Hans Journal of Food and Nutrition Science
Vol.
11
No.
01
(
2022
), Article ID:
48539
,
12
pages
10.12677/HJFNS.2022.111006
筛选与评估减缓肠道发炎功效之益生菌
陈雅君1,王启宪1,蔡侑珊1,林诗伟1,吴文歆2,陈炎炼1,陈劲初3,4,5*
1生物工程中心,葡萄王生技股份有限公司,台湾 桃园
2上海葡萄王企业有限公司,上海
3台湾大学食品科技研究所,台湾 台北
4实践大学食品营养与保健生技学系,台湾 台北
5中原大学生物科技学系,台湾 桃园
收稿日期:2021年12月10日;录用日期:2022年1月20日;发布日期:2022年2月9日

摘要
本篇利用葡聚糖硫酸(Dextran Sulfate Sodium, DSS)诱发小鼠肠道发炎的模式来筛选与评估益生菌在减缓肠道发炎与损伤的效果。实验将8周龄的BALB/c小鼠分为六组(n = 10):正常对照组(无DSS诱导)、负对照组(DSS诱导)、片球菌GKA4组(DSS + GKA4)、片球菌GKP4组(DSS + GKP4)、乳酸菌GKR1组(DSS + GKR1)、以及乳酸菌GK4组(DSS + GK4)。连续14天以相当于成人一天摄取1克的剂量管喂小鼠益生菌,并于第7天到第14天的饮水中加入3.5% DSS,藉以诱发肠道发炎。实验结果显示给予3.5% DSS后,片球菌GKA4组及GKP4组与负对照组相比下,其对于体重减轻、结肠长度、疾病活动指数等指标均有明显改善。此外,亦可降低血清中促炎细胞激素IL-1β、IL-6及TNF-α含量,藉此减缓由DSS引发的肠道发炎反应。综观上述结果,片球菌P. acidilactici GKA4与P. pentosaceus GKP4具有应用于肠道保护的益生菌潜力。
关键词
乳酸片球菌Pediococcus acidilactici GKA4,戊醣片球菌Pediococcus pentosaceus GKP4,肠道发炎, 葡聚糖硫酸,益生菌,肠胃道保护

Screening and Evaluation of Probiotics for Reducing Intestinal Inflammation
Ya-Jyun Chen1, Ci-Sian Wang1, You-Shan Tsai1, Shih-Wei Lin1, Wen-Shin Wu2, Yen-Lien Chen1, Chin-Chu Chen3,4,5*
1Bioengineering Center, Grape King Bio Ltd., Taoyuan Taiwan
2Shanghai Grape King Enterprise Co., Ltd., Shanghai
3Institute of Food Science and Technology, National Taiwan University, Taipei Taiwan
4Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei Taiwan
5Bioscience Technology, Chung Yuan Christian University, Taoyuan Taiwan
Received: Dec. 10th, 2021; accepted: Jan. 20th, 2022; published: Feb. 9th, 2022

ABSTRACT
In this study, we applied Dextran Sulfate Sodium (DSS)-induced enteritis in mice to evaluate the effects of probiotics on reducing intestinal inflammation and damage. The 8-week-old BALB/c mice were divided into six groups (n = 10): normal group (without DSS), negative control group (DSS-induced), probiotic Pediococcus acidilactici GKA4 group (DSS + GKA4), Pediococcus pentosaceus GKP4 group (DSS + GKP4), Lactobacillus reuteri GKR1 group (DSS + GKR1), and GK4 group (DSS + GK4). Mice were given tested bacteria at an equivalent to 1 gram of adult daily intake for 14 consecutive days. Then 3.5% DSS was added to drinking water from day 7th to day 14th to induce intestinal damage. The results showed that the Pediococcus GKA4 group and GKP4 group were significantly improved in weight loss, colon length, disease activity index, and other indicators when compared with the negative control group. In addition, both Pediococcus groups reduced the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in serum; thereby, alleviating the intestinal inflammation caused by DSS. Based on these results, P. acidilactici GKA4 and P. pentosaceus GKP4 have the potential characteristic to be used as probiotics for intestinal-related diseases.
Keywords:Pediococcus acidilactici GKA4, Pediococcus pentosaceus GKP4, Intestinal Inflammation, Dextran Sulfate Sodium (DSS), Probiotics, Gastrointestinal Tract Protection
Copyright © 2022 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
1. 引言
发炎性肠道疾病(Inflammatory Bowel Disease, IBD)意指所有发生发炎反应的肠道系统相关疾病,包括溃疡性大肠炎(Ulcerative Colitis, UC)及克隆氏症(Crohn’s Disease, CD)等。其疾病的成因至今仍不明了,基因、免疫与环境各方面因素都可能相关 [1]。溃疡性大肠炎主要发生在大肠和直肠,且病变是呈连续性的变化。而克隆氏症则是会以跳耀式(skipping lesions)影响胃肠道的任何部分,主要是侵犯小肠。多数肠道疾病的症状包含体重减少与腹泻等,严重则可能引起结肠重量与长度改变 [2]。此类病人因肠胃道长期且反复的发炎,经常受腹泻、腹痛或血便之苦,严重影响生活质量。长期累积的肠道伤害更可能导致肠道狭窄、肠阻塞、肠穿孔等并发症,为病患、家属及医疗资源带来许多负担,加上近年来IBD的发生率与盛行率都有增加的趋势,因此肠道保护的议题更是受人注目 [3] [4]。目前研究指出,肠道菌群失调可能是 IBD 及其并发症开始的关键因素 [5] [6]。更多研究表明,益生菌可以透过改变肠道菌群和调节免疫系统达到护肠的效果,为传统疗法提供替代或辅助方法 [7]。
益生菌(Probiotics)是非病原性微生物,具有安全性,其特征包括良好的胆汁耐受性、耐胃酸表现、可吸附于肠道对抗潜在致病微生物等,对于肠道菌相平衡有改善的效果 [8] [9]。在Jie Gao等的研究中显示,鼠李糖乳杆菌GG (Lactobacillus rhamnosus GG)培养上清液有种新型分泌蛋白-HM0539,其可促进肠黏蛋白分泌,以增强肠道屏障功能 [10]。除此之外,近期尚有发现片球菌具有肠道保护的功能。乳酸片球菌(Pediococcus acidilactici)已被证明可以从核醣体中产生细菌素(Bacteriocin) [11],细菌素可以在人体肠道中定殖并持续存在,防止肠道中病原菌生长而有改善肠道免疫和增强肠道屏障功能 [12]。在Mohamed Zommiti等的研究中发现,戊醣片球菌(P. pentosaceus)有高疏水性与对肠道细胞的高吸附力,这些特性可能有助于乳酸菌在肠道中定植,增强肠道屏障功能 [13]。
葡聚醣硫酸钠(Dextran Sulfate Sodium, DSS)是一种水溶性、带负电荷的硫酸化多醣,分子量从5到 1400 kDa。根据给予DSS的浓度、分子量、持续时间和频率,作用于结肠上皮细胞,导致上皮细胞损伤,进而发生急性或慢性结肠炎 [14] [15]。口服葡聚醣硫酸钠(DSS)是最广泛使用的化学诱导肠道发炎的方式,其方式是常见、有效、立即且过程简单。1天立即诱发疾病的临床症状,其会导致肠道出血、结肠长度变短、体重减轻、腹泻与活动力下降等现象。因此口服葡聚醣硫酸钠已被广泛用作急性和慢性结肠炎模型的方式 [16] [17] [18]。
因此本实验培养数种可食用之细菌,透过耐酸性试验以及耐胆盐试验的表现,筛选具肠道保护潜力之益菌,再藉由DSS诱导之小鼠肠道发炎模式,来筛选与评估益生菌在改善肠道的效果。
2. 材料与方法
2.1. 实验菌株
实验益生菌菌株共20株,由葡萄王生技股份有限公司(Grape King Bio Ltd., Taoyuan, Taiwan)提供,皆为可食用、可量化、安全的菌株。相关菌株信息如表1,菌株来源皆自亚洲人人体或其常见的食物中分离出来。体外实验用之菌株以MRS 液态培养基(Difco, BD, NJ, USA)培养16小时后进行实验。再依据耐酸耐胆盐的基本特性,筛选出4株肠道保护的潜力益生菌菌株,进行动物试验。动物试验用菌粉则为菌株培养后离心、混入20%脱脂奶粉,再冷冻干燥而得。
Table 1. Bacteria sources
表1. 菌株来源
2.2. 耐酸性试验
配制9.9毫升MRS broth以3M HCl调整pH值pH 2.4,以121℃高温高压灭菌15分钟后取出,待冷却后加入0.1毫升益生菌菌液,在37℃下培养3小时后取出,用稀释平板法(pour plate method)来计数菌数。以菌株存活率表示其耐酸程度,菌株存活越多,耐酸程度越好(1)。
菌株存活率(%) = Log10 (经pH 2.4处理3小时后之菌数)/Log10 (初始菌数) (1)
2.3. 耐胆盐试验
配制0.3%胆盐浓度的MRS broth及不含胆盐的MRS broth各9.9毫升,以121℃高温高压灭菌15分钟后取出,待冷却后加入0.1毫升乳酸菌菌液,在37℃下培养半小时后取出,用稀释平板法(pour plate method)来计数菌数。以菌株存活率表示其耐胆盐程度,菌株存活越多,耐胆盐程度越好(2)。
菌株存活率(%) = Log10 (于0.3%胆盐半小时后之菌数)/Log10 (初始菌数) (2)
2.4. 动物实验设计
Figure 1. Experimental procedure of DSS-induced intestinal inflammation in Balb/c male mice
图1. Balb/c雄性小鼠之DSS致肠道发炎之实验流程
BALB/c 雄鼠8周大,共60只,购自台湾乐斯科生物科技股份有限公司(BioLASCO Taiwan Co. Ltd., Taipei, Taiwan),经驯化后采随机分组,每组 10 只。组别包括正常组(normal)、DSS诱导组(DSS)、以及益生菌菌株4组(DSS + probiotics strain),共6组。试验开始时,正常组与DSS诱导组之小鼠每日给与灭菌水,而菌株组则每日给予剂量200 mg/kg B.W.的菌粉,相当于60公斤成人一天吃1公克(小鼠转换系数为12.3),连续给予两周。此剂量设计有利于未来菌粉开发成胶囊或粉末剂型外,也较适合成人一天可接受的摄取量(2~3颗胶囊/天)。试验期间每周定时测量试验动物体重变化。除了正常组之外,其余各组的饮用水于第7天到第14天加入3.5% DSS [19]。于第14天试验结束牺牲小鼠,取其血液与结肠,进行后续分析(图1)。动物房温度控制在22℃ ± 3℃,湿度控制在50% ± 20%,光照与黑暗各十二小时进行试验 (06:00~18:00为光照期,18:00~06:00为黑暗期),动物自由摄食、饮水。本动物实验经实验动物照护及使用委员会(IACUC)同意,核准编号IACUC No. MG108177。
2.5. 结肠长度与重量
利用异氟醚(Isoflurane)将小鼠进行麻醉,取出小鼠的肠道,量测结肠长度。以生理食盐水将残留的粪便洗出,吸干水分后,测量结肠重量。
2.6. 疾病活动指数(Disease Activity Index, DAI)分析
根据台湾发炎性肠道协会(TSIBD)所提供的数据显示,溃疡性大肠炎(Ulcerative colitis)的临床指标是Mayo Score,克隆氏症(crohn’s disease )的临床指标是CDAI (Crohn’s disease activity index)。我们根据此资料依照体重降低、粪便状态、肠道出血给予分数,计算出此试验的疾病活动指数。利用体重降低程度、粪便外观状态(腹泻)及肠道出血(粪便潜血)程度等指标依据表2标准进行评分,计算方式如(3),其中,粪便潜血状况以Hemoccult Sensa Test (Beckman Coulter, Brea, CA, USA)检测。
各受试小鼠之疾病活动指数 = 体重降低分数 + 肠道出血分数 + 粪便状态分数 (3)
Table 2. Disease Activity Index Scoring Criteria
表2. 疾病活动指数评分标准
2.7. 血清促进细胞激素检测
收集之血液样本,3500 rpm离心15分钟后,收取血清以ELISA kit进行细胞白介素-1β (IL-1β)、细胞白介素-6 (IL-6)及肿瘤坏死因子(TNF-α)含量检测。
2.8. 结肠组织病理检查
Table 3. Criteria of colonic pathology interpretation
表3. 结肠病理判读评分标准
将采集的结肠以10%中性福尔马林(formalin)缓冲液固定保存。结肠组织经修剪、固定、脱水及蜡浸润之处理,再以组织包埋机制作成组织蜡块,以旋转式切片机切成厚度约为2~4 μm的石蜡薄片,经苏木紫–伊红染色(Hematoxylin-Eosin stain, H&E stain)、封片制成组织病理切片后,以显微镜进行组织病理镜检,并依据结肠病理判读评分标准进行评分(表3)。判读方式依据Zhang等人研究,依照肠道切片图像的严重程度从无到严重给予分数0至4分,评分项目包含发炎状况、发炎面积、隐窝(crypt)受伤程度等 [20]。最后将所有项目的加总评分以平均值计算病理分数(disease score)。
2.9. 统计分析
本实验结果以平均值 ± 平均值标准误差(mean ± SEM)表示。各试验组之数据先依单因子变异数分析(One-way analysis of variance, ANOVA)进行检定,再以Duncan’s test比较各组间是否具差异性。若与DSS组相比,*p < 0.05则表示具有统计上显着差异。
3. 结果
3.1. 菌株特性评估结果
做为肠道保护潜力的菌株须具备良好的耐酸性与耐胆盐性,才能在被食用后通过胃酸抵达到肠道发挥作用。图2(a)为菌株耐酸性的结果,菌株经pH 2.4处理3小时后,菌株皆有70%以上的存活率。其中,超过90%以上的存活菌数比为菌株GK4 (97.6%)、GKR1 (97.2%)、GKA4 (94.9%)、GKP4 (92.8%)、GKK2 (92.3%)、以及GKBA (91.6%)。图2(b)为菌株耐胆盐程度的结果,本次筛选的菌株在处理0.3%的胆盐30分钟后,皆几乎有90%以上的菌株存活率。其中,依耐胆盐程度高至低,较好的菌株分别为GKA4、GKA7、GK4、GKK1、GKP4、GKK2、GKR1、以及GKL9等。
Figure 2. Acid tolerance (a) and bile salt (b) tolerance results
图2. 耐酸性(a)和耐胆盐(b)试验结果
综观上述特性分析实验,菌株GKP4、GKA4、GKR1、以及GK4在耐酸与耐胆盐的表现上皆佳,因此进一步以DSS肠炎动物模式评估这几只菌株对于肠道保护的效果。
3.2. 试验动物体重变化与结肠长度
试验期间,试验动物之活动力、毛色及反应皆无异常,亦无任何脱毛或死亡情形。试验开始时,小鼠平均体重为23.6 ± 0.2 g,各组间并没有差异,试验开始两周后,正常组体重为25.2 ± 0.36 g,DSS组则体重明显下降至20.9 ± 0.40 g。给予菌株的组别,DSS诱发之体重下降程度有趋缓的现象(图3)。其中,以DSS + GKP4和DSS + GKA4组之体重下降减缓程度最为明显,第14天之体重与DSS组成显着差异(p < 0.05)。
Figure 3. Changes in body weight of BALB/c mice during the experiment. Results are presented as mean ± SEM (n = 10), *p < 0.05 was regards as significant difference when compared to the DSS group
图3. 试验期间BALB/c小鼠体重变化。结果以平均值 ± 平均值标准误差(n = 10),与DSS组比较*p < 0.05
Figure 4. The average of colon length and weight. Data was expressed as mean ± SEM (n = 10). *p < 0.05, **p < 0.01, ***p < 0.001 when compared to DSS group
图4. 试验动物平均结肠长度与平均结肠重量。结果以平均值 ± 平均值标准误差(n = 10),与DSS组比较*p < 0.05,**p < 0.01,***p < 0.001
结肠缩短表示损伤严重,此为DSS诱导的肠道疾病病程重要指标。正常组的平均结肠长度为8.9 ± 0.28公分,而DSS组的平均结肠长度为6.4 ± 0.16公分(图4(a))。结果显示给予DSS造成显着的肠道缩短现象(p < 0.001)。而给予益生菌菌株的组别之肠道缩短程度相较于DSS组均有改善的现象,GKP4、GKA4、GK R1、GK4的结肠长度分别为7.7 ± 0.20、7.4 ± 0.29、7.2 ± 0.3、7.1 ± 0.16公分。以菌株GKP4维持结肠长度最佳。然而,结肠重量方面,正常组、菌株组和DSS组之间皆无显着差异(图4(b))。
3.3. 动物疾病活动指数(DAI)评估结果
在体重降低分数方面,投予益生菌组别,其体重减轻程度均显着低于DSS组;而粪便潜血方面,给予DSS的组别均有不同程度的肠道出血,益生菌组别之肠道出血现象与DSS组相比均有显着性改善;粪便状态上,所有处理DSS之组别虽无出现腹泻,但其粪便呈现软便情形,此次测试的益生菌组别并无改善软便情形。
相较于正常组,DSS 的组别均会出现体重降低、肠道出血现象、以及软便情形。DAI评分显示,DSS 的疾病活动分数高达8.8 ± 0.54,给予益生菌组在疾病活动指数相较于DSS组均有显着改善(表4)。其中,以GKP4和GKA4的疾病活动分数相对于其他益生菌组别的改善效果更为显着。而自DAI评分细项可知,GKP4和GKA4能主要改善小鼠体重下降与粪便潜血的状况。
Table 4. The average disease activity index of experimental animals is assigned to each standard score
表4. 试验动物平均疾病活动指数予各项标准分数
Data was expressed as mean ± SEM (n = 10). Significant differences with DSS groupwere **p < 0.01, ***p < 0.001. 结果以平均值 ± 平均值标准误差(n = 10),与DSS组比较**p < 0.01,***p < 0.001。
Figure 5. Pro-inflammatory cytokines from mice serum. Data was expressed as mean ± SEM (n = 10). Results are presented as mean ± SEM (n = 10), compared with the DSS group *p < 0.05, **p < 0.01, ***p < 0.001
图5. 试验动物血清促炎细胞激素含量。结果以平均值 ± 平均值标准误差(n = 10),与DSS组比较*p < 0.05,**p < 0.01,***p < 0.001
3.4. 血清促炎细胞激素分泌
DSS组血清中IL-1β、IL-6及TNF-α含量皆比正常组高,显示给予DSS造成血清中IL-1β、IL-6及 TNF-α浓度增高,引起肠道发炎反应。由图5结果显示,给予益生菌菌株具有降低发炎反应的效果。其中以益生菌GKP4及GKA4效果较佳,与DSS相比,皆可显著降低血清中IL-1β、IL-6及TNF-α含量,达到保护肠道的效果(p < 0.001)。
3.5. 结肠组织病理检查结果
结肠组织病理检验依据表3的发炎与损伤程度表来评分,结果显示给予DSS会造成显着的肠道发炎与损伤(图6)。给予益生菌菌株后,其结肠发炎与损伤的情况相较于DSS组有显着性降低(p < 0.001)。其中以菌株GKP4和GKA4的病理评分较低(图6(a))。说明菌株GKP4和GKA4对于肠道保护效果较佳。
(a)
(b)
Figure 6. (a) The mean pathological score of colon tissue of experimental animals. Results are presented as mean ± SEM (n = 10), ***p < 0.001 compared to the DSS group. (b) Average pathological photographs of colon tissue of experimental animals
图6. (a) 试验动物结肠组织平均病理积分。结果以平均值 ± 平均值标准误差(n = 10),与DSS组比较***p < 0.001。(b) 试验动物结肠组织平均病理照片
4. 讨论
在Yen, H.H.等的调查结果中显示,溃疡性大肠炎和克隆氏症的发病率在西方国家最高 [3]。虽然台湾发炎性肠道疾病的发病率没有西方国家高,但台湾IBD的发病率和患病率有逐年上升的趋势。虽然亚洲国家的IBD还是以UC为主,但台湾以及其他亚洲国家的CD患者的数量增长速度高于UC患者,表示未来对IBD的医疗需求会更大 [21] [22] [23]。造成肠道损伤的原因有很多:环境因素、基因、西化饮食、身体缺乏活动、有慢性疾病和与肠道微生物群等因素有关 [24]。目前对IBD的治疗方式包括应用抗发炎药物来缓解症状。然而,长期使用抗发炎药物会对患者产生不利影响。最近有研究表明,透过饮食疗法来改变胃肠道微生物可以减少IBD症状,但在恢复不受限制的饮食后会再次出现症状 [25]。因此,饮食疗法被认为是有效的辅助治疗方法 [26]。其中一个是抗炎饮食(Anti-inflammatory diet, AID),如:益生菌,可以促进肠道菌相平衡,以缓解IBD的症状和预防复发 [27] [28] [29]。又,目前市面上的益生菌多为西方先进国家自西方人人体或其常见食物所分离而得,其菌在亚洲人的应用上,肠道保护的功能性效果可能没有较西方人佳。因此自亚洲人身上分离益生菌并筛选相关肠道保护功能有其必要性。
本试验以饮用水中加入3.5%葡聚醣硫酸钠(DSS)来诱发肠道发炎,来筛选并评估益生菌是否具有减缓肠道损伤的功效(图1)。一般以DSS诱导肠炎的模式多为一周的时间,本试验设计两周的总实验流程,包含两周的益生菌摄取,以及一周的DSS诱导。此用意在于让益生菌有先于一周进入肠道定植,以及代谢物的分泌保护作用后,再评估益生菌保护的效果。在DSS组的体重变化(图3)、结肠长度与重量(图4)、疾病活动指数DAI (表4)、促炎细胞(图5)、以及病理评估分数(图6)相较于正常组,皆呈现明显的差异,显示本实验之DSS诱导确实对小鼠造成伤害。其中,益生菌Pediococcus pentosaceus GKP4与Pediococcus acidilactici GKA4可有效减缓因肠道发炎所引起之症状。在DSS诱导小鼠肠道发炎的情况下,血清中促炎细胞因子IL-1β、IL-6和TNF-α皆有明显增加。IL-6是一种促炎细胞因子(Proinflammatory cytokine),可诱导NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells)活化,而NF-κB活化被认为是肠道炎症的必要条件。因此IL-6已被证明在IBD发展过程中有着重要作用 [30] [31]。本实验中给予菌株组别的血清促炎细胞因子IL-6含量显着低于DSS组,显示益生菌GKA4与GKP4有效改善肠道发炎的现象。
5. 结论
本研究藉由给予DSS诱发小鼠肠道发炎反应来评估益生菌是否有效减缓肠道发炎与损伤。实验结果发现给予益生菌组别对于DSS引发之体重减轻、结肠缩短情况、疾病活动指数等指标均有明显改善,其中以乳酸片球菌Pediococcus acidilactici GKA4、戊醣片球菌Pediococcus pentosaceus GKP4的改善效果最佳。此外,GKA4、GKP4亦可降低血清中促炎细胞激素IL-1β、IL-6及TNF-α含量,藉此减缓由DSS引发的肠道发炎反应。本实验证实Pediococcus pentosaceus GKP4及Pediococcus acidilactici GKA4具有减缓 DSS引发的肠道发炎之功效,具发展维护肠保健食品之潜能。
文章引用
陈雅君,王启宪,蔡侑珊,林诗伟,吴文歆,陈炎炼,陈劲初. 筛选与评估减缓肠道发炎功效之益生菌
Screening and Evaluation of Probiotics for Reducing Intestinal Inflammation[J]. 食品与营养科学, 2022, 11(01): 44-55. https://doi.org/10.12677/HJFNS.2022.111006
参考文献
- 1. Mizoguchi, E., Low, D., Ezaki, Y. and Okada, T. (2020) Re-cent Updates on the Basic Mechanisms and Pathogenesis of Inflammatory Bowel Diseases in Experimental Animal Models. Intestinal Research, 18, 151-167. https://doi.org/10.5217/ir.2019.09154
- 2. Chassaing, B., Aitken, J. D., Malleshappa, M. and Vijay-Kumar, M. (2014) Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice. Current Protocols in Immunology, 104, 15.25.1-15.25.14. https://doi.org/10.1002/0471142735.im1525s104
- 3. Zhang, Y., Zhao, X., Zhu, Y., Ma, J., Ma, H. and Zhang, H. (2018) Probiotic Mixture Protects Dextran Sulfate Sodium-Induced Colitis by Altering Tight Junction Protein Expres-sions and Increasing Tregs. Mediators of Inflammation, 2018, Article ID: 9416391. https://doi.org/10.1155/2018/9416391
- 4. Yen, H.H., Weng, M.T., Tung, C.C., Wang, Y.T., Chang, Y.T., Chang, C.H., Shieh, M.J., Wong, J.M. and Wei, S.C. (2019) Epidemiological Trend in Inflammatory Bowel Disease in Taiwan from 2001 to 2015: A Nationwide Population-Based Study. Intestinal Research, 17, 54-62. https://doi.org/10.5217/ir.2018.00096
- 5. Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y. and Kaplan, G.G. (2017) Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet, 390, 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
- 6. Ng, W.K., Wong, S.H. and Ng, S.C. (2016) Changing Epi-demiological Trends of Inflammatory Bowel Disease in Asia. Intestinal Research, 14, 111-119. https://doi.org/10.5217/ir.2016.14.2.111
- 7. Wong, M.C., Ding, H., Wang, J., Chan, P.S. and Huang, J. (2019) Prevalence and Risk Factors of Colorectal Cancer in Asia. Intestinal Research, 17, 317-329. https://doi.org/10.5217/ir.2019.00021
- 8. Lewis, J.D. and Abreu, M.T. (2017) Diet as a Trigger or Therapy for Inflammatory Bowel Diseases. The Journal of Gastroenterology, 152, 398-414. https://doi.org/10.1053/j.gastro.2016.10.019
- 9. Lichtenstein, G.R., Loftus, E.V., Isaacs, K.L., Regueiro, M.D., Gerson, L.B. and Sands, B.E. (2018) ACG Clinical Guideline: Management of Crohn’s Disease in Adults. The American Journal of Gastroenterology, 113, 481-517. https://doi.org/10.1038/ajg.2018.27
- 10. Shafiee, N.H., Manaf, Z.A., Mokhtar, N.M. and Raja Ali, R.A. (2021) Anti-Inflammatory Diet and Inflammatory Bowel Disease: What Clinicians and Patients Should Know? Intestinal Re-search, 19, 171-185. https://doi.org/10.5217/ir.2020.00035
- 11. Kruis, W., Fric, P., Pokrotnieks, J., Lukás, M., Fixa, B., Kascák, M., Kamm, M.A., Weismueller, J., Beglinger, C., Stolte, M., Wolff, C. and Schulze, J. (2004) Maintaining Remission of Ul-cerative Colitis with the Probiotic Escherichia coli Nissle 1917 Is as Effective as with Standard Mesalazine. Gut, 53, 1617-1623. https://doi.org/10.1136/gut.2003.037747
- 12. Fujiya, M., Ueno, N. and Kohgo, Y. (2014) Probiotic Treatments for Induction and Maintenance of Remission in Inflammatory Bowel Diseases: A Meta-Analysis of Randomized Controlled Trials. Clinical Journal of Gastroenterology, 7, 1-13. https://doi.org/10.1007/s12328-013-0440-8
- 13. Mitselou, A., Grammeniatis, V., Varouktsi, A., Papadatos, S.S., Katsanos, K. and Galani, V. (2020) Proinflammatory Cytokines in Ir-ritable Bowel Syndrome: A Comparison with Inflammatory Bowel Disease. Intestinal Research, 18, 115-120. https://doi.org/10.5217/ir.2019.00125
- 14. Wang, L., Walia, B., Evans, J., Gewirtz, A.T., Merlin, D. and Sitaraman, S.V. (2003) IL-6 Induces NF-kappa B Activation in the Intestinal Epithelia. The Journal of Immunology, 171, 3194-3201. https://doi.org/10.4049/jimmunol.171.6.3194
- 15. Serban, D.E. (2015) Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy: Is It All About Diet? Nutri-tion in Clinical Practice, 30, 760-779. https://doi.org/10.1177/0884533615606898
- 16. Ramos, G.P. and Papadakis, K.A. (2019) Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clinic Proceedings, 94, 155-165. https://doi.org/10.1016/j.mayocp.2018.09.013
- 17. Yen, H.H., Weng, M.T., Tung, C.C., Wang, Y.T., Chang, Y.T., Chang, C.H., Shieh, M.J., Wong, J.M. and Wei, S.C. (2019) Epidemiological Trend in Inflammatory Bowel Disease in Taiwan from 2001 to 2015: A Nationwide Population-Based Study. Intestinal Research, 17, 54-62. https://doi.org/10.5217/ir.2018.00096
- 18. Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. https://doi.org/10.1038/nrgastro.2015.150
- 19. Kostic, A.D., Xavier, R.J. and Gevers, D. (2014) The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. The Journal of Gastroenterology, 146, 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009
- 20. Aldars-García, L., Marin, A.C., Chaparro, M. and Gisbert, J.P. (2021) The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. In-ternational Journal of Molecular Sciences, 22, 3076. https://doi.org/10.3390/ijms22063076
- 21. Sheil, B., Shanahan, F. and O’Mahony, L. (2007) Probiotic Effects on Inflammatory Bowel Disease. The Journal of Nutrition, 137, 819S-824S. https://doi.org/10.1093/jn/137.3.819S
- 22. Dunne, C., Murphy, L., Flynn, S., O’Mahony, L., O’Halloran, S., Feeney, M., Morrissey, D., Thornton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E.M., O’Sullivan, G.C., Shanahan, F. and Collins, J.K. (1999) Probiotics: From Myth to Reality. Demonstration of Functionality in Animal Models of Dis-ease and in Human Clinical Trials. Antonie Van Leeuwenhoek, 76, 279-292. https://doi.org/10.1023/A:1002065931997
- 23. Borchers, A.T., Selmi, C., Meyers, FJ, Keen, C.L. and Gershwin, M.E. (2009) Probiotics and Immunity. Journal of Gastroenterology, 44, 26-46. https://doi.org/10.1007/s00535-008-2296-0
- 24. Gao, J., Li, Y., Wan, Y., Hu, T., Liu, L., Yang, S., Gong, Z., Zeng, Q., Wei, Y., Yang, W., Zeng, Z., He, X., Huang, S.H. and Cao, H. (2019) A Novel Postbiotic from Lactobacillus rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Frontier in Microbiology, 10, Article No. 477. https://doi.org/10.3389/fmicb.2019.00477
- 25. Qiao, Y., Qiu, Z., Tian, F., Yu, L., Zhao, J., Zhang, H., Zhai, Q. and Chen, W. (2021) Pediococcus acidilactici Strains Improve Constipation Symptoms and Regulate Intestinal Flora in Mice. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 655258. https://doi.org/10.3389/fcimb.2021.655258
- 26. Umu, Ö.C., Bäuerl, C., Oostindjer, M., Pope, P.B., Hernández, P.E., Pérez-Martínez, G. and Diep, D.B. (2016) Thepotential of Class II Bacteriocins to Modify Gut Microbiota to Im-prove Host Health. PLoS ONE, 11, e0164036. https://doi.org/10.1371/journal.pone.0164036
- 27. Zommiti, M., Bouffartigues, E., Maillot, O., Barreau, M., Szunerits, S., Sebei, K., Feuilloley, M., Connil, N. and Ferchichi, M. (2018) In Vitro Assessment of the Probiotic Prop-erties and Bacteriocinogenic Potential of Pediococcus pentosaceus MZF16 Isolated from Artisanal Tunisianmeat “Dried Ossban”. Frontiers in Microbiology, 9, Article No. 2607. https://doi.org/10.3389/fmicb.2018.02607
- 28. Perše, M. and Cerar, A. (2012) Dextran Sodium Sulphate Colitis Mouse Model: Traps and Tricks. Journal of Biomedicine and Biotechnology, 2012, Article ID: 718617. https://doi.org/10.1155/2012/718617
- 29. Eichele, D.D. and Kharbanda, K.K. (2017) Dextran Sodium Sulfate Coli-tis Murine Model: An Indispensable Tool for Advancing Our Understanding of Inflammatory Bowel Diseases Patho-genesis. World Journal of Gastroenterology, 23, 6016-6029. https://doi.org/10.3748/wjg.v23.i33.6016
- 30. Wirtz, S., Neufert, C., Weigmann, B. and Neurath, M.F. (2007) Chemically Induced Mouse Models of Intestinal Inflammation. Nature Protocols, 2, 541-546. https://doi.org/10.1038/nprot.2007.41
- 31. Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y. and Nakaya, R. (1990) A Novel Method in the Induction of Reliable Experimental Acute and Chronic Ulcerative Colitis in Mice. Gastroenterology, 98, 694-702. https://doi.org/10.1016/0016-5085(90)90290-H
NOTES
*通讯作者。