﻿ 固定翼无人机的滑模控制方法研究 Study on Sliding Mode Control Method of the Fixed-Wing Unmanned Aerial Vehicle

Dynamical Systems and Control
Vol.05 No.03(2016), Article ID:18073,10 pages
10.12677/DSC.2016.53013

Study on Sliding Mode Control Method of the Fixed-Wing Unmanned Aerial Vehicle

Xinglong Shi, Lifeng Wang

Institute of Electrical and Control Engineering, North China University of Technology, Beijing

Received: Jul. 5th, 2016; accepted: Jul. 24th, 2016; published: Jul. 27th, 2016

ABSTRACT

Aiming at improving the robustness of the tracking system, an adaptive sliding mode controller on the fixed wing unmanned aerial vehicle (UAV) trajectory tracking control problem is suggested. After introducing the establishment of the fixed-wing unmanned aerial vehicle mathematical model, the trajectory tracking control model is analyzed. The sliding mode control technology is applied into UAV trajectory tracking control model, and the robustness of the system is improved through Lyapunov theory, Finally, it's feasibility that is tested through modeling and simulation experiments in MATLAB.

Keywords:Fixed-Wing Unmanned Aerial Vehicle, Sliding Mode Control, Trajectory Tracking, Modeling and Simulation

1. 引言

2. 固定翼动力学模型

(1)

(2)

Figure 1. Establishment of coordinate

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

3. 飞行器轨迹跟踪模型

UAV轨迹跟踪控制的目的就是控制固定翼机在反馈控制下来跟踪一个参考的轨迹，若代表现在的位置，为现在时刻航向角，为航向转速率，V代表飞行的速度，让代表参考轨迹点，代表参考速度，代表参考航向转速率，飞机的轨迹参考模型如图2

(15)

(16)

(17)

(18)

Figure 2. Trajectory reference model

Figure 3. Fixed-wing trajectory tracking structure chart

(19)

(20)

(21)

(22)

4. 滑模变结构控制

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

① 当系统到达滑模面前，采用等速趋近律的方法，其表达式为：

(33)

② 当系统到达滑模面后，系统的状态轨迹仍要保持在滑模面上滑动，此时有滑模面，则

(34)

5. 仿真结果

Table 1. Basic parameters chart of aircraft

Figure 4. Flight trajectory tracking 3d space diagram

Figure 5. Ground projection position tracking diagram

Figure 6. Flight altitude tracking diagram

Figure 7. Y-axis position tracking diagram

Figure 8. X-axis position tracking diagram

6. 结论

Study on Sliding Mode Control Method of the Fixed-Wing Unmanned Aerial Vehicle[J]. 动力系统与控制, 2016, 05(03): 114-123. http://dx.doi.org/10.12677/DSC.2016.53013

1. 1. 章志祥，王立峰，贺丛奎. 基于自适应动态逆的四旋翼机器人控制设计[J]. 动力系统与控制, 2014, 3(1): 1-7.

2. 2. Wang, L.F., Zhang, Z.X. and He, C.K. (2014) Adaptive Dynamic Inversion Controller for Quad Rotor Aerial Robot. Journal of Control Engi-neering and Technology (JCET), 4, 147-152.

3. 3. Das, A., Subbarao, K. and Lewis, F. (2009) Dynamic Inversion with Ze-ro-Dynamics Stabilisation for Quadrotor Control. Control Theory Applications, IET, 3, 303-314. http://dx.doi.org/10.1049/iet-cta:20080002

4. 4. Snnoeveldt, L., van Oort, E.R., Chu, Q.P. and Mulder, J.A. (2009) Nonlinear Adaptive Trajectory Control Applied to an F-16 Model. Journal of Guidance Control and Dynamics, 32, 25-39.

5. 5. Parada, P., Espinoza, T. and Dzul, A. (2014) Nonlinear Observers Applied to Fixed-Wing UAVs. International Conference on Unmanned Air-craft System, Orlando, FL, 27-30 May 2014, 780-790. http://dx.doi.org/10.1109/icuas.2014.6842323

6. 6. Espinoza, T., Dzul, A., Lozano, R. and Parada, P. (2013) Backstep-ping-Sliding Mode Controllers Applied to a Fixed wing UAV. International Conference on Unmanned Aircraft System, Atlanta, GA, 28-31 May 2013, 95-104. http://dx.doi.org/10.1109/icuas.2013.6564678

7. 7. Wang, L.F., He, C.K. and Zhu, P. (2014) Adaptive Sliding Mode Control for Quadrotor Aerial Robot with Ι Type Configuration. International Journal of Automation and Control Engineering (IJACE), 3, 20-26. http://dx.doi.org/10.14355/ijace.2014.0301.03

8. 8. Zhu, Z., Xia, Y.Q. and Fu, M.Y. (2011) Adaptive Sliding Mode Control for Attitude Stabilization with Actuator Saturation. IEEE Transactions on Industrial Electronics, 58, 4898-4907. http://dx.doi.org/10.1109/TIE.2011.2107719

9. 9. Sun, Y., Zhang, W.-G. and Zhang, M. (2011) Adaptive Sliding Mode High Maneuvers Flight Control Based on Backstepping Procedure. Control and Decision, 26, 1-5.

10. 10. Paw, Y.C. (2009) Synthesis and Validation of Flight Control for UAV. PhD Dissertation, University of Minnesota, Minneapolis and St. Paul.

11. 11. Low, C.B. (2010) A Trajectory Tracking Control Design for Fixed-Wing Unmanned Aerial Vehicles. IEEE International Conference on Control Ap-plications Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, 8-10 September 2010, 2118-2123.

12. 12. 刘金坤. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2005.

13. 13. 沈宏良, 刘昶. 飞机平衡状态的优化计算方法[J]. 飞行力学, 2001, 19(4): 15-18.

14. 14. Jaroslav, R.N. and Zelinka, I. (2008) Evolutionary Algorithms in Aircraft Trim Optimization. 19th International Conference on Database and Expert Systems Application, Zlin, 524-530.