Advances in Clinical Medicine
Vol. 12  No. 08 ( 2022 ), Article ID: 54325 , 14 pages
10.12677/ACM.2022.1281010

NLRP3炎性小体在乙型肝炎病毒相关性肾炎足细胞焦亡中的作用

孙静宜,蒋伟

青岛大学附属医院肾内科,山东 青岛

收稿日期:2022年6月28日;录用日期:2022年7月27日;发布日期:2022年8月3日

摘要

目的:本研究旨在探讨NLRP3炎性小体在乙型肝炎病毒相关性肾炎(Hepatitis B virus associated-Glomerulonephritis, HBV-GN)足细胞焦亡中的作用。方法:通过将携带HBx基因的载体及NLRP3 siRNA载体转染至人肾足细胞中,使足细胞株分为空白对照组、空转染组、HBx转染组和HBx+NLRP3 siRNA转染组后,完成以下实验。通过流式细胞术及Hoechst 33342染色,分别检测各组足细胞焦亡率及细胞核的数量及形态学变化。通过实时荧光定量逆转录聚合酶链式反应(Quantitative real-time reverse transcription polymerase chain reaction, qRT-RCR)、蛋白质免疫印迹(Western blot, WB)以及酶联免疫吸附实验(Enzyme linked immunosorbent assay, ELISA)检测4组足细胞的NLRP3、凋亡相关斑点样蛋白(apoptosis-associated speek-like protein containing CARD, ASC)、caspase-1、白细胞介素(Interleukin, IL)-1β、IL-18的表达。通过ELISA试剂盒检测乳酸脱氢酶(lactate dehydrogenase, LDH)水平。通过免疫荧光染色检测各组足细胞中Nephrin蛋白、Desmin蛋白的表达。结果:HBx过表达使NLRP3炎性小体、Caspase-1、IL-1β、IL-18、LDH、Desmin表达均升高,同时导致Nephrin表达下降,最终引起了足细胞焦亡(P < 0.05)。然而,抑制NLRP3炎症小体的生成可以减轻足细胞焦亡,减少了焦亡相关蛋白的表达(P < 0.05)。结论:NLRP3炎性小体介导的炎症信号通路在HBx过表达引起的足细胞焦亡中发挥了重要作用,NLRP3炎性小体有望成为HBV-GN的潜在治疗靶点之一。

关键词

乙型肝炎病毒相关性肾炎,NLRP3炎性小体,足细胞,焦亡

The Role of NLRP3 Inflammasome Activation in Podocyte Pyroptosis in Hepatitis B Virus Associated-Glomerulonephritis

Jingyi Sun, Wei Jiang

Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Jun. 28th, 2022; accepted: Jul. 27th, 2022; published: Aug. 3rd, 2022

ABSTRACT

Objective: This study was designed to investigate the role of NLRP3 inflammasome in podocyte pyroptosis in Hepatitis B virus associated-Glomerulonephritis (HBV-GN). Methods: The vectors carrying HBx gene and NLRP3 siRNA were transfected into human renal podocytes. The podocyte lines were divided into blank control group, empty plasmid group, HBx group and HBx+NLRP3 siRNA group. The podocyte pyroptosis rate and the numerical and morphological changes of nuclei were detected by flow cytometry and Hoechst 33342 staining, respectively. NLRP3, apoptosis associated speek-like protein containing CARD (ASC), caspase-1, IL-1β and IL-18 were detected by RT-PCR, Western blot and ELISA. The level of lactate dehydrogenase (LDH) was detected by ELISA kit. The expressions of nephrin protein and desmin protein in podocytes of each group were detected by immunofluorescence staining. Results: The overexpression of HBx increased the expression of NLRP3, caspase-1, IL-1β, IL-18, LDH and desmin, which led to the decrease of nephrin and finally mediated podocyte pyroptosis (P < 0.05). Moreover, the addition of NLRP3 siRNA decreased podocyte pyroptosis as well as the expression of pyrosis-related proteins compared with the HBx group (P < 0.05). Conclusion: NLRP3 inflammasome plays an important role in HBx-induced podocyte pyroptosis, suggesting that NLRP3 inflammasome is a potential therapeutic target for alleviating HBV-GN inflammation.

Keywords:HBV-GN, NLRP3 Inflammasome, Podocyte, Pyroptosis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

乙型肝炎病毒(Hepatitis B virus, HBV)是乙型病毒性肝炎的病原体,造成肝功能失代偿、肝硬化、肝癌及其他器官损伤,包括HBV-GN。据统计调查发现,全球有3.5亿多乙肝病毒携带者,每年约有60万人死于乙肝相关疾病 [1]。据近年研究统计,我国乙肝病毒携带者达到1.2亿例,HBV-GN的发病率远超3000万。HBV是一种非细胞性嗜肝病毒,含有3.2 kb的部分双链DNA,基因组与病毒核衣壳中的聚合酶一起封装在包膜蛋白中 [2]。HBV及其相关蛋白(主要是HBx蛋白)可以直接感染肾脏,继发免疫复合物沉积,导致肾脏细胞损伤。同时,HBx基因不仅可以促进病毒复制,还可以导致细胞凋亡、炎症反应、系膜细胞增殖、减缓足细胞增殖乃至溶解,HBV-GN中HBx错义突变和免疫逃逸的发生不仅与发病率密切相关,还加快了疾病的进展 [3]。众所周知,足细胞(podocyte)是一种星型多突状的高度特异性细胞,是肾小球基底膜重要组成部分。足细胞损伤的病理特征多为足细胞表型及数量改变,有效足突数目减少或消失,最终足细胞脱离基底膜。足细胞损伤与免疫有密切关系,免疫抑制剂例如他克莫司(KF506)可通过抑制固有免疫或自噬从而缓解糖尿病肾病(diabetic nephropathy, DN)中足细胞损伤,该过程可能与KF506阻断瞬时受体电位阳离子通道6 (transient receptor potential 6, TRPC6)和活化T细胞核因子(nuclear factor of activated T-cells, NFAT)相关 [4] [5],并且研究发现系统性红斑狼疮中免疫诱导的巨噬细胞浸润可能是足细胞损伤的关键机制 [6]。迄今为止,HBV-GN中足细胞损伤的具体机制尚不清楚。

NLRP3炎性小体由NLRP3、ASC和Pro-Caspase-1组成。在NLRP3炎性小体组装和激活后,Caspase-1被酶解到活性状态。随后,激活的Caspase-1可诱导促炎细胞因子IL-1β和IL-18的成熟和分泌,从而诱导炎症级联反应。研究发现,活化的NLRP3炎性小体通过诱导炎症因子的释放和特异性结构蛋白(Podocin、Desmin、Nephrin等)的异常表达,诱导足细胞损伤、消失,继而肾小球硬化,最终导致足细胞损伤相关肾病的发生和发展 [7]。反之,抑制NLRP3炎性小体的活化可缓解因NLRP3炎性小体导致足细胞结构蛋白Podocin和Nephrin的表达降低,降低Desmin的表达 [8] [9]。在功能相关性方面,NLRP3炎性小体参与了多种代谢性疾病的发病机制,包括糖尿病、痛风、矽肺、急性心肌梗死、肝毒性和高同型半胱氨酸血症(Hyperhomocysteinemia, hHcys)等 [7] [10] - [14]。到目前为止,NLRP3炎症小体和HBV-GN足细胞损伤的关系未有相关研究报道。

本研究通过使HBx基因在足细胞中过表达并检测焦亡相关蛋白的表达变化,探讨NLRP3炎症小体在HBV-GN中足细胞焦亡的作用及机制,为治疗HBV-GN提供新的临床思路。

2. 材料和方法

2.1. 细胞的培养

将采购的足细胞(来源北纳生物)在含有4.5 mM葡萄糖、10% FBS、100 U/ml青霉素和100%链霉素的DMEM中培养,在允许温度(33℃)下增殖至永生足细胞。转移到无血清培养基,37℃,12 h后细胞生长停滞 [15]。利用0.25%胰蛋白酶和0.02% EDTA溶液分离培养后的细胞。将其分为4组,分别为空白对照组、空转染组、HBx转染组和HBx+NLRP3 siRNA转染组,空白对照组为未干预的足细胞株,空染组为空白质粒转染的足细胞株,HBx转染组和HBx+NLRP3 siRNA转染组分别被特定的质粒转染,备用于以下实验。

2.2. 细胞处理

根据GenBank中Ayr亚型HBx的基因组序列和NLRP3siRNA序列,设计了合成HBx基因引物(由苏州金唯智生物科技有限公司合成)和NLRP3 siRNA (GenePharma,中国)。以Oligo (DT)反向cDNA为模板,PCR扩增获得HBx基因序列,再用限制性内切酶Bgl H和EcoR I双切酶下目的片段,将其克隆入pcDNA3.1/myc-HBx质粒,转录该质粒的细胞组称为HBx组 [16],G418筛选得到稳定表达HBx的细胞,qPCR检测HBx蛋白在转染细胞的表达情况。足细胞在不含青霉素或链霉素的培养基中培养至40%~60%汇合。按照制造商的说明,用含有50 nM NLRP3 siRNA的质粒转染足细胞,这个组命名为HBx+NLRP3 siRNA组。NLRP3 siRNA序列如下:5′-CGGCCUUACUUCAAUCUGUTT-3′, 5′-ACAGAUUGAAGUAAGGCCGTT-3′。实验所需引物序列如表1所示。

2.3. RT-PCR

将TRIzol试剂(DP405,天根生化科技有限公司,北京)用于从冰冻足细胞中提取总RNA。使用高容量cDNA反转录试剂盒(美国加利福尼亚州福斯特市应用生物系统公司)将提取的RNA反转录成cDNA。在ABI 7500快速实时PCR系统(美国应用生物系统公司)上,使用SYBR Green I扩增第一链cDNA,以量化mRNA的相对表达。扩增后,确定阈值周期(Ct),并根据2−ΔΔCt法计算。GAPDH被用作数据规范化的内部控制。

2.4. 流式细胞术

通过流式细胞术检测各组足细胞焦亡率。将粘附的细胞消化、离心,细胞用PBS (1×)在4℃复悬,2000 rpm离心5~10 min,洗涤。向悬浮细胞中加入300 μl的1×结合缓冲液。使用Annexin v-flica标记,室温孵育15 min。术前5 min加PI染色5 μl,术前加1×结合缓冲液200 μl。使用流式细胞仪(安捷伦生物,NovoCyte)检测各组细胞,并使用软件进行数据分析。以象限Q2-2和Q2-4中细胞比值的总和来量化焦亡细胞。

Table 1. Primer sequence

表1. 引物序列

2.5. Hoechst 33342染色

通过Hoechst 33342 (C0030, Solarbio,北京,中国)对细胞核进行染色来观察足细胞焦亡引起的细胞核形态学变化。焦亡的特征是细胞核浓缩,细胞质膜上诱导孔的形成。加入含有10 mg/mL Hoechst 33342的新鲜培养基,在37℃下培养10分钟。丢弃培养基,用培养基洗涤细胞2~3次。染色细胞的图像在染色后立即被配备了数字成像系统的蔡司显微镜(Olympus, Tokyo, Japan)下观察并拍照。通过寻找多名与实验利益无关的志愿者(n = 3),这些志愿者拥有一定基础医学知识,对随机得到的浓染细胞图进行计数,最终汇总该数据并进行统计分析。

2.6. 蛋白质印迹法

使用RIPA (#AR0102;博士德)制备细胞裂解物,用细胞核蛋白与细胞浆蛋白抽提试剂盒提取浆蛋白、核蛋白。通过BCA蛋白浓度测定试剂盒(#15E28C46;博士德)测蛋白浓度。蛋白质在10%至15%的SDS-PAGE上电泳后转移至0.22 um PVDF膜(#ISEQ00010; millipore)。稀释不同浓度的抗体并孵育,一抗包括:GAPDH抗体(#60004-1-Ig; Proteintech)、NLRP3抗体(#19771-1-AP; Proteintech)、Caspase-1抗体(#A18646; ABclonal)、ASC抗体(#A11433; ABclonal)、IL-1β抗体(#A19635; ABclonal)、IL-18抗体(#A1115; ABclonal)均4℃孵育3小时,二抗包括:HRP标记山羊抗兔(#ZB-2301; ZSGB)、HRP标记山羊抗鼠(#ZB-2305; ZSGB),室温条件孵育30分钟。图像是由Multiskan Sky全波长酶标仪、全自动化学发光成像系统(Tanon5200)进行检测的。将胶片进行扫描存档,PhotoShop整理去色,Image J win64软件处理系统分析目标带的光密度值。在相同的蛋白质印记分析中,GAPDH作为内部参照用以校准。

2.7. 酶联免疫吸附试验

收集足细胞,并使用Caspase-1活性分析试剂盒(Sigma)匀浆以提取用于Caspase-1活性测定的蛋白质。这些数据表达与对照细胞相比的折叠变化。此外,收集细胞上清,根据制造商描述的方案,通过IL-1β ELISA试剂盒和IL-18 ELISA试剂盒测量IL-1β和IL-18的产生,后通过酶标分析仪(Multiskan FC, Thermo Fisher)测量。收集细胞培养上清液,并使用LDH ELISA测定试剂盒(南京程健生物工程研究所,中国江苏南京)检测LDH活性。将25 μl细胞上清液和25 μl底物混合,并在37℃下孵育15分钟。然后,向样品中加入25 μl 2,4-二硝基苯肼,并在37℃下孵育15分钟。最后,加入250 μl的0.4 mol/L NaOH溶液,并在室温下孵育5分钟。在分光光度酶标仪(RT-6100, Rayto)上测量450 nm处的吸光度。

2.8. 免疫荧光染色

6孔板中的细胞用4%多聚甲醛在室温下固定30 min,在含0.4% Triton X-100的PBS中孵育10 min,然后用2%牛血清白蛋白在37℃下封闭60 min。封闭步骤后,将细胞与抗desmin和抗nerphin蛋白的一抗在4℃下孵育过夜。然后,用PBS清洗细胞,并用Alexa Fluor 488标记抗鼠IgG或Alexa Fluor 594标记抗兔IgG在室温下孵育1 h。使用含DAPI染料的安装培养基应用玻璃盖玻片,并在荧光显微镜下放大200倍制备成像。用Image J win64分析共定位,用皮尔逊相关系数表示共定位系数 [17]。

2.9. 统计分析

利用GraphPad Prism 6采用独立样本t检验进行检测,来检验实验组之间的统计学意义。当P < 0.05时被认为具有统计学意义。所有结果都显示为平均值±标准差。该实验中所用技术均为生物学重复3次以排除误差。

3. 结果

3.1. 转染的足细胞成功表达HBx蛋白

为了检测HBx是否能直接感染人足细胞并成功表达相关蛋白。将H5860-HBx转染至足细胞中,RT-RCR分别检测对照组和HBx转染组足细胞中HBx的表达。HBx转染组中HBx的表达量是HBx未转染组3000多倍(P < 0.001),如图1。综上所述,HBx过表达基因成功转染足细胞并表达HBx蛋白。转染成功的足细胞用于以下实验。

Figure 1. The transfected podocytes successfully expressed HBx protein (compared with NC group, ***P < 0.001). NC, blank control

图1. 转染的足细胞成功表达HBx蛋白。(与NC组对比,***P < 0.001)。NC,空白对照

3.2. HBx引起足细胞焦亡

为了评估HBx对足细胞焦亡的影响,我们采用流式细胞学、Hoechst 33342检测4组足细胞焦亡水平及细胞核焦亡形态改变。通过流式细胞技术,我们得到了空白对照组、空转染组、HBx转染组和HBx+NLRP3 siRNA转染组的足细胞焦亡率。HBx转染组较空染组相比细胞焦亡率明显升高(P < 0.001),加入NLRP3 siRNA后焦亡细胞率较HBx转染组明显减少(P < 0.001) (图2(a)、图2(b))。通过Hoechst33342对四组足细胞进行染色,并在荧光电子显微镜下观察。结果显示,HBx转染组中具有核固缩的细胞比例高于空转染组,但加入NLRP3 siRNA后发生核固缩的足细胞较HBx转染组减少(P < 0.05) (图2(c)、图2(d))。综上所述,HBx通过激活NLRP3炎症小体引起了足细胞焦亡。

Figure 2. HBx causes podocyte pyroptosis. (a) (b) the pytoptosis rate of podocytes in each group was analyzed by flow cytometry (n = 3). (c) (d) Hoechst 33342 staining was used to observe the morphological changes of podocytes in each group. (compared with the blank control group, ###P < 0.001; compared with the empty staining group, *P < 0.05, ***P < 0.001; compared with the HBx transfection group, +P < 0.05, +++P < 0.001)

图2. HBx引起足细胞发生焦亡。(a) (b)流式细胞技术分析各组足细胞的焦亡率(n = 3)。(c) (d) Hoechst 33342染色观察各组足细胞形态学变化。(与空白对照组相比,###P < 0.001;与空染组相比,*P < 0.05, ***P < 0.001;与HBx转染组相比,+P < 0.05, +++P < 0.001)

3.3. HBx过表达引起焦亡相关蛋白NLRP3、ASC、Caspase-1表达升高

为了探讨焦亡相关蛋白在HBx过表达足细胞中的表达变化,我们使用Western blot和qRT-PCR技术来检测焦亡相关蛋白的表达。通过使用Western Blot技术,我们验证了HBx转染组较空转染组的NLRP3、ASC、Caspase-1表达增高(P < 0.001);加入NLRP3 siRNA后NLRP3、ASC、Caspase-1表达下降(P < 0.001) (图3(a)~(d))。通过用qRT-PCR检测NLRP3、ASC、Caspase-1的mRNA表达,发现HBx转染组的NLRP3、ASC、Caspase-1的mRNA表达水平明显高于空转染组;加入NLRP3 siRNA后NLRP3、ASC、Caspase-1表达下降(图3(e)~(g))。我们的实验结果最终证实了HBx转染组中NLRP3、ASC、Caspase-1的表达升高,而抑制NLRP3的表达后,NLRP3、ASC、Caspase-1表达下调。

Figure 3. HBx overexpression increased the expression of NLRP3, ASC and caspase-1 proteins in podocytes. (a) The expressions of NLRP3, ASC and caspase-1 proteins in podocytes of the four groups were detected by Western blot. (b)~(d) respectively reflect the expression levels of podocyte pyroptosis related proteins NLRP3, ASC and caspase-1. (e)~(g) qRT-PCR was used to detect the mRNA expression levels of NLRP3, ASC and caspase-1 in podocytes of the four groups. (compared with the empty staining group, *P < 0.05, **P < 0.01, ***P < 0.001; compared with the HBx transfection group, +P < 0.05, ++P < 0.01, +++P < 0.001)

图3. HBx过表达引起足细胞中NLRP3、ASC、Caspase-1蛋白表达升高。(a) 通过Western blot检测4组足细胞中NLRP3、ASC、Caspase-1蛋白的表达。(b)~(d)分别反映了足细胞焦亡相关蛋白NLRP3、ASC、Caspase-1的表达水平。(e)~(g) qRT-PCR检测4组足细胞中NLRP3、ASC、Caspase-1的mRNA的表达水平。(与空染组相比,*P < 0.05, **P < 0.01, ***P < 0.001;与HBx转染组相比,+P < 0.05, ++P < 0.01, +++P < 0.001)

3.4. HBx介导NLRP3炎性小体激活,继而引起炎性因子及LDH表达升高

为了进一步探讨HBx与NLRP3炎性小体激活的关系,我们使用Western blot技术检测炎症因子IL-1β和IL-18的表达。结果表明,HBx转染组较空转染组的IL-1β、IL-18表达增高(P < 0.001);加入NLRP3 siRNA后IL-1β、IL-18表达下降(P < 0.01) (图4(a)~(c))。之后,我们通过qRT-PCR技术检测IL-1β、IL-18的mRNA表达。如图4(d)、图4(e)所示,我们的结果反映了HBx转染组的IL-1β、IL-18表达高于空转染组(P < 0.01);加入NLRP3 siRNA后IL-1β、IL-18表达下降(P < 0.05)。同时,ELISA的结果证实与空染组相比,IL-1β、IL-18和Caspase-1酶活性在HBx过表达后升高;加入NLRP3 siRNA后炎症因子和Caspase-1酶活性降低(图4(f)~(h))。为了从生理学角度分析HBx对足细胞损伤程度,我们使用LDH ELISA试剂盒分析各组足细胞LDH的释放。与空染组相比,HBx转染组LDH显著升高;而NLRP3表达的抑制使LDH表达下降(P < 0.01) (图4(i))。以上实验结果表明,NLRP3炎症小体在HBx诱导的足细胞损伤中发挥了重要作用。

Figure 4. HBx mediates the activation of NLRP3 inflammasome, which in turn leads to the activation of inflammatory factors and the increase of LDH expression. (a)~(c) Western blot detection of IL-1β and IL-18 were expressed in each group. (d) (e) detection of IL-1 by qRT-PCR β and IL-18 expression in each group. (f)~(i) ELISA kit to detect IL-1β, IL-18, caspase-1 enzyme activity and LDH release. (compared with the blank control group, #P < 0.05, ##P < 0.01, ###P < 0.001; compared with the blank control group, **P< 0.01, ***P < 0.001; compared with the HBx transfection group, +P < 0.05, ++P < 0.01, +++P < 0.001)

图4. HBx介导NLRP3炎性小体激活,继而引起炎性因子活化及LDH表达升高。(b) (c) Western blot检测IL-1β和IL-18在各组中表达。(d) (e) qRT-PCR检测IL-1β和IL-18在各组中的表达。(f)~(i) ELISA试剂盒检测IL-1β、IL-18、Caspase-1酶活性和LDH的释放。(与空白对照组相比,#P< 0.05, ##P< 0.01, ###P < 0.001;与空染组相比,**P < 0.01, ***P < 0.001;与HBx转染组相比,+P < 0.05, ++P < 0.01, +++P < 0.001)

3.5. 免疫荧光法检测足细胞损伤

为了进一步研究NLRP3对HBx过表达后足细胞损伤的影响,我们使用了免疫荧光技术来检测足细胞损伤相关标志物的表达。结果显示,当HBx过表达时,足细胞损伤标志物Desmin染色阳性细胞显著增加,在NLRP3表达降低时Desmin染色阳性细胞数量降低(图5(a)、图5(b))。Nephrin是参与肾小球滤过屏障的必要蛋白,而HBx的表达与Nephrin的表达呈负相关,抑制NLRP3的表达后Nephrin表达升高(图5(c)、图5(d))。以上结果证实了过表达HBx将加重足细胞损伤,而在降低NLRP3表达后,足细胞的损伤得到了抑制。

Figure 5. Podocyte injury was detected by immunofluorescence. (a) (b) desmin expression was detected by immunofluorescence. (c) (d) the expression of nephrin was detected by immunofluorescence. (compared with the blank control group, #P < 0.05; compared with the empty staining group, **P < 0.01; compared with the HBx transfection group, +P < 0.05, ++P < 0.01)

图5. 免疫荧光法检测足细胞损伤。(a) (b)免疫荧光法检测Desmin表达。(c) (d)免疫荧光法检测Nephrin表达。(与空白对照组相比,#P < 0.05;与空染组相比,**P < 0.01;与HBx转染组相比,+P < 0.05, ++P < 0.01)

4. 讨论

本研究的主要目的是验证NLRP3炎性小体在HBV-GN足细胞焦亡中的作用。实验结果表明,HBx过表达引起了NLRP3炎症小体的激活以及IL-1β、IL-18等炎症因子的释放,参与了HBV-GN足细胞焦亡的发生;而抑制NLRP3表达,减轻了足细胞焦亡的发生。总之,我们证明了NLRP3炎性小体在HBV-GN足细胞焦亡中的重要作用。

HBV-GN作为乙型病毒性肝炎的并发症之一不容小觑,据统计,HBV-GN发病患者占HBV感染患者总数的三分之一左右 [18],以青年男性为高发人群。基因型C是HBV-GN中最常见基因类型 [19] [20]。Yang等人发现HBx参与KDM6B表达并诱导足细胞巨噬细胞转分化(Podocyte-macrophage transdifferentiation, PMT),从而参与HBV-GN肾足细胞损伤和蛋白尿的生成 [21]。同时HBx可以减少α3β1整合素的表达,从而使足细胞粘附功能下降和增加细胞凋亡 [22]。这表明HBx与足细胞损伤相关。临床研究证明,不仅NLRP3炎症小体参与HBV-GN中足细胞损伤过程,AIM2炎性小体在HBV-GN中存在重要作用 [23]。众所周知,HBV-GN通过肾脏活组织检查确诊。目前已有专家发现,TLR4在HBV-GN的肾脏组织中高表达,可以反映HBsAg的分布情况 [24],TLR4有望成为评估肾脏损伤的新检验指标。目前治疗HBV及HBV-GN的临床方法很多,但部分药物使用过程中可能导致肾脏损伤,比如,长期拉夫嘧啶治疗可能导致YMDD突变,导致HBV-GN疾病加重 [25]。故HBV-GN治疗和预防仍是目前研究热点。

先前我们在研究中发现HBV-GN患者肾脏病理切片中足细胞存在一种特殊的程序性细胞死亡,即细胞焦亡。目前研究已经证实,细胞焦亡是近期发现的一类程序性细胞死亡,从发病机制上不同于细胞凋亡、坏死。细胞焦亡又称细胞炎性坏死,由Caspase-1等蛋白介导,细胞逐步膨胀到破裂,释放大量炎症因子 [26]。有研究发现,抑制IL-1β的表达可以改善2型糖尿病 [27];足细胞炎症反应释放的IL-1β会反过来干预足细胞NLRP3炎性小体的表达,使其炎症进一步发生,故炎症级联反应形成 [9]。细胞焦亡过程中存在Nephrin蛋白表达下调。研究表明,Nephrin蛋白表达下调是蛋白尿的主要机制 [28],该蛋白在恢复细胞膜完整性和细胞骨架重塑方面起着重要作用 [29]。这也是HBV-GN足细胞焦亡后,尿检异常和肾病综合征表现的主要原因。

国内外研究发现,部分肾脏疾病与NLRP3炎性小体激活息息相关。例如,高同型半胱氨酸血症中,存在NLRP3炎性小体激活这一过程,并介导足细胞损伤和肾小球硬化 [6],并存在内源性活性氧起信号传导作用 [30]。目前发现了2342种活性氧在病变细胞中诱导溶酶体中半胱氨酸蛋白酶组织蛋白酶L渗漏 [30],活化的组织蛋白酶是具有通过核分裂诱导细胞损伤的潜能细胞质因子 [31],从而介导NLRP3炎症小体激活。Abais等人发现ROS中O2-和H2O2均可介导NLRP3炎性小体激活,从而介导足细胞损伤 [32]。TXNIP作为一个抗氧化的硫氧还蛋白的内源性抑制剂和ROS传感器,参与了ROS-p38 MAPK-TXNIP-NLRP3炎性小体这一激活途径 [8] [30] [33] [34] [35]。Zhao [36] 等人发现血管紧张素II通过激活NLRP3炎症小体从而介导足细胞损失,该过程与线粒体相关。通过研究发现,诱导NLRP3炎症小体激活不仅仅是ROS的异常代谢,同时嘌呤能离子通道型受体(purinergic ligand-gated ion channel receptor, P2XR) [37] [38] [39] [40]、CD36 [41] [42]、NF-κB [43] [44] [45] [46] [47] [48] 等也参与NLRP3炎症小体激活。P2X7R主要机制为促进K+外流、Ca2+内流,进而使NLRP3炎症小体的组装激活。CD36可介导脂质异常积累,进一步激活NLRP3炎症小体。NF-κB具有和NLRP3启动子靶向结合的能力,从而提高NLRP3蛋白、pro-IL-18、pro-IL-1β的表达,促使NLRP3炎症小体激活,进而促进足细胞损伤乃至肾脏损伤。然而,HBV-GN发病机制中激活NLRP3炎症小体的上游靶点,目前尚不完善,需要后续进一步研究阐明。

现如今HBV-GN的治疗仍使用激素等方法 [49],但激素存在的副作用不可忽视。也有新兴探索的领域,比如紫雏菊苷能够阻断HBX/TREM2介导的NF-κB信号通路从而减缓细胞凋亡过程 [50],抑制信号转导和转录激活因子3 (STAT3)的表达从而缓解细胞凋亡发生 [51]。抑制NLRP3炎性小体的激活和Caspase-1的活化能更好的对HBV-GN的发病及进展进行控制和预防,正是控制了NLPR3炎性小体炎症信号通路,从而缓解足细胞焦亡,减缓足细胞损伤,最终达到缓解蛋白尿的目的。二十二六烯酸俗称脑黄金(Docosahexaenoic Acid, DHA)是鱼油中的重要成分,它的代谢产物溶解素D1和中间产物17S-OH-DHA可以通过抑制NLRP3炎性小体活化,从而缓解hHcys中足细胞损伤和肾小球硬化 [52],也有研究发现花生四烯乙醇胺(Anandamide, AEA)的环氧合酶代谢产物也具有相似作用 [53];Shahzad等 [54] 发现,米诺环素通过减少核因子E2相关因子2 (nuclear factor erythroid-2-related factor 2, Nrf2)的泛素化,提高Nrf2蛋白稳定性,促进抗氧化酶的表达,继而清除ROS,抑制DN中NLRP3炎性小体的活化,从而抑制足细胞凋亡;在高果糖所致的高尿酸血症及代谢综合征的大鼠的实验中发现,孙思邈丸通过上调Sirt1的表达,抑制NF-κB/NLRP3炎症反应活化,减少IL-1β成熟及分泌,从而提高nephrin、podocin、CD2关联蛋白(CD2-associated protein, CD2AP)的表达,改善足细胞损伤及蛋白尿水平 [48];紫檀二苯乙烯和别嘌呤醇 [7] 可通过抑制miR-377,白藜芦醇通过抑制miR-21,均减少ROS的产生,从而抑制DN中NLRP3炎性小体活化,缓解足细胞损伤;人工培养的冬虫夏草可通过抑制P2X7R的表达和NLRP3炎性小体的激活,从而减轻DN中足细胞损伤 [40];黄连干预可降低肾组织NLRP3蛋白表达水平,缓解肥胖相关性肾病中的足细胞损伤 [55]。

本实验仍存在许多局限性。首先,我们仅在体外研究了HBx转染人肾足细胞中NLRP3炎症小体信号转导通路。我们仍需要完善动物试验,进一步探索体内HBx介导的信号传导途径。同时,我们干扰了NLRP3炎症小体生成,却缺少对Caspase-1、IL-1β、IL-18的干扰,故无法从本实验中证明这一关联。

5. 结论

本研究表明,NLRP3炎症小体在HBV-GN足细胞损伤中发挥了关键作用。在HBV-GN中,HBx通过激活NLRP3炎症小体及下游炎症因子的释放而导致足细胞焦亡的发生。NLRP3炎症小体有望作为治疗足细胞损伤的新靶点,对肾脏疾病的诊疗具有重要意义。

致谢

首先感谢蒋伟主任的支持与帮助,在实验过程中的技术指导使我能够顺利完成;同时感谢青岛大学肾病科的支持。

基金项目

国家自然科学基金(81870494);中华医学会临床科研基金(20010080800);青岛市医疗卫生优秀人才培养项目(2020-2022)。

文章引用

孙静宜,蒋 伟. NLRP3炎性小体在乙型肝炎病毒相关性肾炎足细胞焦亡中的作用
The Role of NLRP3 Inflammasome Activation in Podocyte Pyroptosis in Hepatitis B Virus Associated-Glomerulonephritis[J]. 临床医学进展, 2022, 12(08): 7012-7025. https://doi.org/10.12677/ACM.2022.1281010

参考文献

  1. 1. Shah, A.S. and Amarapurkar, D.N. (2018) Spectrum of Hepatitis B and Renal Involvement. Liver International, 38, 23-32. https://doi.org/10.1111/liv.13498

  2. 2. Guidotti, L.G. and Chisari, F.V. (2006) Immunobiology and patho-genesis of viral hepatitis. Annual Review of Pathology: Mechanisms of Disease, 1, 23-61. https://doi.org/10.1146/annurev.pathol.1.110304.100230

  3. 3. Dong, H., Xu, Y., Jiang, W., et al. (2014) Signifi-cance of Mutations in Hepatitis B Virus X Gene for the Pathogenesis of HB-Associated Glomerulonephritis. Acta Viro-logica, 58, 278-281. https://doi.org/10.4149/av_2014_03_278

  4. 4. Ma, R., Liu, L., Jiang, W., et al. (2015) FK506 Ameliorates Podocyte Injury in Type 2 Diabetic Nephropathy by Down-Regulating TRPC6 and NFAT Expression. In-ternational Journal of Clinical and Experimental Pathology, 8, 14063-14074.

  5. 5. 王彤, 马瑞霞, 武国华, 孙益婷. 他克莫司通过上调自噬作用保护2型糖尿病大鼠足细胞[J]. 中华肾脏病杂志, 2016, 32(3): 195-199.

  6. 6. Ma, R., Jiang, W., Li, Z., et al. (2016) Intrarenal Macrophage Infiltration Induced by T Cells Is Associated with Podocyte Injury in Lupus Nephritis Patients. Lupus, 25, 1577-1586. https://doi.org/10.1177/0961203316646861

  7. 7. Zhang, C., Boini, K.M., Xia, M., et al. (2012) Activation of Nod-Like Receptor Protein 3 Inflammasomes Turns on Podocyte Injury and Glomerular Sclerosis in Hyperhomocysteinemia. Hypertension, 60, 154-162. https://doi.org/10.1161/HYPERTENSIONAHA.111.189688

  8. 8. Wang, W., Ding, X.Q., Gu, T.T., et al. (2015) Pterostilbene and Allopurinol Reduce Fructose-Induced Podocyte Oxidative Stress and Inflammation via MicroRNA-377. Free Radical Biology and Medicine, 83, 214-226. https://doi.org/10.1016/j.freeradbiomed.2015.02.029

  9. 9. Singh, G.B., Kshirasagar, N., Patibandla, S., et al. (2019) Nicotine Instigates Podocyte Injury via NLRP3 Inflammasomes Activation. Aging, 11, 12810-12821. https://doi.org/10.18632/aging.102611

  10. 10. Hong, J.N., Li, G.B., Zhang, Q.H., et al. (2019) D-Ribose Induces Podocyte NLRP3 Inflammasome Activation and Glomerular Injury via AGEs/RAGE Pathway. Frontiers in Cell and Developmental Biology, 7, Article No. 259. https://doi.org/10.3389/fcell.2019.00259

  11. 11. Martinon, F., Petrilli, V., Mayor, A., et al. (2006) Gout-Associated Uric Acid Crystals Activate the NALP3 Inflammasome. Nature, 440, 237-241. https://doi.org/10.1038/nature04516

  12. 12. 宋占帅, 邵华, 陈艳芹, 张蓉. NLRP3/IL-1β/TGF-β1信号轴在矽肺肺纤维化大鼠模型中的表达及意义[J]. 中华劳动卫生职业病杂志, 2018, 36(11): 819-823.

  13. 13. Buckley, L.F. and Libby, P. (2019) Inhibiting NLRP3 Inflammasome Activity in Acute Myocardial Infarction: A Review of Pharmacologic Agents and Clinical Outcomes. Journal of Cardiovascular Pharmacology, 74, 297-305. https://doi.org/10.1097/FJC.0000000000000701

  14. 14. Imaeda, A.B., Watanabe, A., Sohail, M.A., et al. (2009) Ac-etaminophen-Induced Hepatotoxicity in Mice Is Dependent on tlr9 and the nalp3 Inflammasome. Journal of Clinical In-vestigation, 119, 305-314. https://doi.org/10.1172/JCI35958

  15. 15. Saleem, M.A., O’ Hare, M.J., Reiser, J., et al. (2002) A Conditionally Immortalized Human Podocyte Cell Line Demonstrating Nephrin and Podocin Expression. Journal of the American Society of Nephrology, 13, 630-638. https://doi.org/10.1681/ASN.V133630

  16. 16. 李菡, 赵国强. HBx基因真核表达载体的构建及表达[J]. 肝脏, 2012, 17(5): 332-334.

  17. 17. Zheng, X.Y., Wei, R.B., Tang, L., et al. (2012) Meta-Analysis of Combined Therapy for Adult Hepatitis B Virus-Associated Glomerulonephritis. World Journal of Gastroenterology, 18, 821-832. https://doi.org/10.3748/wjg.v18.i8.821

  18. 18. Yoo, J.J., Lee, J.H., Yoon, J.N., et al. (2015) Hepatitis B Vi-rus-Related Glomerulonephritis: Not a Predominant Cause of Proteinuria in Korean Patients with Chronic Hepatitis B. Gastroenterology Research and Practice, 2015, Article ID: 126532. https://doi.org/10.1155/2015/126532

  19. 19. Sun, Y.H., Lei, X.Y., Sai, Y.P., et al. (2016) Relationship between Genotypes and Clinical Manifestation, Pathology, and cccDNA in Chinese Children with Hepatitis B Virus-Associated Glomerulonephritis. World Journal of Pediatrics, 12, 347-352. https://doi.org/10.1007/s12519-016-0015-0

  20. 20. Sun, Y.H., Lei, X.Y. and Yuan, H. (2015) Clinical and Pathological Differences between Children with Various Genotypes of Hepatitis B Virus-Associated Glomerulonephritis. Chinese Journal of Contemporary Pediatrics, 17, 371-374.

  21. 21. Yang, Y.T., Du, Y., Yuan, W.J., et al. (2021) Role of Histone Demethylase KDM6B in HBx-Mediated Podocyte-Macrophage Transdifferentiation. Chinese Medical Journal., 101, 866-871.

  22. 22. Liu, D.J., Zhang, B.R., Zhou, G., et al. (2017) Hepatitis B Virus X Protein Reduces Podocyte Ad-hesion via Downregulation of α3β1 Integrin. Cellular Physiology and Biochemistry, 41, 689-700. https://doi.org/10.1159/000458428

  23. 23. Zhen, J.H., Zhang, L., Pan, J.C., et al. (2014) AIM2 Mediates Inflamma-tion-Associated Renal Damage in Hepatitis B Virus-Associated Glomerulonephritis by Regulating Caspase-1, IL-1β, and IL-18. Mediators of Inflammation, 2, Article ID: 190860. https://doi.org/10.1155/2014/190860

  24. 24. Zhu, N., Zhou, Y., Yuan, W.J., et al. (2011) Toll-Like Receptor 4 Deposition and Its Significance in Hepatitis B Virus Associated Nephropathy. Chinese Journal of Internal Medicine, 50, 1008-1012.

  25. 25. Gwark, G.Y., Lee, C.Y., Lee, D.H., et al. (2011) Clinical Impact of the Development of YMDD Mutants in Hepatitis B Virus-Associated Glomerulonephritis. Hepatogastroenterology, 58, 1291-1295. https://doi.org/10.5754/hge07389

  26. 26. Miao, E.A., Rajan, J.V., Aderem, A., et al. (2011) Caspase-1-Induced pyroptotic Cell Death. Immunological Reviews, 243, 206-214. https://doi.org/10.1111/j.1600-065X.2011.01044.x

  27. 27. Larsen, C.M., Faulenbach, M., Vaag, A., et al. (2007) In-erleukin-1-Receptor Antagonist in Type 2 Diabetes Melitus. New England Journal of Medicine, 356, 1517-1526. https://doi.org/10.1056/NEJMoa065213

  28. 28. Ma, Y., Yang, Q., Zhong, Z.,et al. (2018) Role of C-Abl and Nephrin in Podocyte Cytoskeletal Remodeling Induced by angiotensin II. Cell Death & Disease, 9, Article No. 185. https://doi.org/10.1038/s41419-017-0225-y

  29. 29. Kato, T., Mizuno, S., Kamimoto, M., et al. (2010) The Decreases of Nephrin and Nuclear WTl in Podocytes May Cause Albuminuria during the Experimental Sepsis in Mice. Biomedical Research, 31, 363-369. https://doi.org/10.2220/biomedres.31.363

  30. 30. Abais, J.M., Xia, M., Li, G., et al. (2014) Contribution of Endoge-nously Produced Reactive Oxygen Species to the Activation of Podocyte NLRP3 Inflammasomes in Hyperhomocyste-inemia. Free Radical Biology and Medicine, 67, 211-220. https://doi.org/10.1016/j.freeradbiomed.2013.10.009

  31. 31. Chen, Q.Y., Shi, J.G., Yao, Q.H., et al. (2012) Lysoso-mal Membrane Permeabilization Is Involved in Curcumin-Induced Apoptosis of A549 Lung Carcinoma Cells. Molecular and Cellular Biochemistry, 359, 389-398. https://doi.org/10.1007/s11010-011-1033-9

  32. 32. Repnik, U., Stoka, V., Turk, V., et al. (2012) Lysosomes and Lysosomal Cathepsins in Cell Death. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1824, 22-33. https://doi.org/10.1016/j.bbapap.2011.08.016

  33. 33. Zhou, R., Tardivel, A., Thorens, B., et al. (2010) Thioredox-in-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nature Immunology, 11, 136-140. https://doi.org/10.1038/ni.1831

  34. 34. Abais, J.M., Xia, M., Li, G., et al. (2014) Nod-Like Receptor Protein 3 (NLRP3) Inflammasome Activation and Podocyte Injury via Thioredoxin-Interacting Protein (TXNIP) during Hyperho-mocysteinemia. Journal of Biological Chemistry, 289, 27159-27168. https://doi.org/10.1074/jbc.M114.567537

  35. 35. Gao, P., Meng, X., Su, H., et al. (2014) Thioredoxin-Interacting Protein Mediates NALP3 Inflammasome Activation in Podocytes during Diabetic Nephropathy. Biochimica et Biophysi-ca Acta (BBA) - Molecular Cell Research, 1843, 2448-2460. https://doi.org/10.1016/j.bbamcr.2014.07.001

  36. 36. Zhao, M., Bai, M., Ding, G.X., et al. (2018) Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Diseases, 4, 83-94. https://doi.org/10.1159/000488242

  37. 37. Hou, X.X., Dong, H.R., Sun, L.J., et al. (2018) Purinergic 2X7 Receptor Is Involved in the Podocyte Damage of Obesity-Related Glomerulopathy via Activating Nucleotide-Binding and Oligomerization Domain-Like Receptor Protein 3 Inflammasome. Chinese Medical Journal, 131, 2713-2725. https://doi.org/10.4103/0366-6999.245270

  38. 38. Zhang, Y.F., Rong, H., Zhang, F.X., et al. (2018) A Membrane Potential and Calpain-Dependent Reversal of Caspase-1 Inhibition Regulates Canonical NLRP3 Inflammasome. Cell Re-port, 24, 2356-2369.E5. https://doi.org/10.1016/j.celrep.2018.07.098

  39. 39. Haque, S., Lan, X.Q., Wen, H.X., et al. (2016) HIV Promotes NLRP3 Inflammasome Complex Activation in Murine HIV-Associated Nephropathy. The American Journal of Pathol-ogy, 186, 347-358. https://doi.org/10.1016/j.ajpath.2015.10.002

  40. 40. Wang, C., Hou, X.X., Rui, H.L., et al. (2018) Artificially Culti-vated Ophiocordyceps sinensis Alleviates Diabetic Nephropathy and Its Podocyte Injury via Inhibiting P2X7R Expres-sion and NLRP3 Inflammasome Activation. Journal of Diabetes Research, 2018, Article ID: 139041. https://doi.org/10.1155/2018/1390418

  41. 41. Yang, X.J., Wu, Y., Li, Q.Q., et al. (2018) CD36 Promotes Podocyte Apoptosis by Activating the Pyrin Domain-Containing-3 (NLRP3) Inflammasome in Primary Nephrotic Syndrome. Medical Science Monitor, 24, 6832-6839. https://doi.org/10.12659/MSM.909810

  42. 42. Boini, K.M., Xia, M., Abais, J.M., et al. (2014) Activation of Inflam-masomes in Podocyte Injury of Mice on the High Fat Diet: Effects of ASC Gene Deletion and Silencing. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843, 836-845. https://doi.org/10.1016/j.bbamcr.2014.01.033

  43. 43. Liu, B., Lu, R., Li, H., et al. (2019) Zhen-wu-tang Ameliorates Membranous Nephropathy Rats through Inhibiting NF-κB Pathway and NLRP3 Inflammasome. Phytomedicine, 59, Ar-ticle ID: 152913. https://doi.org/10.1016/j.phymed.2019.152913

  44. 44. Yi, H., Peng, R., Zhang, L.Y., et al. (2017) Lin-cRNA-Gm4419 Knockdown Ameliorates NF-κB/NLRP3 Inflammasome-Mediated Inflammation in Diabetic Nephropa-thy. Cell Death & Disease, 8, Article ID: e2583. https://doi.org/10.1038/cddis.2016.451

  45. 45. Hua, K.F., Yang, S.M., Kao, T.Y., et al. (2013) Osthole Mitigates Progressive IgA Nephropathy by Inhibiting Reactive Oxygen Species Generation and NF-κB/NLRP3 Pathway. PLOS ONE, 8, Article ID: e77794. https://doi.org/10.1371/journal.pone.0077794

  46. 46. Chen, L. and Lan, Z. (2017) Polydatin Attenuates Potassium Oxonate-Induced Hyperuricemia and Kidney Inflammation by Inhibiting NF-κB/NLRP3 Inflammasome Activation via the AMPK/SIRT1 Pathway. Food & Function, 8, 1785-1792. https://doi.org/10.1039/C6FO01561A

  47. 47. Yang, S.M., Ka, S.M., Wu, H.L., et al. (2014) Thrombomodulin Domain 1 Ameliorates Diabetic Nephropathy in Mice via An-ti-NF-κB/NLRP3 Inflammasome-Mediated Inflammation, Enhancement of NRF2 Antioxidant Activity and Inhibition of Apoptosis. Diabetologia, 57, 424-434. https://doi.org/10.1007/s00125-013-3115-6

  48. 48. Ma, C.H., Kang, L.L., Ren, H.M., et al. (2015) Simiao Pill Ameliorates Renal Glomerular Injury via Increasing Sirt1 Expression and Suppressing NF-κB NLRP3 Inflammasome Activation in High Fructose-Fed Rats. Journal of Ethnopharmacology, 172, 108-117. https://doi.org/10.1016/j.jep.2015.06.015

  49. 49. Zhang, Y., Chen, S., Yang, D., et al. (2021) Efficacy and Safety of Long-Term Corticosteroid Monotherapy in 26 Cases of Nephrotic Syndrome with Biopsy-Proven Membranous Nephropathy Induced by Seronegative Hepatitis B Virus-Associated Glomerulonephritis. Nephron, 145, 113-122. https://doi.org/10.1159/000511467

  50. 50. Zhang, Y.F., Wu, Q.F., Zhong, L.M., et al. (2020) Echinacoside Promotes the Proliferation of Human Renal Tubular Epithelial Cells by Blocking the HBX/TREM2-Mediated NF-κB Signalling Pathway. Molecular Medicine Reports, 22, 1137-1144. https://doi.org/10.3892/mmr.2020.11201

  51. 51. Lei, X.F., Chen, X.X., Sun, Y.H., et al. (2019) Hepatitis B Virus X Protein Decreases Nephrin Expression and Induces Podocyte Apoptosis via Activating STAT3. Experimental and Therapeutic Medicine, 17, 4223-4229. https://doi.org/10.3892/etm.2019.7453

  52. 52. Li, G., Chen, Z., Bhat, O.M., et al. (2017) NLRP3 Inflammasome as a Novel Target for Docosahexaenoic Acid Metabolites to Abrogate Glomerular Injury. Journal of Lipid Research, 58, 1080-1090. https://doi.org/10.1194/jlr.M072587

  53. 53. Li, G., Xia, M., Abais, J., et al. (2016) Protective Action of Anandamide and Its COX-2 Metabolite against L-Homocysteine-Induced NLRP3 Inflammasome Activation and Injury in Podocytes. Journal of Pharmacology and Experimental Therapeutics, 358, 61-70. https://doi.org/10.1124/jpet.116.233239

  54. 54. Shahzad, K., Bock, F., Aldabet, M.M., et al. (2016) Stabilization of Endogenous Nrf2 by Minocycline Protects against Nlrp3-Inflammasome Induced Diabetic Nephropathy. Scientific Re-ports, 6, Article No. 34228. https://doi.org/10.1038/srep34228

  55. 55. Ren, Y., Wang, D., Lu, F., et al. (2018) Coptidis Rhizoma Inhibits NLRP3 Inflammasome Activation and Alleviates Renal Damage in Early Obesity-Related Glomeruopathy. Phytomedicine, 49, 52-65. https://doi.org/10.1016/j.phymed.2018.05.019

期刊菜单