Advances in Applied Mathematics
Vol. 07  No. 10 ( 2018 ), Article ID: 27213 , 7 pages
10.12677/AAM.2018.710146

Some New Exact Solutions for the Higher Order Nonlinear Schrodinger Equations Using the First Integral Method

Beibei Zhang, Mei Xiong, Longwei Chen*

College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming Yunnan

Received: Oct. 1st, 2018; accepted: Oct. 15th, 2018; published: Oct. 22nd, 2018

ABSTRACT

In this work, some solutions of the high order nonlinear Schrodinger equation are researched by using the first integral method. By this method, we obtain some exact travelling wave solutions. In addition, it is showed that this method is influential for solving nonlinear partial differential equations (PDEs) in engineering and mathematic.

Keywords:The First Integral Method, The High Order Nonlinear Schrodinger Equation, Exact Travelling Wave Solutions, Soliton Wave Solutions

基于首次积分法求解非线性薛定谔方程的 精确解

张贝贝,熊梅,陈龙伟*

云南财经大学统计与数学学院,云南 昆明

收稿日期:2018年10月1日;录用日期:2018年10月15日;发布日期:2018年10月22日

摘 要

本文利用首次积分法研究了高阶非线性薛定谔方程的一些解。通过这种方法,我们获得了一些精确的行波解。此外,结果表明,首次积分法对于求解工程和数学中的非线性偏微分方程问题具有重要意义。

关键词 :首次积分法,高阶非线性薛定谔方程,精确行波解,孤子波解

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

非线性偏微分方程精确行波解的研究在固体物理,光纤,等离子体和弹性介质等领域发挥着重要作用。近年来,寻求精确的行波解已经在物理学家和数学家中取得了有效的进展。许多数学家和物理学家已经提出了一些方法,例如雅可比椭圆函数展开法 [1] ,tanh-sech函数法 [2] ,指数函数法 [3] ,Hirota双线性法 [4] ,F展开法 [5] ,动力系统分岔理论 [6] 等。另外,Feng提出用首次积分法来求解非线性偏微分方程,并获得了一些精确行波解 [7] - [13] 。

在本文中,我们将用首次积分法来求解下面高阶非线性薛定谔方程 [14] :

i q z + q t t + 2 q | q | 2 + i a 1 q t t t + i a 2 ( q | q | 2 ) t + i a 3 ( q | q | 4 ) t + a 4 q | q | 4 = 0 (1)

它描述了飞秒脉冲在非线性光纤中的传播。 q = q ( z , t ) 是一个复函数,表示非线性光纤中脉冲包络的归一化复合幅度,z为归一化传播距离,t为延迟时间,α1,α2,α3和α4为非零常数。许多研究者已经用了一些方法来研究这个方程,例如Zayed E.M.E用 ( G ' / G ) 展开法研究了非线性高阶薛定谔方程,并获得了一些精确解 [15] 。

2. 首次积分法的基本介绍

在这一节中,我们考虑下面的非线性偏微分方程:

P ( u , u t , u x , u x x , u t t , u x t , u x x x , ) = 0. (2)

首次积分法的主要步骤如下:

步骤一:首先我们做一个行波变换:

u ( x , t ) = u ( ξ ) , ξ = x c t . (3)

其中c是常数。

t ( . ) = c ξ ( . ) , x ( . ) = ξ ( . ) , 2 t 2 ( . ) = c 2 2 ξ 2 ( . ) , (4)

步骤二:由上述变换我们将非线性偏微分方程转换为线性偏微分方程:

Q ( u , u ξ , u ξ ξ , ) = 0. (5)

步骤三:假设偏微分方程能被表示成

u ( x , t ) = u ( ξ ) . (6)

步骤四:然后,我们引入一个新的变量:

X ( ξ ) = u ( ξ ) , Y ( ξ ) = u ξ ( ξ ) . (7)

可以得出

{ X ξ ( ξ ) = Y ( ξ ) , Y ξ ( ξ ) = F ( X ( ξ ) , Y ( ξ ) ) . (8)

步骤五:由常微分方程定性理论可知 [16] ,若可以在一些条件下找到方程(8)的积分,我们就可以利用除法原理得到它的解。

定理: (除法原理):设 P ( x , y ) Q ( x , y ) 是两个变量x和y在域 C ( x , y ) 上的多项式,其中 P ( x , y ) C ( x , y ) 中不可约。若 Q ( x , y ) 在所有零点 ( x , y ) 上可约,则在 C ( x , y ) 中存在一个多项式 G ( x , y ) ,使得 ( x , y )

3. 首次积分法的应用

在这一节中,我们运用首次积分法来求解非线性高阶薛定谔方程的精确解。首先,我们对(1)做一个变换

q ( z , t ) = u ( ξ ) e i ( k z + w t ) , ξ = t + c z (9)

这里t,c是实参数。

将方程(9)代入(1)中,然后令实部和虚部分别为零,可得

( 1 3 a 1 w ) u + ( a 1 w 3 w 2 k ) u + ( 2 a 2 w ) u 3 + ( a 4 a 3 w ) u 5 = 0 (10)

a 1 u + ( 2 w 3 a 1 w 2 + c ) u + 3 a 2 u 2 u + 5 a 3 u 4 u = 0 (11)

将方程(11)积分一次代入(10)得

a 1 u + ( 2 w 3 a 1 w 2 + c ) u + a 2 u 3 + a 3 u 5 = 0 (12)

为了计算简便,可令:

k 1 = 2 w 3 a 1 w 2 + c a 1 , k 2 = a 2 a 1 , k 3 = a 3 a 1 (13)

u + k 1 u + k 2 u 2 + k 3 u 3 = 0 (14)

由方程(7) (9) (14)可得

{ X ( ξ ) = Y ( ξ ) , Y ( ξ ) = k 1 X ( ξ ) + k 2 X ( ξ ) 3 + k 3 X ( ξ ) 5 . (15)

根据除法原理,我们可以假设 X = X ( ξ ) Y = Y ( ξ ) 是方程(14)的非平凡解。并且

P ( X , Y ) = i = 0 m a i ( X ) Y i . (16)

在复数域上 C ( X , Y ) 是不可约多项式,即

P ( X ( ξ ) , Y ( ξ ) ) = i = 0 m a i ( X ( ξ ) ) Y ( ξ ) i = 0. (17)

在这里 a i ( X ) ( i = 1 , 2 , , m ) 是X的多项式且 a m ( X ) 0 。方程(17)称为(15)的首次积分。定义:

P ( X ( ξ ) , Y ( ξ ) ) 是关于X和Y的多项式,且 d P d ξ | ( 20 ) = 0 。由除法定理可以得到,在复数域 C ( X , Y ) 上存在一个多项式 H ( X , Y ) = h ( X ) + g ( X ) Y ,使得

d P d ξ | ( 20 ) = ( d P d X d X d ξ + d P d Y d Y d ξ ) | ( 20 ) = ( h ( X ) + g ( X ) Y ) ( i = 0 m a i ( X ) Y i ) . (18)

3.1. 情形一

在方程(17)中假设 m = 1 ,然后方程(18)可以表示成

i = 0 1 a i ( X ) Y i + 1 + i = 0 1 i a i ( X ) Y i 1 ( Y ( ξ ) ) = ( h ( X ) + g ( X ) Y ) ( i = 0 1 a i ( X ) Y i ) . (19)

然后,从方程(19)中通过比较两边 Y i ( i = 2 , 1 , 0 ) 的系数,可以得到

a 1 ( X ) = g ( X ) a 1 ( X ) , (20)

a 0 ( X ) = h ( X ) a 1 ( X ) + g ( X ) a 0 ( X ) , (21)

a 1 ( X ) ( k 1 X + k 2 X 3 + k 5 X 5 ) = h ( X ) a 0 ( X ) . (22)

由于 a i ( x ) ( i = 0 , 1 ) 是X的一个多项式,从方程(20)中我们可以得出 a 1 ( X ) 是一个常数,并且 g ( X ) = 0 。为了方便计算,我们可以令 a 1 ( X ) = 1 。然后通过平衡 h ( X ) a 0 ( X ) 的阶数,可以得出 deg ( h ( x ) ) = 2 。假设 h ( X ) = A X 2 + B X + C ,这里的 A 0 ,那么

a 0 ( X ) = 1 3 A X 3 + 1 2 B X 2 + C X + D . (23)

这里D是积分常数。然后将 a 0 ( X ) , a 1 ( X ) , h ( X ) 代入方程(23)中,我们通过比较系数最后得到如下代数方程组

{ 1 3 A 2 = k 3 5 6 A B = 0 4 3 A C + 1 2 B 2 = k 2 A D + 3 2 B C = 0 B D + C 2 = k 1 C D = 0 (24)

我们用Maple求解它们,可以得到

D = 0 , B = 0 , A = ± 3 k 3 , C = ± k 1 , (25)

这里 k 1 , k 3 < 0 ,并且满足条件

k 1 k 3 = 3 16 k 2 2 . (26)

将条件(25)代入(17)中,可得

Y = 1 3 A X 3 C X . (27)

然后由方程(7)有

φ ( ξ ) = 1 3 A φ ( ξ ) 3 C φ ( ξ ) . (28)

我们为了得到(28)的解,引入伯努利方程(14)有

Z = a Z + b Z p , (29)

这里 a , b , p R , a b 0 , p 1 。那么方程(29)有如下形式的解

Z ( ξ ) = [ a / b ξ 0 e a ( 1 p ) + 1 ] 1 p 1 , (30)

= { { a 2 b [ 1 + tanh ( a ( p 1 ) 2 ξ ln ξ 0 2 ) ] } 1 p 1 ξ 0 > 0 , { a 2 b [ 1 + coth ( a ( p 1 ) 2 ξ ln ( ξ 0 ) 2 ) ] } 1 p 1 ξ 0 < 0 , ( a b ) 1 p 1 ξ 0 = 0. (31)

这里 ξ 0 为任意常数。我们将 a = C , b = 1 3 A , p = 3 代入方程(31)中有

u ( ξ ) = { { ± 1 2 3 k 1 k 3 [ 1 + tanh ( k 1 ξ ln ξ 0 2 ) ] } 1 2 ξ 0 > 0 , { ± 1 2 3 k 1 k 3 [ 1 + coth ( k 1 ξ ln ( ξ 0 ) 2 ) ] } 1 2 ξ 0 < 0 , { ± 3 k 1 k 3 } 1 2 ξ 0 = 0. (32)

则非线性高阶薛定谔方程(1)的行波解可表示为

u ( x , t ) = { { ± 1 2 3 k 1 k 3 [ 1 + tanh ( k 1 ( x λ t ) ln ξ 0 2 ) ] } 1 2 e ( x ω t ) ξ 0 > 0 , { ± 1 2 3 k 1 k 3 [ 1 + coth ( k 1 ( x λ t ) ln ( ξ 0 ) 2 ) ] } 1 2 e ( x ω t ) ξ 0 < 0 , { ± 3 k 1 k 3 } 1 2 e ( x ω t ) ξ 0 = 0. (33)

3.2. 情形二

在方程(18)中假设 m = 2 ,通过比较两边 Y i ( i = 2 , 1 , 0 ) 系数,我们可以得到

a 2 ( X ) = g ( X ) a 2 ( X ) , (34)

a 1 ( X ) = h ( X ) a 2 ( X ) + g ( X ) a 1 ( X ) , (35)

a 0 ( X ) + 2 a 2 ( X ) ( k 1 X + k 2 X 3 + k 5 X 5 ) = h ( X ) a 1 ( X ) + g ( X ) a 0 ( X ) , (36)

a 1 ( X ) ( k 1 X + k 2 X 3 + k 5 X 5 ) = h ( X ) a 0 ( X ) . (37)

由于 a i ( x ) ( i = 0 , 1 , 2 ) 是X的一个多项式,我们从方程(34)中可以得出 a 2 ( X ) 是一个常数,且 g ( X ) = 0 。为了方便计算,令 a 2 ( X ) = 1 。通过平衡 h ( X ) , a 1 ( X ) a 0 ( X ) 的阶数,我们可以得出 deg ( h ( x ) ) = 2 deg ( a 1 ( x ) ) = 3 deg ( a 0 ( x ) ) = 6 。然后假设 h ( X ) = A X 2 + B X + C ,这里 A 0 ,有

a 1 ( X ) = 1 3 A X 3 + 1 2 B X 2 + C X + D . (38)

a 0 ( X ) = ( 1 18 A 2 1 3 k 3 ) X 6 + ( 1 6 A B ) X 5 + ( 1 3 A C + 1 8 B 2 + 1 2 k 2 ) X 4 + ( 1 3 A D + 1 2 B C ) X 3 + ( 1 2 B D + 1 2 C 2 k 1 ) X 2 + D C X + E . (39)

其中D是积分常数。我们将 a 0 ( X ) , a 1 ( X ) , a 2 ( X ) , h ( X ) 代入方程(37)中,然后通过比较系数可以得到如下代数方程组

{ 1 18 A 3 = 2 3 A k 3 2 9 A 2 B = 5 6 B k 3 7 18 A 2 C + 7 24 A B 2 = 5 6 A k 2 + 4 3 C k 3 1 3 A 2 D + A B C + 1 8 B 2 = B k 2 + D k 3 7 6 A B D + 5 6 A C 2 + 1 8 B 2 C = 4 3 A k 1 + 3 2 C k 2 4 3 A C D + 1 2 D B 2 + B C 2 = 3 2 B k 1 + 2 D k 2 3 2 B C D + 1 2 C 2 + A E = 2 C k 1 D C 2 + B E = D k 1 E C = 0 , (40)

用Maple求解它们,可得到

D = 0 , B = 0 , A = ± 2 3 k 3 , C = ± 2 k 1 , (41)

这里 k 1 , k 3 < 0 ,并且满足约束条件

k 1 k 3 = 3 16 k 2 2 . (42)

再把条件(33)代入(17)中,可得

Y = 1 6 A X 3 1 2 C X . (43)

再由方程(7)有

φ ( ξ ) = 1 6 A φ ( ξ ) 3 1 2 C φ ( ξ ) . (44)

同理,我们将 a = 1 2 C , b = 1 6 A , p = 3 代入方程(30)和(31)中,则方程(44)和(28)有相同的精确解。

4. 总结

本文中,我们运用首次积分法来求解非线性高阶薛定谔方程,并且得到了一些精确行波解。另外,这个方法是很有效的。进一步说,它也可以用来解决其他的非线性薛定谔方程,并获得相应的行波解。

文章引用

张贝贝,熊梅,陈龙伟. 基于首次积分法求解非线性薛定谔方程的精确解
Some New Exact Solutions for the Higher Order Nonlinear Schrodinger Equations Using the First Integral Method[J]. 应用数学进展, 2018, 07(10): 1256-1262. https://doi.org/10.12677/AAM.2018.710146

参考文献

  1. 1. Liu, S., Fu, Z., Liu, S.D. and Zhao, Q. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74. https://doi.org/10.1016/S0375-9601(01)00580-1

  2. 2. Ma, W.X. (1993) Travelling Wave Solutions to a Seventh Order Generalized KdV Equation. Physics Letters A, 180, 221-224. https://doi.org/10.1016/0375-9601(93)90699-Z

  3. 3. He, J.H. and Zhang, L.N. (2008) Generalized Solitary Solution and Compacton-Like Solution of the Jaulent-Miodek Equations Using the Exp-Function Method. Physics Letters A, 372, 1044-1047. https://doi.org/10.1016/j.physleta.2007.08.059

  4. 4. Wang, D.S. (2009) A Systematic Method to Construct Hirotas Transformations of Continuous Soliton Equations and Its Applications. Computers and Mathematics with Applications, 58, 146-153. https://doi.org/10.1016/j.camwa.2009.03.077

  5. 5. Zhang, S. (2006) The Periodic Wave Solutions for the (2 + 1) Dimensional Konopelchenko Dubrovsky Equations. Chaos Solitons & Fractals, 30, 1213-1220. https://doi.org/10.1016/j.chaos.2005.08.201

  6. 6. Li, Y., Shan, W.R., Shuai, T.P. and Rao, K. (2015) Bifurcation Analysis and Solutions of a Higher Order Nonlinear Schrodinger Equation. Mathematical Problems in Engineering, 2015, 1-10. https://doi.org/10.1155/2015/408586

  7. 7. Feng, Z.S. (2002) The First Integral Method to Study the Burgers Korteweg-de Vries Equation. Physics Letters A, 35, 343-349.

  8. 8. Feng, Z.S. (2002) On Explicit Exact Solutions to the Compound Burgers Korteweg-de Vries Equation. Physics Letters A, 293, 57-66. https://doi.org/10.1016/S0375-9601(01)00825-8

  9. 9. Feng, Z.S. (2008) Travelling Wave Behavior for a Generalized Fisher Equation. Chaos, Solitons & Fractals, 38, 481-488.

  10. 10. Feng, Z.S. and Knobel, R. (2007) Travelling Waves to a Burgers Korteweg-de Vries Equation with Higher Order Nonlinearities. Journal of Mathematical Analysis and Applications, 328, 1435-1450. https://doi.org/10.1016/j.jmaa.2006.05.085

  11. 11. Abdoon, M.A. (2015) Programming First Integral Method General Formula for the Solving Linear and Nonlinear Equations. Applied Mathematics, 6, 568-575. https://doi.org/10.4236/am.2015.63051

  12. 12. Seadawy, A. and Sayed, A. (2017) Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method. Faculty of Sciences and Mathematics, 214, 4199-4208. https://doi.org/10.2298/FIL1713199S

  13. 13. Ibrahim, S. and El-Ganaini, A. (2007) The First Integral Method to the Nonlinear Schrodinger Equations in Higher Dimensions. Abstract and Applied Analysis, 18, 1187-1197.

  14. 14. Geng, Y.X. and Li, J.B. (2010) Exact Explicit Traveling Wave Solutions for Two Nonlinear Schrodinger Type Equations. Applied Mathematics and Computation, 217, 1509-1521. https://doi.org/10.1016/j.amc.2009.06.031

  15. 15. Zayed, E.M.E. and Alurrfik, A.E. (2015) Exact Travelling Wave Solutions for Higher Order Nonlinear Schrodinger Equations in Optics by Using the (G’\G)-Expansion Method. Journal of Partial Differential Equations, 332-357.

  16. 16. Ding, T.R. and Li, C.Z. (1996) Ordinary Differential Equations. Peking University Press, Beijing.

  17. NOTES

    *通讯作者。

期刊菜单