﻿ 基于虚拟正交试验的关节轴承挤压成形数值模拟分析 Numerical Simulation Analysis for Spherical Plain Bearing Extrusion Based on Virtual Orthogonal Experiment

Instrumentation and Equipments
Vol. 07  No. 01 ( 2019 ), Article ID: 28968 , 6 pages
10.12677/IaE.2019.71006

Numerical Simulation Analysis for Spherical Plain Bearing Extrusion Based on Virtual Orthogonal Experiment

Lei Zhang, Xiongrong Huang, Linlin Zhu

Shanghai Bearing Technology Research Institute, Shanghai

Received: Jan. 26th, 2019; accepted: Feb. 15th, 2019; published: Feb. 22nd, 2019

ABSTRACT

Based on the self-developing platform, the finite element simulation model of the extrusion assembly process for a certain type of domestic joint bearing was established. Based on the simulation of the virtual orthogonal experiment, the bearing inner and outer ring clearance and die extrusion stroke process parameters were selected as the experimental factors. Selecting bearing fit as the measuring goal, through the orthogonal experiment design, the multi-objective process parameters were optimized, the influence degree of different process parameters on bearing fit was known, and the optimum process parameters were obtained.

Keywords:Spherical Plain Bearing, Extrusion, Virtual Orthogonal Experiment, Numerical Simulation

1. 引言

2. 有限元模型的建立

Figure 1. The outer ring of the spherical plain bearing

Figure 2. The inner ring of the spherical plain bearing

Figure 3. The extrusion mold of the spherical plain bearing

3. 虚拟正交试验方案的确立

Figure 4. The combined extrusion finite element model of the spherical plain bearing

$\Delta t=粘贴衬垫后外圈内径-内圈外径$ (2-1)

$间隙值=2×\Delta t$ (2-2)

Figure 5. The schematic diagram bearing for the clearance of the inner ring and outer ring

Figure 6. The schematic diagram bearing for the clearance of the inner ring and outer ring

Table 1. The horizontal elements of figure orthogonal experiment

4. 仿真结果分析

Table 2. The table of the virtual orthogonal experiment

5. 结论

Numerical Simulation Analysis for Spherical Plain Bearing Extrusion Based on Virtual Orthogonal Experiment[J]. 仪器与设备, 2019, 07(01): 35-40. https://doi.org/10.12677/IaE.2019.71006

1. 1. 段宏瑜, 刘红宇, 朱淋淋. 基于Workbench的自润滑关节轴承失效分析及优化设计[J]. 轴承, 2016(9): 52-55.

2. 2. 庄鸿鸣. 重型汽车推力杆用自润滑关节轴承[J]. 轴承, 2016(7): 12-14.

3. 3. 刘汉武, 张志萍, 王秀梅, 等. 基于BP遗传算法的铝型材挤压模具优化设计[J]. 哈尔滨工业大学学报, 2000, 32(4): 86-88.

4. 4. 吴连平, 杨晓翔. 基于神经网络与遗传算法的关节轴承挤压模具优化[J]. 中国机械工程, 2015, 26(10): 1351-1355.

5. 5. 陈清伟. 基于ABAQUS的关节轴承冷挤压仿真参数优化[J]. 轴承, 2017(10): 25-27.

6. 6. 杨庆华, 占伟涛, 等. 基于正交试验BP神经网络和遗传算法的冷压模具优化设计方法[J]. 浙江工业大学学报, 2015, 43(3): 251-256.

7. 7. 邹凯丽, 李宝福, 刘红宇. 铝合金关节轴承外圈滚轧整形有限元分析[J]. 轴承, 2015(7): 21-24.

8. 8. 吴连平, 杨晓翔. 基于虚拟正交试验的关节轴承工艺参数优化设计[J]. 塑性工程学报, 2014(6): 7-13.