Advances in Geosciences
Vol. 11  No. 01 ( 2021 ), Article ID: 40089 , 34 pages
10.12677/AG.2021.111006

闪锌矿中稀散元素镓和铟的富集规律研究

张学义1,孙文燕2*

1中国冶金地质总局,北京

2中国地质科学院,北京

收稿日期:2020年12月21日;录用日期:2021年1月21日;发布日期:2021年1月28日

摘要

闪锌矿是镓(Ga)和铟(In)最重要的载体矿物,它在各种类型的矿床中普遍存在。Ga和In已被美国、欧盟、英国、中国等列入关键矿产名录,其在战略新兴产业发展中有非常重要的作用,是平板显示屏、电子半导体和光伏电池等产业必不可少的原料。在本研究中,运用ICPMS技术对澳大利亚和其他国家各类矿床闪锌矿样品中微量元素的含量进行了分析。所得出的结果与相关文献中收集的数据结合在一起,分析Ga和In在不同类型矿床中的分布情况(矿床类型包括矿床工业类型与矿床成因类型)。研究发现,Ga主要分布在热液矿床、层控矿床及银(Ag)矿床中;而In通常在热液矿床、喷流–沉积矿床(SEDEX)和锡(Sn)矿床中含量较高。同时也探讨了Ga和In之间的关系,Ga/In的比率可以用于区别矿床成因类型,即在层控矿床和密西西比河谷型(MVT)矿床中Ga/In > 1;在网状脉矿床中Ga/In ≈ 1;在热液、矽卡岩、火山成因块状硫化物(VMS)和SEDEX矿床中Ga/In < 1。Ga和In的富集均与Cu相关,且Ga的富集与Ag相关,因此分别为下列置换提供了证据:(Ag, Cu)+ + Ga3+↔2Zn2+和Cu+ + In3+↔2Zn2+。Ga与Co含量的负相关性表明富含Co的闪锌矿相对贫Ga,但是对于这一现象还没有明确的解释。

关键词

闪锌矿,镓,铟,矿床类型,关键矿产

Trace and Minor Elements in Sphalerite: A Study of Gallium and Indium

Xueyi Zhang1, Wenyan Sun2*

1China Metallurgical Geology Bureau, Beijing

2Chinese Academy of Geological Sciences, Beijing

Received: Dec. 21st, 2020; accepted: Jan. 21st, 2021; published: Jan. 28th, 2021

ABSTRACT

Sphalerite is the most important host mineral of gallium (Ga) and indium (In) as it is commonly observed in a wide range of deposit types. Ga and In have been listed as critical minerals by the United States, the European Union, the United Kingdom, China and other countries. Ga and In play a very important role in the development of strategic emerging industries, and are essential raw materials for industries, such as flat screens, electronic semiconductors and photovoltaic cells. In this study, ICPMS techniques have been used to investigate the distribution of minor and trace elements in sphalerite samples from both Australian and international deposits. These new results have been combined with data available in the literature, to examine the distributions of Ga and In in different types of deposits (both industrial types and genetic types). Gallium is found to be concentrated in hydrothermal, stratabound and Ag deposits, while indium is usually highest in sphalerite from hydrothermal, SEDEX and Sn deposits. The relationship between Ga and In is also explored, and the ratio of Ga/In can broadly discriminate between the genetic types. That is, in stratabound and MVT deposits Ga/In > 1; in stockwork deposits Ga/In ≈ 1; in hydrothermal, skarn, VMS and SEDEX deposits Ga/In < 1. Both gallium and indium concentrations correlate with Cu, and gallium concentration correlates with Ag, providing supporting evidence for the coupled (Ag, Cu)+ + Ga3+↔2Zn2+ and Cu+ + In3+↔2Zn2+ substitutions respectively. The negative correlation between Ga and Co indicates that Co-rich sphalerite has relatively low Ga concentration, but an explanation for this remains unclear.

Keywords:Sphalerite, Gallium, Indium, Deposit Type, Critical Minerals

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

闪锌矿是世界上非常重要的锌矿石矿物,且在所有富硫化物的碱金属矿床中都有出现 [1]。闪锌矿的晶体结构可以容纳多种微量元素,因而非常适合微量元素研究 [2]。在许多锌矿床中,闪锌矿不仅是Zn的主要来源,还是Cd,Ga,Ge和In等元素的主要载体 [3] - [8]。Gatterer (1941)对闪锌矿的形成温度与微量元素含量之间的关系进行了研究,显示Co和In富集在超高温热液矿床中,而Ga和Ge (Hg、Sn)则富集于低温矿床中,在低温组合中,富Ga闪锌矿的形成温度高于富Ge闪锌矿的形成温度 [9]。Cook等(2009)研究了不同类型矿床中元素的特征,并指出闪锌矿中微量元素的组成或许可以用来指示矿床成因,但是研究中并没有给出分析矿床成因的具体方法 [10]。

前文已提及闪锌矿是稀散元素Ga和In的主要载体,而Ga和In已被美国、欧盟、英国、中国等列入关键矿产名录,中国则是Ga和In的最大生产国 [11]。赵汀等(2017)对镓矿资源的需求趋势进行了分析,预测出全球2020年镓金属需求约410~430吨 [12]。毛景文等(2019b)针对关键金属矿床的成矿作用与成矿环境,同时考虑共伴生特点,将主要的关键矿床分为8种成因类型,其中Ga、In属于多种类型热液矿床中的伴生组分 [13]。陈伟波等(2019)对铟矿资源的供需现状进行了分析,认为未来我国将可能成为铟纯进口国 [14]。郭妍冉等(2019)对镓矿资源分布、生产现状及消费特点进行了分析研究 [15]。徐净和李晓峰(2018)、李晓峰等(2019)对铟的主要矿床类型进行了总结,并预测未来SEDEX和VMS矿床有可能成为铟资源的主要来源,而火山岩中铟的异常富集也应引起重视 [16] [17]。Ga和In在战略新兴产业发展中有非常重要的作用,是平板显示屏、电子半导体和光伏电池等产业必不可少的原料。鉴于Ga和In的重要程度,以及其与闪锌矿的密切关系,研究闪锌矿中Ga和In的富集规律对于寻找Ga和In具有十分重要的意义。

本文采用ICPMS溶液分析法获得38件闪锌矿样品中微量元素的含量。所得结果与在文献中收集的数据相结合,通过分析Ga和In在不同类型矿床中的含量变化,以及Ga和In之间,Ga或In与其他微量元素(如Cu、Sn、Ag、Co、Zn等)之间的相关性,来推测哪些类型矿床中的闪锌矿富含Ga或In。

2. 样品概况

本文分析的样品主要来自澳大利亚,少量来自世界其他地方的矿床,由维多利亚博物馆提供。样品来自不同类型的矿床,详细信息见表1表1中的所有标本均在澳大利亚墨尔本大学地球科学学院分析测试,样品1~18全部来自澳大利亚的矿床,第一批进行的测试分析;其他20件样品来自澳大利亚及世界其他地方的矿床,第二批进行的测试分析。从文献中收集的样品数据见附表1

本次研究的样品所属矿床的成因依据其成矿背景进行分类,包括网脉状(Stockwork)、矽卡岩型(Skarn)、层控型(Stratabound)、海相火山成因块状硫化物(VMS)、喷流–沉积型(SEDEX)和密西西比河谷型(MVT)矿床,其中仅一件样品来自造山型(Orogenic)矿床。若无法获得足够的信息,则以矿石形成过程分类,如热液(Hydrothermal)矿床。花岗–伟晶岩型(Granite-pegmatite hosted,表1,样品17~22)和砂岩型(Sandstone-hosted,附表1,样品100~103)矿床样品的分类由博物馆馆长及相关文献提供。具体成因类型不明确时,如无法判断是层控型、矽卡岩型或MVT型,将使用后生成因分类(Epigenetic,表1,样品6~8)。样品的矿床工业类型基本清楚,但在分析过程中,Zn-Pb-Ag和Pb-Zn-Ag,Zn-Pb-Cu 和Cu-Zn-Pb,Pb-Zn/Zn-Pb和Zn,Ag和Ag-Au,Cu和Cu-Au因其相似性归为一类。

Table 1. Detailed information of samples analyzed in this study

表1. 本文所分析样品详细信息

3. 分析方法

为得到各种成矿环境中闪锌矿微量元素的含量,采用ICPMS溶液分析法分析了38件样品。在稀释之前,这些样品经过碎样,精心挑选和研磨,准备进行分析,ICPMS溶液分析法实验流程如下:

将所有的聚四氟乙烯实验器皿按顺序进行清洗。将约5 mg闪锌矿粉末溶于2 ml 16 N HNO3中,将装有闪锌矿粉末溶液的PFA烧杯放在130℃的热板上一整晚。然后再将样品放在用酸清洗过的12 ml聚碳酸酯离心管中,用18.2摩尔水稀释。所得溶液用包含一种内部标准混合物的1.3% HNO3进一步稀释,总稀释系数约为60,000。分析和漂移校正的过程如Eggins et al. (1997)所述 [76]。该方法使用天然岩石标准进行校正,内部漂移使用内部标准(Li6, Ni61, Sr84, Rh, Sm147, Re, and U235)、外部漂移监测和积极的冲刷多方面结合进行校正。与Eggins et al. (1997)的方法的不同之处是:1) Tm,In和Bi没有使用内部标准。2) USGS标准W-2被用作校正标准。W-2的首选浓度主要是通过对合成标准的分析和同位素稀释分析的文献调查得出的。3) W-2的溶解加入了额外的Zn、Ag、Cd、In和Pb,以便使这些元素的浓度与预期的闪锌矿类似。

本文样品在墨尔本大学地球科学学院Agilent 7700x ICPMS仪器上进行分析,其中氧化铈低于0.9%。每一同位素重复4次实验,每次100次扫描。停顿时间是10毫秒。

样品的冲洗时间长达6分钟,使用的溶液为5% HNO3与0.5% Triton X-100和 0.025% HF。样品吸收时间长达100秒,使用5% HNO3和2% HNO3溶液。每测试6到8个样品即对漂移监测器进行一次分析。

4. 实验结果

38件闪锌矿样品的主微量元素含量分析结果见表2。其余文献中收集的样品结果见表3 (数据来自CODES [10],采用原位LA-ICPMS分析法)及表4 (数据来自文献(附表1),主要采用电子探针或原位LA-ICPMS分析法,其中样品“Sample 1B,2B,3B,4B,5B”使用的是SN-ICP-SFMS分析法)。本次在墨尔本大学测试的样品以及上述表4中的5件样品得到的是闪锌矿粉末元素的含量,而其余通过电子探针或原位LA-ICPMS测试得到的结果可能会受到样品内部化学分区的影响。原位分析方法可能对某些元素的分析不完整,如Pb、Bi,这些元素可能存在矿物包裹体中。但是,对于大部分元素来说(如In,Mn,Cd,Ge,Ga,Co等),在测试点的范围内会均匀的分布,因此这两种方法都应该是可靠的 [10]。

分析结果显示单个元素的含量可能超过几个数量级。元素的分布情况将在下文进行分析,首先根据矿床成因类型及矿床工业类型进行分析,然后通过元素组合进行分析。在分析结果的过程中,Pb-Zn、Zn和Zn-Pb矿床统称为Pb-Zn矿床;Pb-Zn-Cu、Zn-Pb-Cu矿床统称为Pb-Zn-Cu矿床;Pb-Zn-Ag、Zn-Pb-Ag矿床统称为Pb-Zn-Ag矿床;Au、Au-Ag矿床统称为Au矿床;Cu、Cu-Au、Cu-Zn-Pb矿床统称为Cu矿床;Ag、Ag-Au、Ag-Pb矿床统称为Ag矿床。

4.1. 热液矿床(Hydrothermal Deposits)

表2中有四件闪锌矿样品(M35909A, M35909B, M45431, M45751)来自热液矿床,测试结果显示其In含量远高于Ga,尤其是M45431富含In (66.61 ppm),同时也富含As (1328.94 ppm)、Cu (1527.13 ppm)、Ag (18.83 ppm)、Pb (387.32 ppm)。由于M45431来自锡矿床,其Sn含量也非常高(1133.5 ppm)。其余三个样品来自Pb-Zn-Ag矿床,但是Pb、Ag、Cu含量远低于Wheal Jane锡矿床。

表3中的热液矿床可分为Au矿床和Zn-Pb-Cu矿床,前者Ga含量高于In,后者正好相反。但是Zn-Pb-Cu矿床中Ga、In,以及Cu、Ag、Sn的含量相对高于Au矿床。来自Au矿床的两件闪锌矿样品(Mag-8和Sac 7.3)基本不含In。相反,它们富含Ga和Ge,而Mag-8富含As。

表4中,热液矿床中In含量高。而Ag矿床中Cu含量相对于Pb-Zn或Pb-Zn-Cu矿床非常高。

4.2. 矽卡岩型矿床(Skarn Deposits)

表2中矽卡岩型矿床结果显示In含量高于Ga。尤其是M9317 (来自锡矿床,Sn含量为7464.12 ppm) In含量很高(1378.19 ppm),同时Cu (8781.88 ppm),Ag (141.91 ppm),Pb (59082.82 ppm),Sb (20139.48 ppm)含量也较高,As (3.82 ppm)含量中等。在所有的结果中,In都显示与Cu具体很强的相关性。

表3中来自Majdanpek Zn-Pb矿床的闪锌矿样品富Fe,同时In含量很高,而Ag、Pb、Bi含量较低。来自Ocna de Fier的闪锌矿Fe含量较低,而Cu、Pb、Bi含量范围变化较大。Co含量值在Fe含量高时(6.04%)其含量低(25 ppm),而Fe含量低时(0.6%)其含量则高(2299 ppm)。样品OdF 3375中Co含量为2300 ppm,是所知闪锌矿中Co含量最高的数值。采自Baita Bihor的四件样品Ga含量非常低(全部低于4 ppm)。采自铜矿化的样品BB19CB中In (812 ppm)和Cu (2893 ppm)含量很高,Se、Ag含量异常。

表4采自Zn-Pb矿床的HTP与LZY系列样品In含量很低(均低于0.13 ppm),而Ga(0.12-0.87 ppm)、Co (78.3~449 ppm)含量相对较高。相反,其他样品In含量很高,而Cu含量相对稳定。在所有HTP与LZY系列样品中,Ga含量与Co负相关。

4.3. 网脉状矿床(Stockwork Deposits)

表2中采自Ni矿床的闪锌矿样品(M37225) Co含量很高(935.13 ppm),也是表2中最高的,相对于此类型矿床的其他样品来说,其Ni (8.74 ppm)、Ga (17.63 ppm)、In (36.63 ppm)含量也相对较高。此项研究中唯一的U-Th-REE矿床,其闪锌矿样品Ga和In含量非常低,而Nb和Ti含量高。样品M39582A的Nb含量(18.79 ppm)和样品M39582B的Ti含量(40.15 ppm)在表2中是最高的。Ravenswood网脉状Au矿床(M9306)富含Cu (1367.28 ppm),As (576.18ppm),Ag (301.69 ppm),Sn (117.46 ppm),Sb (62.16 ppm)和Pb (47449.05 ppm),这也是本文网脉状矿床中这6种元素含量最高的值。样品M41383 (Ag-Au矿床)富集Ag (16.22 ppm)及Cd (3307.29 ppm,是网脉状矿床中Cd含量最高值)。

4.4. 层控型矿床(Stratabound Deposits)

除去M50250采自Ag-Pb矿床外,表2中此类型矿床的其他样品均采自Pb-Zn或Pb-Zn-Ag矿床。M50250贫Cu、Ga、In,富Ag、Pb。其余5件样品Ga、In含量高于M50250。样品M9323采自Wheal Ellen Zn-Pb-Ag矿床,其Ga含量(496.58 ppm)是六件样品中最高的。

表3中采自Tres Marias的闪锌矿样品分为富Ge-Fe和贫Ge-Fe两类。富Ge的部分同时富As和Tl;而贫Ge的样品贫As和Tl,但是Sb含量高。

大部分层控型矿床样品中普遍Ga、In含量高。

4.5. 海相火山成因块状硫化物矿床(VMS Deposits)

表2中,采自澳大利亚南部Talisker Ag-Pb矿的样品M9321,其Ag (353.48 ppm)和Pb (119,154.65 ppm)含量非常高,同时In (82.49 ppm)和Sb (133.13 ppm)含量也相对较高,而Cu含量低于其余两件样品(为Zn-Pb-Cu矿床)。

表3中样品Vorta DMV富集Mo (58 ppm)及Ga (96 ppm)。样品Eskay Creek P5中元素Ga、Pb、Sb、Ag、Cu、As、Tl值都非常高。

4.6. 斑岩型、喷流沉积型矿床(SEDEX Deposits)

表4中,采自BNC锡矿床的样品(BNC-3和BNC-10),其Sn含量非常高(分别为11,229 ppm和660 ppm)。在SECEX矿床中,样品In含量一般都比Ga高一个数量级。

4.7. 密西西比河谷型矿床(MVT Deposits)

本文采自MVT矿床的样品均为Pb-Zn或Pb-Zn-Ag矿床。其Ga含量均比In含量高一至两个数量级。

表4收集的数据中所有的样品均为Pb-Zn矿床,其Ga、Ag、Cu和Pb的含量变化范围很大。几乎所有样品都是贫Fe闪锌矿,其Fe含量低于3.6% (样品47975除外,为9.51%)。

4.8. 单一元素的分布情况

不同类型矿床中元素的变化可在以下直方图中显示出来。

图1为Ga含量直方图。所有样品的Ga含量平均值为59.81 ppm (n = 123)。单一样品的浓度主要集中在1~100 ppm (80/123,图1(A))。Ga富集在热液矿床中(其中有8件样品含量集中在100~1000 ppm,图1(B1))。矽卡岩型与网脉状矿床Ga含量较低(大部分低于10 ppm,图1(B2),图1(B3))。图1(C1)~(C7)主要显示Ga在不同工业类型矿床的分布情况。Pb-Zn-Cu和Ag矿床富Ga (大部分超过了100 ppm,图1(C2),图1(C7)),而Cu矿床中Ga含量最低(最低为0.054 ppm,图1(C5))。

In含量平均值非常高(1585.18 ppm, n = 121)。一半以上样品In含量在10到1000 ppm之间(图2(A))。热液矿床、矽卡岩型矿床、VMS和SEDEX型矿床In含量高(图2(B1)、图2(B2)、图2(B5)、图2(B6)),其中热液矿床具有In最高含量值58,752 ppm (图2(B1))。以矿床工业类型进行分析,Sn矿床含In量最高(图2(C6)),其次是Pb-Zn-Cu矿床(图2(C2))。

Figure 1. Histograms showing the distribution of Ga in sphalerite; (A: in all the samples, B1~B7: in different genetic types, C1~C7: in different industrial types, X-coordinate: concentrations in ppm, Y-coordinate: frequency)

图1. 闪锌矿中Ga含量直方图。(A:所有样品,B1~B7:不同矿床成因类型,C1~C7:不同矿床工业类型,X轴:含量/ppm,Y轴:频率)

Figure 2. Histograms showing the distribution of In in sphalerite. (A: in all the samples, B1~B7: in different genetic types, C1~C7: in different industrial types, X-coordinate: concentrations in ppm, Y-coordinate: frequency)

图2. 闪锌矿中In含量直方图。(A:所有样品,B1~B7:不同矿床成因类型,C1~C7:不同矿床工业类型,X轴:含量/ppm,Y轴:频率)

Ga富集在Ag矿床中,因此作者对不同类型矿床中Ag的分布进行了讨论。Ag含量集中于0.1~10 ppm (48%,n = 135,图3(A))。且Ag含量分布与Ga类似。Ag在热液矿床中的含量分布最广泛(图3(B1))。而在其他几种类型的矿床中含量基本都不超过100 ppm (图3(B2)~(B7))。Pb-Zn-Cu矿床中的Ag含量(12,054 ppm)最高(图3(C2)),且高于Pb-Zn-Ag和Ag矿床(图3(C3)、图3(C7))。

Sn矿床中In含量最高,因此,对Sn含量分布进行了分析。结果显示,在大部分样品中,Sn含量普遍较低(81% < 100 ppm, n = 102),尤其是矽卡岩型矿床(图4(A)、图4(B2))。Sn在Pb-Zn-Cu、Sn和Ag矿床中的含量比较高(含量最高大于1000 ppm,图4(C2)、图4(C6)、图4(C7))。

Figure 3. Histograms showing the distribution of Ag in sphalerite. (A: in all the samples, B1~B7: in different genetic types, C1~C7: in different industrial types, X-coordinate: concentrations in ppm, Y-coordinate: frequency)

图3. 闪锌矿中Ag含量直方图。(A:所有样品,B1~B7:不同矿床成因类型,C1~C7:不同矿床工业类型,X轴:含量/ppm,Y轴:频率)

Figure 4. Histograms showing the distribution of Sn in sphalerite. (A: in all the samples, B1~B7: in different genetic types, C1~C7: in different industrial types, X-coordinate: concentrations in ppm, Y-coordinate: frequency)

图4. 闪锌矿中Sn含量直方图。(A:所有样品,B1~B7:不同矿床成因类型,C1~C7:不同矿床工业类型,X轴:含量/ppm,Y轴:频率)

5. 讨论

5.1. 不同成因类型矿床闪锌矿中Ga和In的分布情况

作者计算了不同成因类型矿床闪锌矿中Ga和In含量的平均值,如图5。Ga在热液矿床闪锌矿中的含量最高,其次是层控型矿床。而In同样在热液矿床闪锌矿中含量最高,其次是SECEX型和矽卡岩型矿床。由于热液矿床是一种相对广泛的成因类型,因此这类矿床中闪锌矿Ga和In含量均很高。

Figure 5. Histograms showing the mean concentrations (in ppm) of Ga and In in sphalerite of different genetic types (with the number of samples in the parenthesis)

图5. 不同成因类型矿床闪锌矿中Ga和In的分布直方图(ppm,括号中为样品数)

5.2. 不同工业类型矿床闪锌矿中Ga和In的分布情况

Figure 6. Histograms showing the mean concentrations (in ppm) of Ga and In in sphalerite of different industrial types (with the number of samples in the parenthesis)

图6. 不同工业类型矿床闪锌矿中Ga和In的分布直方图(ppm,括号中为样品数)

作者计算了不同类型矿产闪锌矿中Ga和In含量的平均值,如图6。Ga在Ag矿床闪锌矿中的含量明显最高,其次是Pb-Zn-Cu矿床。而In在Sn矿床闪锌矿中含量最高,其次是Pb-Zn-Cu矿床。Pb-Zn-Cu、Au、Sn和Ag四类矿产普遍含Ga和In高。

5.3. 元素相关性与置换

Figure 7. Correlation plots of Ga vs. In in sphalerite from different genetic types. Dashed lines represent 1:1 correlations between concentrations (ppm)

图7. 不同成因类型矿床闪锌矿中In-Ga关系图(虚线Ga/In = 1:1)

不同成因类型矿床中Ga/In分布情况如图7。有些矿床类型Ga/In趋势明显。在SEDEX矿床中Ga/In < 1 (图7(F)),热液型、矽卡岩型、VMS矿床中大部分样品的Ga/In < 1 (图7(A),图7(B),图7(E))。而在MVT与层控型矿床中Ga/In > 1 (图7(G),图7(D))。

Figure 8. Correlation plots of Ga vs. In in sphalerite from different industrial types. Dashed lines represent 1:1 correlations between concentrations (ppm)

图8. 不同工业类型矿床闪锌矿中In-Ga关系图(虚线Ga/In = 1:1)

图8显示的是在不同工业类型矿床闪锌矿中Ga/In的分布情况。在不同工业类型矿床中Ga/In的趋势不是非常明显,大部分样品点比较分散。但是Pb-Zn-Cu、Cu和Sn矿产闪锌矿大多数样品Ga/In < 1,表明三类矿产中In含量大于Ga。

Figure 9. Correlation plots of (A) Ga vs. Cu, and (B) In vs. Cu in sphalerite from the total dataset. Dashed lines represent 1:1 correlations between concentrations (ppm)

图9. 闪锌矿样品中Cu-Ga(A)与Cu-In(B)关系图(虚线Ga/In = 1:1)

Ga和In都与Cu有显著的正相关关系(图9),缘于(Ag, Cu)+ + Ga3+↔2Zn2+ [10] 和Cu+ + In3+↔2Zn2+ [3] [10] 的置换机制。In/Cu相关性远低于1,可能是由于某些样品中黄铁矿的存在造成的 [77]。Cu+ + In3+↔2Zn2+对In的富集非常重要,可形成不同颜色的条带状硫铟铜矿(CuInS2),可以很容易通过显微镜在闪锌矿晶体中发现 [3]。

Figure 10. Correlation plots of (A) Ga vs. Ag, and (B) In vs. Sn in sphalerite from the total dataset. Dashed lines represent 1:1 correlations between concentrations (ppm)

图10. 闪锌矿样品中Ag-Ga(A)与Sn-In(B)关系图(虚线Ga/In = 1:1)

Ag矿床中富Ga,且Sn矿床中富In,Ga和Ag、In和Sn的相关性如图10所示。Ga与Ag呈现正相关,证明(Ag, Cu)+ + Ga3+↔2Zn2+置换的存在 [10]。而In与Sn的正相关关系则是闪锌矿–黄锡矿固溶体存在的证据 [10]。

Ga与Co呈现明显的负相关性(图11(A))。可见富Co的闪锌矿其Ga含量低,但是还未找到相关的置换机制。而In与Zn的负相关性(图11(B))也是由于Cu+ + In3+↔2Zn2+置换机制的存在。

Figure 11. Correlation plots of (A) Ga vs. Co, and (B) In vs. Zn in sphalerite from the total dataset. Dashed lines represent (A)-1:1, (B1)-200:1, (B2)-1:2 correlations between concentrations (ppm)

图11. 闪锌矿样品中Co-Ga (A)与Zn-In (B)关系图。(虚线表示(A)-1:1,(B1)-100:1,(B2)-1:2的相关性)

6. 结论

1) 热液矿床中富集Ga和In。Ga还富集在层控型矿床中,而SEDEX和矽卡岩型矿床In含量较高。

2) Ag矿床富集Ga,而Sn矿床中In含量较高。Ga与Ag、In与Sn的正相关性分别证明了置换机制(Ag, Cu)+ + Ga3+↔2Zn2+与闪锌矿–黄锡矿固溶体的存在。

3) Ga/In比率可以用来判断矿床成因类型:Ga/In > 1为层控型及MVT矿床;Ga/In ≈ 1为网脉状矿床;Ga/In < 1为热液、矽卡岩型、VMS和SEDEX矿床。

4) Ga、In与Cu的正相关性,缘于(Ag, Cu)+ + Ga3+↔2Zn2+和2Zn2+↔Cu+ + In3+置换机制的存在。

文章引用

张学义,孙文燕. 闪锌矿中稀散元素镓和铟的富集规律研究
Trace and Minor Elements in Sphalerite: A Study of Gallium and Indium[J]. 地球科学前沿, 2021, 11(01): 60-93. https://doi.org/10.12677/AG.2021.111006

参考文献

  1. 1. Mindat.org. Localities: Kosovo. http://www.mindat.org/loc-3052.html, 2020-10-23.

  2. 2. Palinkas, S.S., Palinkas, L.A. and Molnar, F. (2006) Trace-Elements Content of Sphalerite and Associated Minerals in Stari Trg Pb-Zn Deposit, Trepa, Kosovo. Geochimica et Cosmochimica Acta, 70, A468. https://doi.org/10.1016/j.gca.2006.06.1399

  3. 3. Bermanec, V., Avniar, S. and Zebec, V. (1995) Childrenite and Crandallite from the Stari Trg Mine (Trepča), Kosovo: New Data. Mineralogy & Petrology, 52, 197-208. https://doi.org/10.1007/BF01163245

  4. 4. Mindat.org. Localities: Greenland. http://www.mindat.org/loc-30754.html, 2020-10-23.

  5. 5. Sorensen, H., Bailey, J.C. and Rose-Hansen, J. (2011) The Emplacement and Crystallization of the U-Th-REE-Rich Agpaitic and Hyperagpaitic Lujavrites at Kvanefjeld, Llímaussaq Alkaline Complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 69-92. https://doi.org/10.37570/bgsd-2011-59-08

  6. 6. Omori, S. and Mariko, T. (1999) Physicochemical Environment during the Formation of the Mozumi Skarn-Type Pb-Zn-Ag Deposit at the Kamioka Mine, Central Japan: A Thermochemical Study. Resource Geology, 49, 223-232. https://doi.org/10.1111/j.1751-3928.1999.tb00048.x

  7. 7. Mindat.org. Localities: UK. http://www.mindat.org/loc-221672.html, 2020-10-23.

  8. 8. Somerfield, P.J., Gee, J.M. and Warwick, R.M. (1994) Benthic Community Structure in Relation to an Instantaneous Discharge of Waste Water from a Tin Mine. Marine Pollution Bulletin, 28, 363-369. https://doi.org/10.1016/0025-326X(94)90273-9

  9. 9. Hunt, L.E. and Howard, A.G. (1994) Arsenic Speciation and Distribution in the Carnon Estuary Following the Acute Discharge of Contaminated Water from a Disused Mine. Marine Pollution Bulletin, 28, 33-38. https://doi.org/10.1016/0025-326X(94)90183-X

  10. 10. Mindat.org. Localities: Canada. http://www.mindat.org/loc-514.html, 2020-10-23.

  11. 11. Sherlock, R.L., Lee, J.K.W. and Cousens, B.L. (2004) Geologic and Geochronologic Constraints on the Timing of Mineralization at the Nanisivik Zinc-Lead Mississippi Valley-Type Deposit, Northern Baffin Island, Nunavut, Canada. Economic Geology, 99, 279-293. https://doi.org/10.2113/gsecongeo.99.2.279

  12. 12. McNaughton, K. and Smith, T.E. (1986) A Fluid Inclusion Study of Sphalerite and Dolomite from the Nanisivik Lead-Zinc Deposit, Baffin Island, Northwest Territories, Canada. Economic Geology, 81, 713-720. https://doi.org/10.2113/gsecongeo.81.3.713

  13. 13. Arne, D.C. and Kissin, S.A. (1989) The Significance of “Diagenetic Crystallization Rhythmites” at the Nanisivik Pb-Zn-Ag Deposit, Baffin Island, Canada. Mineralium Deposita, 24, 230-232. https://doi.org/10.1007/BF00206447

  14. 14. Ghazban, F., Schwarcz, H.P. and Ford, D.C. (1990) Carbon and Sulfur Isotope Evidence for in Situ Reduction of Sulfate, Nanisivik Lead-Zinc Deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85, 360-375. https://doi.org/10.2113/gsecongeo.85.2.360

  15. 15. Arne, D.C., Curtis, L.W. and Kissin, S.A. (1991) Internal Zonation in a Carbonate-Hosted Zn-Pb-Ag Deposit. Nanisivik, Barfin Island, Canada. Economic Geology, 86, 699-717. https://doi.org/10.2113/gsecongeo.86.4.699

  16. 16. Mindat.org. Localities: Ireland. http://www.mindat.org/loc-4495.html, 2020-10-23.

  17. 17. Schneider, J., Quadt, A.V., Wilkinson, J.J. and Boyce, A.J. (2007) Age of the Silvermines Irish-Type Zn-Pb Deposit from Direct Rb-Sr Dating of Sphalerite. Proceedings of the 9th Biennial SGA Meeting, Dublin, 20-23 August 2007, 373-376.

  18. 18. Reed, C.P. and Wallace, M.W. (2004) Zn-Pb Mineralisation in the Silvermines District, Ireland: A Product of Burial Diagenesis. Mineralium Deposita, 39, 87-102. https://doi.org/10.1007/s00126-003-0384-x

  19. 19. Axelsson, M.D. and Rodushkin, I. (2001) Determination of Major and Trace Elements in Sphalerite Using Laser Ablation Double Focusing Sector Field ICPMS. Journal of Geochemical Exploration, 72, 81-89. https://doi.org/10.1016/S0375-6742(00)00166-7

  20. 20. Kucha, H. (1989) Macrotextures, Microtextures, and Carbo-nate-Sulfide Relationships in Stratiform, Carbonate-Hosted Zn-Pb Orebodies of Silvermines, Ireland. Mineralium Deposita, 24, 48-55. https://doi.org/10.1007/BF00206723

  21. 21. Samson, I.M. and Russell, M.J. (1987) Genesis of the Silvermines Zinc-Lead-Barite Deposit, Ireland; Fluid Inclusion and Stable Isotope Evidence. Economic Geology, 82, 371-394. https://doi.org/10.2113/gsecongeo.82.2.371

  22. 22. Taylor, S. (1984) Structural and Paleotopographic Controls of Lead-Zinc Mineralization in the Silvermines Orebodies, Republic of Ireland. Economic Geology, 79, 529-548. https://doi.org/10.2113/gsecongeo.79.3.529

  23. 23. Mindat.org. Localities: Australia. http://www.mindat.org/loc-121096.html, 2020-10-23.

  24. 24. Symons, D.T.A. and Arne, D.C. (2003) Paleomagnetic Dating of Mineralization in the Kapok MVT Deposit, Lennard Shelf, Western Australia. Journal of Geochemical Exploration, 78-79, 267-272. https://doi.org/10.1016/S0375-6742(03)00022-0

  25. 25. Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E. and Handler, M.R. (1997) A Simple Method for the Precise Determination of ≥ 40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation. Chemical Geology, 134, 311-326. https://doi.org/10.1016/S0009-2541(96)00100-3

  26. 26. Lin, Y., Cook, N.J., Ciobanu, C.L., Liu, Y.P., Liu, T.G., Gao, W., Yang, Y.L. and Danyushevskiy, L. (2011) Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICPMS Study. Ore Geology Reviews, 39, 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001

  27. 27. Seifert, T. and Sandmann, D. (2006) Mineralogy and Geochemistry of Indium-Bearing Polymetallic Vein-Type Deposits: Implications for Host Minerals from the Freiberg District, Eastern Erzgebirge, Germany. Ore Geology Reviews, 28, 1-31. https://doi.org/10.1016/j.oregeorev.2005.04.005

  28. 28. Viets, J.G., Hopkins, R.T. and Miller, B.M. (1992) Variations in Minor and Trace Metals in Sphalerite from Mississippi Valley-Type Deposits of the Ozark Region; Genetic Implications. Economic Geology, 87, 1897-1905. https://doi.org/10.2113/gsecongeo.87.7.1897

  29. 29. Benedetto, R.D., Bernardini, G.P., Costagliola, P., Plant, D. and Vaughan, D.J. (2005) Compositional Zoning in Sphalerite Crystals. American Mineralogist, 90, 1384-1392. https://doi.org/10.2138/am.2005.1754

  30. 30. Moskalyk, R.R. (2003) Gallium: The Backbone of the Electronics Industry. Minerals Engineering, 16, 921-929. https://doi.org/10.1016/j.mineng.2003.08.003

  31. 31. Carrillo-Rosúa, J., Morales-Ruano, S. and Hach-Alí, P.F. (2008) Textural and Chemical Features of Sphalerite from the Palai-Islica Deposit (SE Spain): Implications for Ore Genesis and Color. Neues Jahrbuch Für Mineralogie Abhandlungen Journal of Mineralogy & Geochemistry, 185, 63-78. https://doi.org/10.1127/0077-7757/2008/0109

  32. 32. Höll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of Germanium—A Review. Ore Geology Reviews, 30, 145-180. https://doi.org/10.1016/j.oregeorev.2005.07.034

  33. 33. Alfantazi, A.M. and Moskalyk, R.R. (2003) Processing of In-dium: A Review. Minerals Engineering, 16, 687-694. https://doi.org/10.1016/S0892-6875(03)00168-7

  34. 34. Sinclair, W.D., Kooiman, G.J.A., Martin, D.A. and Kjarsgaard, I.M. (2006) Geology, Geochemistry and Mineralogy of Indium Resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28, 123-145. https://doi.org/10.1016/j.oregeorev.2003.03.001

  35. 35. Gatterer, A. (1941) Untersuchungen über die Nebenbestandteile von Erzmineralien Norwegischer Zinkblendenführender Vorkommen: Oftedal, Ivar. Skrifter uitgitt av Det Norske Videnskaps-Akademi Oslo I. Mat.-Naturv. Klasse Nr 8, 1-103. Spectrochimica Acta, 2, 135. https://doi.org/10.1016/S0371-1951(41)80076-9

  36. 36. Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73, 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045

  37. 37. 毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 关键矿产——国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698.

  38. 38. 赵汀, 秦鹏珍, 王安建, 王高尚, 李建武, 刘超, 刘毅飞. 镓矿资源需求趋势分析与中国镓产业发展思考[J]. 地球学报, 2017, 38(1): 77-84.

  39. 39. 毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969.

  40. 40. 张伟波, 陈秀法, 陈玉明, 曹艳华, 何学洲, 黄霞, 邓攀. 全球铟矿资源供需现状与我国开发利用建议[J]. 矿产保护与利用, 2019, 39(5): 1-8.

  41. 41. 敦妍冉, 荆海鹏, 洛桑才仁, 张万益, 宋泽峰. 全球镓矿资源分布、供需及消费趋势研究[J]. 矿产保护与利用, 2019, 39(5): 9-15, 25.

  42. 42. 徐净, 李晓峰. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 2018, 34(12): 3611-3626.

  43. 43. 李晓峰, 徐净, 朱艺婷, 吕友虎. 关键矿产资源铟: 主要成矿类型及关键科学问题[J]. 岩石学报, 2019, 35(11): 3292-3302.

  44. 44. Bertelli, M., Williams, P.J., Baker, T., Lisoweic, N. and Boyce, A. (2009) Nature and Origin of Ore-Forming Fluids in the Ravenswood Gold System, North Queensland: Evidence from Fluid Inclusions and Stable Isotopes. Economic Geology Research Unit, 1, 344-346.

  45. 45. Neindorf, L. and Dennis, R. (1989) Ravenswood Gold Mine, an Experience of Rapid Exploration, Development and Production North Queensland Gold 89 Conference.

  46. 46. Mindat.org. Localities: Australia. http://www.mindat.org/loc-186.html, 2020-10-23.

  47. 47. Mindat.org. Localities: Australia. http://www.mindat.org/loc-17051.html, 2020-10-23.

  48. 48. Mindat.org. Localities: Australia. http://www.mindat.org/loc-125689.html, 2020-10-23.

  49. 49. (2006) Australian Company News Bites Stock Re-port.

  50. 50. (2008) Australian Company News Bites Stock Report.

  51. 51. Ciobanu, C.L., Birch, W.D., Cook, N.J., Pring, A. and Grundler, P.V. (2010) Petrogenetic Significance of Au-Bi-Te-S Associations: The Example of Maldon, Central Victorian Gold Province, Australia. Lithos, 116, 1-17. https://doi.org/10.1016/j.lithos.2009.12.004

  52. 52. Arne, D.C., Bierlein, F.P., Morgan, J.W. and Stein, H.J. (2001) Re-Os Dating of Sulfides Associated with Gold Mineralization in Central Victoria, Australia. Economic Geology, 96, 1455-1459. https://doi.org/10.2113/gsecongeo.96.6.1455

  53. 53. Kucha, H. and Plimer, I.R. (1994) Gold in Organic Matter, Maldon, Victoria, Australia. Economic Geology, 94, 1173-1180. https://doi.org/10.2113/gsecongeo.94.7.1173

  54. 54. (2001) Australian Alps Mining Heritage Conservation & Presentation Strategy.

  55. 55. Mindat.org. Localities: Australia. http://www.mindat.org/loc-65284.html, 2020-10-23.

  56. 56. Solomon, M., Tornos, F., Large, R.R., Badham, J.N.P., Both, R.A. and Zaw, K. (2004) Zn-Pb-Cu Volcanic-Hosted Massive Sulphide Deposits: Criteria for Distinguishing Brine Pool-Type from Black Smoker-Type Sulphide Deposition. Ore Geology Reviews, 25, 259-283. https://doi.org/10.1016/j.oregeorev.2004.01.003

  57. 57. Large, R.R., Allen, R.L., Blake, M.D. and Herrmann, W. (2001) Hydrothermal Alteration and Volatile Element Halos for the Rosebery K Lens Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania. Economic Geology, 96, 1055-1072. https://doi.org/10.2113/gsecongeo.96.5.1055

  58. 58. Pwa, A. and van Moort, J.C. (1999) Geochemical Exploration Using Acid Insoluble Residues of Rocks for Volcanic-Hosted Massive Sulphide Deposits, Rosebery Area, Western Tasmania. Journal of Geochemical Exploration, 66, 55-69. https://doi.org/10.1016/S0375-6742(99)00022-9

  59. 59. Bottrill, R.S., Williams, P.A. and Kemp, N.R. (2006) Crocoite and Associated Minerals from Tasmania. Australian Journal of Mineralogy, 12, 59-90.

  60. 60. Mindat.org. Localities: Australia. http://www.mindat.org/loc-171.html, 2020-10-23.

  61. 61. Barnes, S.J., Gole, M.J. and Hill, R.E.T. (1988) The Agnew Nickel Deposit, Western Australia: Part I. Structure and Stratigraphy. Economic Geology, 83, 524-536. https://doi.org/10.2113/gsecongeo.83.3.524

  62. 62. Barnes, S.J., Gole, M.J. and Hill, R.E.T. (1988) The Agnew Nickel Deposit, Western Australia; Part II, Sulfide Geochemistry, with Emphasis on the Platinum-Group Elements. Economic Geology, 83, 537-550. https://doi.org/10.2113/gsecongeo.83.3.537

  63. 63. Gole, M.J., Barnes, S.J. and Hill, R.E.T. (1987) The Role of Fluids in the Metamorphism of Komatiites, Agnew Nickel Deposit, Western Australia. Contributions to Mineralogy and Petrology, 96, 151-162. https://doi.org/10.1007/BF00375229

  64. 64. Solomon, M., Gemmell, J.B. and Zaw, K. (2004) Nature and Origin of the Fluids Responsible for Forming the Hellyer Zn-Pb-Cu, Volcanic-Hosted Massive Sulphide Deposit, Tasmania, Using Fluid Inclusions, and Stable and Radiogenic Isotopes. Ore Geology Reviews, 25, 89-124. https://doi.org/10.1016/j.oregeorev.2003.11.001

  65. 65. Mindat.org. Localities: Australia. http://www.mindat.org/loc-48916.html, 2020-10-23.

  66. 66. Bottomer, L.R. (1986) Epithermal Silver-Gold Mineralization in the Drake Area, Northeastern New South Wales. Journal of the Geological Society of Australia, 33, 457-473. https://doi.org/10.1080/08120098608729384

  67. 67. Spry, P.G. and Wonder, J.D. (1989) Manganese-Rich Garnet Rocks Associated with the Broken Hill Lead-Zinc-Silver Deposit, New South Wales, Australia. Canadian Mineralogist, 27, 275-292.

  68. 68. Mindat.org. Localities: Australia. http://www.mindat.org/loc-105886.html, 2020-10-23.

  69. 69. Mindat.org. Localities: Australia. http://www.mindat.org/loc-16479.html, 2020-10-23.

  70. 70. Mindat.org. Localities: Australia. http://www.mindat.org/loc-28499.html, 2020-10-23.

  71. 71. Ashley, P.M., Lottermoser, B.G., Collins, A.J. and Grant, C.D. (2004) Environmental Geochemistry of the Derelict Webbs Consols Mine, New South Wales, Australia. Environmental Geology, 46, 591-604. https://doi.org/10.1007/s00254-004-1063-7

  72. 72. Fernandez, F.G., Both, R.A., Mangas, J. and Arribas, A. (2000) Metallogenesis of Zn-Pb Carbonate-Hosted Mineralization in the Southeastern Region of the Picos de Europa (Central Northern Spain) Province: Geologic, Fluid Inclusion, and Stable Isotope Studies. Economic Geology, 95, 19-40. https://doi.org/10.2113/gsecongeo.95.1.19

  73. 73. Garcia, G.G. and de Baranda, B.S. (1996) The Picos de Europa Lead-zinc Deposits, Spain. Mineralogical Record, 27, 177.

  74. 74. Mindat.org. Localities: Australia. http://www.mindat.org/loc-188.html, 2020-10-23.

  75. 75. Mindat.org. Localities: Australia. http://www.mindat.org/loc-32230.html, 2020-10-23.

  76. 76. Ashley, P.M. and Willott, B.R. (1997) Zinc-Lead Skarn Deposits at Leadville, New South Wales, Australia, and Their Distinction from Volcanic-Hosted Massive Sulphides. Mineralium Deposita, 32, 16-33. https://doi.org/10.1007/s001260050069

  77. 77. Mindat.org. Localities: New Zealand. http://www.mindat.org/loc-15364.html, 2020-10-23.

  78. 78. Sclzaefer, M.O. and Gutzmer, J. (2004) Mineral Chemistry of Sphalerite and Galena from Pb-Zn Mineralization Hosted by the Transvaal Supergroup in Griqualand West, South Africa. South African Journal of Geology, 107, 341-354. https://doi.org/10.2113/107.3.341

  79. 79. Karataglis, S.S., McNeilly, T. and Bradshaw, A.D. (1986) Lead and Zinc Tolerance of Agrostis capillaris L. and Festuca rubra L. across a Mine-Pasture Boundary at Minera, North Wales. Phyton (Austria), 26, 65-72.

附表

Table A1. Sample information collected in the literatures

表A1. 文献中收集的样品信息

NOTES

*通讯作者。

期刊菜单