of Psychiatric Research, 95, 135-142. https://doi.org/10.1016/j.jpsychires.2017.08.009

  5. 5. Rottstadt, F., Han, P., Weidner, K., et al. (2018) Reduced Olfactory Bulb Volume in Depression—A Structural Moderator Analysis. Human Brain Mapping, 39, 2573-2582. https://doi.org/10.1002/hbm.24024

  6. 6. He, Y., Wang, Y., Wu, Z., et al. (2020) Metabolomic Abnormalities of Purine and Lipids Implicated Olfactory Bulb Dysfunction of CUMS Depressive Rats. Metabolic Brain Disease, 35, 649-659. https://doi.org/10.1007/s11011-020-00557-8

  7. 7. Spalding, K.L., Bergmann, O., Alkass, K., et al. (2013) Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell, 153, 1219-1227. https://doi.org/10.1016/j.cell.2013.05.002

  8. 8. Videbech, P. and Ravnkilde, B. (2004) Hippocampal Volume and Depression: A Meta-Analysis of MRI Studies. American Journal of Psychiatry, 161, 1957-1966. https://doi.org/10.1176/appi.ajp.161.11.1957

  9. 9. Dranovsky, A. and Hen, R. (2006) Hippocampal Neurogenesis: Regulation by Stress and Antidepressants. Biological Psychiatry, 59, 1136-1143. https://doi.org/10.1016/j.biopsych.2006.03.082

  10. 10. Li, Q., Yang, D., Wang, J., et al. (2015) Reduced Amount of Olfactory Receptor Neurons in the Rat Model of Depression. Neuroscience Letters, 603, 48-54. https://doi.org/10.1016/j.neulet.2015.07.007

  11. 11. Lauritzen, I., Blondeau, N., Heurteaux, C., et al. (2000) Polyunsaturated Fatty Acids Are Potent Neuroprotectors. EMBO Journal, 19, 1784-1793. https://doi.org/10.1093/emboj/19.8.1784

  12. 12. Patel, A.J., Lazdunski, M. and Honore, E. (2001) Lipid and Mechano-Gated 2P Domain K(+) Channels. Current Opinion in Cell Biology, 13, 422-428. https://doi.org/10.1016/S0955-0674(00)00231-3

  13. 13. Venna, V.R., Deplanque, D., Allet, C., et al. (2009) PUFA Induce Antidepressant-Like Effects in Parallel to Structural and Molecular Changes in the Hippocampus. Psychoneuroendocrinology, 34, 199-211. https://doi.org/10.1016/j.psyneuen.2008.08.025

  14. 14. Schmidt, S., Willers, J., Stahl, F., et al. (2012) Regulation of Lipid Metabolism-Related Gene Expression in Whole Blood Cells of Normo- and Dyslipidemic Men after Fish Oil Supplementation. Lipids in Health and Disease, 11, 172. https://doi.org/10.1186/1476-511X-11-172

  15. 15. Sadeghi, M., Roohafza, H., Afshar, H., et al. (2011) Relationship between Depression and Apolipoproteins A and B: A Case-Control Study. Clinics (Sao Paulo), 66, 113-117. https://doi.org/10.1590/S1807-59322011000100020

  16. 16. Appleton, K.M., Rogers, P.J. and Ness, A.R. (2010) Updated Systematic Review and Meta-Analysis of the Effects of n-3 Long-Chain Polyunsaturated Fatty Acids on Depressed Mood. The American Journal of Clinical Nutrition, 91, 757-770. https://doi.org/10.3945/ajcn.2009.28313

  17. 17. Su, K.P., Huang, S.Y., Chiu, C.C., et al. (2003) Omega-3 Fatty Acids in Major Depressive Disorder. A Preliminary Double-Blind, Placebo-Controlled Trial. European Neuropsychopharmacology, 13, 267-271.

  18. 18. Bharti, V., Bhardwaj, A., Hood, K., et al. (2021) A Systematic Review and Meta-Analysis of Lipid Metabolomic Signatures of Major Depressive Disorder. Journal of Psychiatric Research, 139, 197-205. https://doi.org/10.1016/j.jpsychires.2021.05.036

  19. 19. Segoviano-Mendoza, M., Cardenas-De, L.C.M., Salas-Pacheco, J., et al. (2018) Hypocholesterolemia Is an Independent Risk Factor for Depression Disorder and Suicide Attempt in Northern Mexican Population. BMC Psychiatry, 18, 7. https://doi.org/10.1186/s12888-018-1596-z

  20. 20. Ekinci, O. and Ekinci, A. (2017) The Connections among Suicidal Behavior, Lipid Profile and Low-Grade Inflammation in Patients with Major Depressive Disorder: A Specific Relationship with the Neutrophil-to-Lymphocyte Ratio. Nord J Psychiatry, 71, 574-580. https://doi.org/10.1080/08039488.2017.1363285

  21. 21. Scharnholz, B., Gilles, M., Marzina, A., et al. (2014) Do Depressed Patients without Activation of the Hypothalamus-Pituitary-Adrenal (HPA) System Have Metabolic Disturbances? Psychoneuroendocrinology, 39, 104-110. https://doi.org/10.1016/j.psyneuen.2013.09.030

  22. 22. Wu, S., Ding, Y., Wu, F., et al. (2016) Serum Lipid Levels and Suicidality: A Meta-Analysis of 65 Epidemiological Studies. Journal of Psychiatry & Neuroscience, 41, 56-69. https://doi.org/10.1503/jpn.150079

  23. 23. Scanlon, S.M., Williams, D.C. and Schloss, P. (2001) Membrane Cholesterol Modulates Serotonin Transporter Activity. Biochemistry, 40, 10507-10513. https://doi.org/10.1021/bi010730z

  24. 24. Jow, G.M., Yang, T.T. and Chen, C.L. (2006) Leptin and Cholesterol Levels Are Low in Major Depressive Disorder, But High in Schizophrenia. Journal of Affective Disorders, 90, 21-27. https://doi.org/10.1016/j.jad.2005.09.015

  25. 25. Wu, Y., Tang, J., Zhou, C., et al. (2016) Quantitative Proteomics Analysis of the Liver Reveals Immune Regulation and Lipid Metabolism Dysregulation in a Mouse Model of Depression. Behavioural Brain Research, 311, 330-339. https://doi.org/10.1016/j.bbr.2016.05.057

  26. 26. Levant, B., Ozias, M.K., Davis, P.F., et al. (2008) Decreased Brain Docosahexaenoic Acid Content Produces Neurobiological Effects Associated with Depression: Interactions with Reproductive Status in Female Rats. Psychoneuroendocrinology, 33, 1279-1292. https://doi.org/10.1016/j.psyneuen.2008.06.012

  27. 27. Kitajka, K., Puskas, L.G., Zvara, A., et al. (2002) The Role of n-3 Polyunsaturated Fatty Acids in Brain: Modulation of Rat Brain Gene Expression by Dietary n-3 Fatty Acids. Proceedings of the National Academy of Sciences of the United States of America, 99, 2619-2624. https://doi.org/10.1073/pnas.042698699

  28. 28. Sonawalla, S.B., Papakostas, G.I., Petersen, T.J., et al. (2002) Elevated Cholesterol Levels Associated with Nonresponse to Fluoxetine Treatment in Major Depressive Disorder. Psychosomatics, 43, 310-316. https://doi.org/10.1176/appi.psy.43.4.310

  29. 29. Mcnamara, R.K., Strimpfel, J., Jandacek, R., et al. (2014) Detection and Treatment of Long-Chain Omega-3 Fatty Acid Deficiency in Adolescents with SSRI-Resistant Major Depressive Disorder. Pharma Nutrition, 2, 38-46. https://doi.org/10.1016/j.phanu.2014.02.002

  30. 30. Zheng, P., Gao, H., Qi, Z., et al. (2013) Peripheral Metabolic Abnormalities of Lipids and Amino Acids Implicated in Increased Risk of Suicidal Behavior in Major Depressive Disorder. Metabolomics, 9, 688-696. https://doi.org/10.1007/s11306-012-0474-9

  31. 31. Nemets, B., Stahl, Z. and Belmaker, R.H. (2002) Addition of Omega-3 Fatty Acid to Maintenance Medication Treatment for Recurrent Unipolar Depressive Disorder. American Journal of Psychiatry, 159, 477-479. https://doi.org/10.1176/appi.ajp.159.3.477

  32. NOTES

    *第一作者。

    #通讯作者。

期刊菜单